

ANL/EVS-24/11

Verification of RESRAD-BUILD Code Version 4

Environmental Science Division

About Argonne National Laboratory

Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a growing number of pre-1991 documents are available free at OSTI.GOV (<u>http://www.osti.gov/</u>), a service of the US Dept. of Energy's Office of Scientific and Technical Information.

Reports not in digital format may be purchased by the public from the National Technical Information Service (NTIS):

U.S. Department of Commerce National Technical Information Service 5301 Shawnee Rd Alexandria, VA 22312 www.ntis.gov Phone: (800) 553-NTIS (6847) or (703) 605-6000 Fax: (703) 605-6900 Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 www.osti.gov Phone: (865) 576-8401 Fax: (865) 576-5728 Email: reports@osti.gov

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.

Verification of RESRAD-BUILD Code Version 4

by

J.-J. Cheng, S. Kamboj, D. LePoire, C. Wang, K. Beckman, E. Gnanapragasam, and C. Yu

Environmental Science Division, Argonne National Laboratory

May 2024

CONTENTS

1	INTI	RODUCTION	1
2	VER	IFICATION OF THE EXTERNAL RADIATION MODELING	3
	2.1	External Radiation of Point Sources	3
		2.1.1 Dose Results without Shielding	9
		2.1.2 Risk Results without Shielding	9
		2.1.3 Dose Results with Water Shielding	9
		2.1.4 Risk Results with Water Shielding	9
		2.1.5 Dose Results with Concrete Shielding	17
		2.1.6 Risk Results with Concrete Shielding.	17
	2.2	External Radiation of Line Sources	17
		2.2.1 Dose Results without Shielding	20
		2.2.2 Risk Results without Shielding	20
		2.2.3 Dose Results with Water Shielding	20
		2.2.4 Risk Results with Water Shielding	20
		2.2.5 Dose Results with Concrete Shielding	29
		2.2.6 Risk Results with Concrete Shielding	29
	2.3	External Radiation of Area Sources	29
		2.3.1 Circular Area Sources	33
		2.3.2 Rectangular Area Sources	93
	2.4	External Radiation of Volume Sources	100
		2.4.1 Dose Results without Shielding	101
		2.4.2 Dose Results with Shielding	125
	2.5	External Radiation of Floor Deposition	141
3	VER	IFICATION OF THE VENTILATION MODELING	143
	3.1	Case I – A Volume Source in Room 1 with No Scheduled Vacuuming	143
		3.1.1 Calculation and Comparison of Release Rates and Source Concentrations	144
		3.1.2 Calculation and Comparison of Air and Floor Concentrations	144
		3.1.3 Calculation and Comparison of Radiation Doses and Cancer Risks	152
	3.2	Case II – A Volume Source in Room 1 with Scheduled Vacuuming	162
	3.3	Case III – A Volume Source in Room 2 with No Scheduled Vacuuming	168
	3.4	Case IV – A Volume Source in Room 2 with Scheduled Vacuuming	178
	3.5	Case V – An Area Source in Room 3 with No Scheduled Vacuuming	184
	3.6	Case VI – An Area Source in Room 3 with Scheduled Vacuuming	194
		3.6.1 Calculation and Comparison of Release Rates and Source Concentrations	194
		3.6.2 Calculation and Comparison of Air and Floor Concentrations	203
		3.6.3 Calculation and Comparison of Radiation Doses and Cancer Risks	213
	3.7	Case VII – An Area Source in Room 5 with Scheduled Vacuuming	213
4	REF	ERENCES	229
AF	PENI	DIX A. RESRAD-BUILD Test Cases	. A-1
AF	PEN	DIX B. RESRAD-BUILD Version 4.0 Release Testing Report	B-1

TABLES

2.1	Literature Data of Mass Energy Absorption Coefficients and Absorbed-to-Effective Dose Conversion Factors	4
2.2	Literature Data of Mass Attenuation Coefficients in Air, Water, and Concrete	5
2.3	Estimates of Buildup Factors in Air of Different Thicknesses	6
2.4	Estimates of Buildup Factors in Water of Different Thicknesses	7
2.5	Estimates of Buildup Factors in Concrete of Different Thicknesses	8
2.6	Estimates of External Dose from a Point Source at (0, 0, 0) at the Receptor Location (1, 1, 1) (m) without Shielding	10
2.7	Estimates of External Dose from a Point Source at (0, 0, 0) at the Receptor Location (0, 0, 4) (m) without Shielding	11
2.8	Estimates of External Dose from a Point Source at $(0, 0, 0)$ at the Receptor Location $(0, 0, 0.3)$ (m) without Shielding	12
2.9	Comparison of Estimates of External Dose (mrem/yr) from a Point Source at Different Receptor Locations without Shielding	13
2.10	Calculation of Radionuclide-Specific Dose-to-Risk Conversion Factors	13
2.11	Comparison of Estimates of External Radiation Cancer Risks (1/yr) from a Point Source at Different Receptor Locations without Shielding	14
2.12	Estimates of Attenuation (Shielding) Factor and Buildup Factor at the Receptor Location (1, 1, 1) (m) with Water Shielding	15
2.13	Comparison of Estimates of External Radiation Dose (mrem/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses	15
2.14	Comparison of Estimates of External Radiation Cancer Risks (1/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses	16
2.15	Estimates of Attenuation (Shielding) Factor and Buildup Factor at the Receptor Location (1, 1, 1) (m) with Concrete Shielding	18
2.16	Comparison of Estimates of External Radiation Dose (mrem/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses	18
2.17	Comparison of Estimates of External Radiation Cancer Risk (1/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses	19
2.18	Calculations of Distance, 4π Area, and Geometrical Factor at the Receptor Location $(1, 1, 1)$ (m)	21
2.19	Estimates of External Radiation Dose from a Line Source at $(0, 0, 0)$ at the Receptor Location $(1, 1, 1)$ (m) without Shielding	22

2.20	Calculations of Distance, 4π Area, and Geometrical Factor at the Receptor Location $(0, 0, 0.3)$ (m)	23
2.21	Estimates of External Dose from a Line Source at $(0, 0, 0)$ at the Receptor Location $(0, 0, 0.3)$ (m) without Shielding	24
2.22	Calculations of Distance, 4π Area, and Geometrical Factor at the Receptor Location $(0, 0, 4)$ (m)	25
2.23	Estimates of External Dose from a Line Source at $(0, 0, 0)$ at the Receptor Location $(0, 0, 4)$ (m) without Shielding	26
2.24	Comparison of Estimates of External Radiation Dose (mrem/yr) from a Line Source at Different Receptor Locations without Shielding	26
2.25	Comparison of Estimates of External Radiation Risks (1/yr) from a Line Source at Different Receptor Locations without Shielding	27
2.26	Comparison of Estimates of External Radiation Dose (mrem/yr) from a Line Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses	27
2.27	Comparison of Estimates of External Radiation Cancer Risks (1/yr) from a Line Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses	28
2.28	Comparison of Estimates of External Radiation Dose (mrem/yr) from a Line Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses	30
2.29	Comparison of Estimates of External Radiation Cancer Risks from a Line Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses	30
2.30	Literature Data of Mass Attenuation Coefficients for Air, Concrete, and Soil and Fluence to Effective Dose Equivalent Conversion Factors	31
2.31	Estimates of Buildup Factors in Soil of Different Thicknesses	32
2.32	Calculation of F_{CD} for C-14 in an Area Source without Cover	34
2.33	Calculation of F_{AM} for C-14 in a Reference Area Source without Cover at the Receptor Location (0, 0, 1) (m)	35
2.34	Calculation of F_{AM} for C-14 in an Area Source of 4 m ² without Cover at the Receptor Location (0, 0, 1) (m)	36
2.35	Calculation of F_{AM} for C-14 in an Area Source of 10 m ² without Cover at the Receptor Location (0, 0, 1) (m)	37
2.36	Calculation of F_{AM} for C-14 in an Area Source of 36 m ² without Cover at the Receptor Location (0, 0, 1) (m)	38

2.37	Calculation of F_{AM} for C-14 in an Area Source of 100 m ² without Cover at the Receptor Location of (0, 0, 1) (m)	39
2.38	Calculation of F_{AM} for C-14 in an Area Source of 1,000 m ² without Cover at the Receptor Location (0, 0, 1) (m)	40
2.39	Calculation of F_{AM} for C-14 in an Area Source of 10,000 m ² without Cover at the Receptor Location (0, 0, 1) (m)	41
2.40	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Area Sources without Cover	42
2.41	Estimation of External Radiation Dose at the Receptor Location (0, 0, 0.3) (m) from C-14 in Six Area Sources without Cover	42
2.42	Estimation of External Radiation Dose at the Receptor Location (0, 0, 4) (m) from C-14 in Six Area Sources without Cover	42
2.43	Comparison of Radiation Dose (mrem/yr) Estimated by RESRAD-BUILD and Spreadsheets from C-14 in Six Area Sources without Cover	44
2.44	Calculation of <i>F</i> _{CD} for Mn-54 in an Area Source without Cover	44
2.45	Calculation of F_{AM} for Mn-54 in a Reference Area Source without Cover at the Receptor Location (0, 0, 1) (m)	45
2.46	Calculation of F_{AM} for Mn-54 in an Area Source of 4 m ² without Cover at the Receptor Location (0, 0, 1) (m)	46
2.47	Calculation of F_{AM} for Mn-54 in an Area Source of 10 m ² without Cover at the Receptor Location (0, 0, 1) (m)	47
2.48	Calculation of F_{AM} for Mn-54 in an Area Source of 36 m ² without Cover at the Receptor Location (0, 0, 1) (m)	48
2.49	Calculation of F_{AM} for Mn-54 in an Area Source of 100 m ² without Cover at the Receptor Location (0, 0, 1) (m)	49
2.50	Calculation of F_{AM} for Mn-54 in an Area Source of 1,000 m ² without Cover at the Receptor Location of (0, 0, 1) (m)	50
2.51	Calculation of F_{AM} for Mn-54 in an Area Source of 10,000 m ² without Cover at the Receptor Location of (0, 0, 1) (m)	51
2.52	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six Area Sources without Cover	52
2.53	Estimation of External Radiation Dose at the Receptor Location (0, 0, 0.3) (m) from Mn-54 in Six Area Sources without Cover	52
2.54	Estimation of External Radiation Dose at the Receptor Location (0, 0, 4) (m) from Mn-54 in Six Area Sources without Cover	52
2.55	Comparison of Radiation Doses (mrem/yr) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in Six Area Sources without Cover	53

2.56	Calculation of F_{CD} for Tc-99 in an Area Source without Cover	53
2.57	Calculation of F_{AM} for Tc-99 in a Reference Area Source without Cover at the Receptor Location (0, 0, 1) (m)	54
2.58	Calculation of F_{AM} for Tc-99 in an Area Source of 4 m ² without Cover at the Receptor Location (0, 0, 1) (m)	55
2.59	Calculation of F_{AM} for Tc-99 in an Area Source of 10 m ² without Cover at the Receptor Location (0, 0, 1) (m)	56
2.60	Calculation of F_{AM} for Tc-99 in an Area Source of 36 m ² without Cover at the Receptor Location (0, 0, 1) (m)	57
2.61	Calculation of F_{AM} for Tc-99 in an Area Source of 100 m ² without Cover at the Receptor Location (0, 0, 1) (m)	58
2.62	Calculation of F_{AM} for Tc-99 in an Area Source of 1,000 m ² without Cover at the Receptor Location (0, 0, 10) (m)	59
2.63	Calculation of F_{AM} for Tc-99 in an Area Source of 10,000 m ² without Cover at the Receptor Location (0, 0, 1) (m)	60
2.64	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six Area Sources without Cover	61
2.65	Estimation of External Radiation Dose at the Receptor Location (0, 0, 0.3) (m) from Tc-99 in Six Area Sources without Cover	62
2.66	Estimation of External Radiation Dose at the Receptor Location (0, 0, 4) (m) from Tc-99 in Six Area Sources without Cover	62
2.67	Comparison of Radiation Doses (mrem/yr) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Six Area Sources without Cover	63
2.68	Comparison of Cancer Risks (1/yr) Estimated by Spreadsheets and RESRAD- BUILD from C-14 in Six Area Sources without Cover	63
2.69	Comparison of Cancer Risks (1/yr) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in Six Area Sources without Cover	64
2.70	Comparison of Cancer Risks (1/yr) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Six Area Source without Cover	64
2.71	Calculation of F_{CD} for C-14 in an Area Source with a Cover of 1 cm	66
2.72	Calculation of F_{AM} for C-14 in a Reference Area Source with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	67
2.73	Calculation of F_{AM} for C-14 in an Area Source of 4 m ² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	68
2.74	Calculation of F_{AM} for C-14 in an Area Source of 10 m ² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	69

2.75	Calculation of F_{AM} for C-14 in an Area Source of 36 m ² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	70
2.76	Calculation of F_{AM} for C-14 in an Area Source of 100 m ² with a Concrete Cover of 1 cm at the Recetpor Location (0, 0, 1) (m)	71
2.77	Calculation of F_{AM} for C-14 in an Area Source of 1,000 m ² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	72
2.78	Calculation of F_{AM} for C-14 in an Area Source of 10,000 m ² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	73
2.79	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Area Sources with a Concrete Cover of 1 cm	74
2.80	Calculation of F_{CD} for C-14 in an Area Source with a Cover of 5 cm	74
2.81	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Area Sources with a Concrete Cover of 5 cm	74
2.82	Comparison of External Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from C-14 in Six Area Sources with Concrete Covers	75
2.83	Calculation of F_{CD} for Mn-54 in an Area Source with a Cover of 1 cm	75
2.84	Calculation of F_{AM} for Mn-54 in a Reference Area Source with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	76
2.85	Calculation of F_{AM} for Mn-54 in an Area Source of 4 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	77
2.86	Calculation of F_{AM} for Mn-54 in an Area Source of 10 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	78
2.87	Calculation of F_{AM} for Mn-54 in an Area Source of 36 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	79
2.88	Calculation of F_{AM} for Mn-54 in an Area Source of 100 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	80
2.89	Calculation of F_{AM} for Mn-54 in an Area Source of 1,000 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	81
2.90	Calculation of F_{AM} for Mn-54 in an Area Source of 10,000 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	82
2.91	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six Area Sources with a Concrete Cover of 1 cm	83
2.92	Calculation of F_{CD} for Mn-54 in an Area Source with a Cover of 5 cm	84
2.93	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six Area Sources with a Concrete Cover of 5 cm	84

2.94	Comparison of External Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in Six Area Sources with Concrete Covers	84
2.95	Calculation of F_{CD} for Tc-99 in an Area Source with a Cover of 1 cm	84
2.96	Calculation of F_{AM} for Tc-99 in a Reference Area Source with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	85
2.97	Calculation of F_{AM} for Tc-99 in an Area Source of 4 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	86
2.98	Calculation of F_{AM} for Tc-99 in an Area Source of 10 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	87
2.99	Calculation of F_{AM} for Tc-99 in an Area Source of 36 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	88
2.100	Calculation of F_{AM} for Tc-99 in an Area Source of 100 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	89
2.101	Calculation of F_{AM} for Tc-99 in an Area Source of 1,000 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	90
2.102	Calculation of F_{AM} for Tc-99 in an Area Source of 10,000 m ² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)	91
2.103	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six Area Sources with a Concrete Cover of 1 cm	92
2.104	Calculation of F_{CD} for Tc-99 in an Area Source with a Cover of 5 cm	92
2.105	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six Area Sources with a Concrete Cover of 5 cm	92
2.106	Comparison of External Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Six Area Sources with Concrete Covers	93
2.107	Calculation of F_{AM} for C-14 in a Rectangular Area Source of 2 m × 2 m without Cover at the Receptor Location (0, 0, 1) (m)	94
2.108	Calculation of F_{AM} for C-14 in a Rectangular Area Source of 4 m × 2 m without Cover at the Receptor Location (0, 0, 1) (m)	95
2.109	Calculation of F_{AM} for C-14 in a Rectangular Area Source of 4 m × 3 m without Cover at the Receptor Location (0, 0, 1) (m)	96
2.110	Calculation of F_{AM} for C-14 in a Rectangular Area Source of 4 m × 4 m without Cover at the Receptor Location (0, 0, 1) (m)	97
2.111	Calculation of F_{AM} for C-14 in a Rectangular Area Source of 6 m × 6 m without Cover at the Receptor Location (0, 0, 1) (m)	98

2.112	Calculation of F_{AM} for C-14 in a Rectangular Area Source of 10 m × 10 m without Cover at the Receptor Location (0, 0, 1) (m)
2.113	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Rectangular Area Sources without Cover100
2.114	Comparison of Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from C-14 in Six Rectangular Area Sources without Cover
2.115	Estimates of Buildup Factors in Soil Based on Data of Magnesium
2.116	Calculation of F_{CD} for Co-60 in a 1-cm-Thick Volume Source without a Cover102
2.117	Calculation of F_{AM} for Co-60 in a Reference Source for the 10th Sub-volume of a 1- cm-Thick Volume Source without Cover at the Receptor Location (0, 0, 1) (m)103
2.118	Calculation of F_{AM} for Co-60 in the 10th Sub-volume of a 1-cm-Thick Volume Source with an Area of 4 m ² without Cover at the Receptor Location (0, 0, 1) (m)104
2.119	Calculation of F_{AM} for Co-60 in the 10th Sub-volume of a 1-cm-Thick Volume Source with an Area of 100 m ² without Cover at the Receptor Location (0, 0, 1) (m)
2.120	Calculation of F_{AM} for Co-60 in a Reference Source for the 6th Sub-volume of a 1- cm-Thick Volume Source without Cover at the Receptor Location (0, 0, 1) (m)106
2.121	Calculation of F_{AM} for Co-60 in the 6th Sub-volume of 1-cm-Thick Volume Source with an Area of 36 m ² without Cover at the Receptor Location (0, 0, 1) (m)107
2.122	Calculation of F_{AM} for Co-60 in the 6th Sub-volume of a 1-cm-Thick Volume Source with an Area of 1,000 m ² without Cover at the Receptor Location (0, 0, 1) (m)
2.123	Summary of F_{AM} 's for Co-60 in Six 1-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.124	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 1-cm-Thick Volume Sources without Cover
2.125	Calculation of F_{CD} for Co-60 in a 5-cm-Thick Volume Source without a Cover110
2.126	Summary of F_{AM} 's for Co-60 in Six 5-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.127	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 5-cm-Thick Volume Sources without Cover112
2.128	Calculation of F_{CD} for Co-60 in a 15-cm-Thick Volume Source without a Cover113
2.129	Summary of F_{AM} 's for Co-60 in Six 15-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.130	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 15-cm-Thick Volume Sources without Cover

2.131	Calculation of F_{CD} for Co-60 in a 50-cm-Thick Volume Source without a Cover114
2.132	Summary of F_{AM} 's for Co-60 in Six 50-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.133	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 50-cm-Thick Volume Sources without Cover116
2.134	Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD- BUILD and Spreadsheets from Co-60 in Volume Sources of Different Thicknesses and Areas without Cover
2.135	Calculation of F_{CD} for Mn-54 in a 1-cm-Thick Volume Source without a Cover117
2.136	Summary of F_{AM} 's for Mn-54 in Six 1-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.137	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 1-cm-Thick Volume Sources without Cover
2.138	Calculation of F_{CD} for Mn-54 in a 2-cm-Thick Volume Source without a Cover118
2.139	Summary of F_{AM} 's for Mn-54 in Six 2-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.140	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 2-cm-Thick Volume Sources without Cover120
2.141	Calculation of F_{CD} for Mn-54 in a 5-cm-Thick Volume Source without a Cover120
2.142	Summary of F_{AM} 's for Mn-54 in Six 5-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)
2.143	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 5-cm-Thick Volume Sources without Cover
2.144	Calculation of F_{CD} for Mn-54 in a 10-cm-Thick Volume Source without a Cover122
2.145	Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources without a Cover at the Receptor Location (0, 0, 1) (m)
2.146	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources without a Cover
2.147	Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD- BUILD and Spreadsheets for Mn-54 in Volume Sources of Different Thicknesses and Areas without a Cover
2.148	Calculation of F_{CD} for Tc-99 in a 1-cm-Thick Volume Source without a Cover126
2.149	Summary of F_{AM} 's for Tc-99 in Six 1-cm-Thick Volume Sources without a Cover at the Receptor Location (0, 0, 1) (m)
2.150	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six 1-cm-Thick Volume Sources without Cover

2.151	Calculation of F_{CD} for Tc-99 in a 2-cm-Thick Volume Source without a Cover	.127
2.152	Summary of F_{AM} 's for Tc-99 in Six 2-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)	.128
2.153	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six 2-cm-Thick Volume Sources without Cover	.128
2.154	Calculation of F_{CD} for Tc-99 in a 5-cm-Thick Volume Source without Cover	.129
2.155	Summary of F_{AM} 's for Tc-99 in Six 5-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)	.129
2.156	Estimation of External Radiation Dose at the Receptor Location (0, 0,1) (m) from Tc-99 in Six 5-cm-Thick Volume Sources without Cover	.130
2.157	Calculation of F_{CD} for Tc-99 in a 10-cm-Thick Volume Source without a Cover	.130
2.158	Summary of F_{AM} 's for Tc-99 in Six 10-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)	.131
2.159	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six 10-cm-Thick Volume Sources without Cover	.131
2.160	Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD- BUILD and Spreadsheets from Tc-99 in Volume Sources of Different Thicknesses and Areas without Cover	.132
2.161	Calculation of F_{CD} for Mn-54 in a 10-cm-Thick Volume Source with 1-cm Concrete Cover	.132
2.162	Calculation of F_{AM} for Mn-54 in a Reference Source for the 7th Sub-volume of a 10-cm-Thick Volume Source with 1-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)	.133
2.163	Calculation of F_{AM} for Mn-54 in the 7 th Sub-volume of a 10-cm-Thick Volume Source with an Area of 100 m ² and 1-cm Concrete Cover at the Receptor location (0, 0, 1) (m)	.134
2.164	Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources with 1-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)	.135
2.165	Estimation External Radiation Dose at the Receptor Location (0, 10, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources with 1-cm Concrete Cover	.136
2.166	Calculation of F_{CD} for Mn-54 in a 10-cm-Thick Volume Source with 2-cm Concrete Cover	.136
2.167	Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources with 2-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)	.137
2.168	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources with 2-cm Concrete Cover	.138

2.169	Calculation of F_{CD} for Mn-54 in a 10-cm-Thick Volume Source with 5-cm Concrete Cover	138
2.170	Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources with 5-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)	139
2.171	Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources with 5-cm Concrete Cover	140
2.172	Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD- BUILD and Spreadsheets from Mn-54 in 10-cm-Thick Volume Sources with Different Concrete Covers	140
2.173	Estimated External Radiation Doses to a Receptor at (0, 0, 1) (m) from Different Radionuclides in Four Area Sources without Cover	142
2.174	Average Floor Deposition Concentrations (pCi/m ²) for the 1st Year Projected by the RESRAD-BUILD Code	142
2.175	Comparison of Estimated External Radiation Doses (mrem/yr) for Floor Depositions by RESRAD-BUILD and Spreadsheets	142
3.1	Air Flows, Vacuuming, and Resuspension and Deposition of Particulates Assumed for Case I	145
3.2	Source Releases Assumed for Case I	146
3.3	Comparison of Calculated Air Release Rate from RESRAD-BUILD and Spreadsheets for Case I	146
3.4	Radiological Ingrowth and Decay Factors Obtained from RESRAD-OFFSITE	147
3.5	Calculation of Remaining Mass and Radioactivity in the Source and Direct Ingestion Rate of Radioactivity for Case I	148
3.6	Comparison of Time-Averaged Radioactivity Remaining in the Source over the Exposure Duration for Case I	149
3.7	Comparison of Time-Integrated Radioactivity Directly Ingested over the Exposure Duration for Case I	150
3.8	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case I	151
3.9	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case I	155
3.10	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case I	157
3.11	Dose Conversion Factors and Slope Factors Used for Radiation Dose and Cancer Risk Estimates	159
3.12	Comparison of Radiation Doses and Cancer Risks to Receptor 1 of Case I	160

3.13	Comparison of Radiation Doses and Cancer Risks to Receptor 3 of Case I	161
3.14	Air Flows, Vacuuming, and Resuspension and Deposition of Particulates Assumed for Case II	163
3.15	Source Releases Assumed for Case II	164
3.16	Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case II	164
3.17	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case II	165
3.18	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case II	169
3.19	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 6 for Case II	171
3.20	Air Flows, Vacuuming, and Resuspension and Deposition of Particulates Assumed for Case III	173
3.21	Source Releases Assumed for Case III	174
3.22	Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case III	174
3.23	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case III	175
3.24	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case III	179
3.25	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 9 for Case III	181
3.26	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case IV	183
3.27	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case IV	187
3.28	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 6 for Case IV	189
3.29	Source Releases Assumed for Case V	191
3.30	Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case V	192
3.31	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case V	193
3.32	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case V	198

3.33	Comparison of Calculated Average Concentrations of Radionuclides in the Air and on the Floor of Room 9 for Case V	200
3.34	Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case VI	202
3.35	Comparison of Time-Averaged Radioactivity Remaining in the Source over the Exposure Duration for Case VI	204
3.36	Comparison of Time-Integrated Radioactivity Directly Ingested over the Exposure Duration for Case VI	205
3.37	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case VI	206
3.38	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case VI	209
3.39	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case VI	211
3.40	Comparison of Radiation Doses and Cancer Risks to Receptor 1 of Case VI	214
3.41	Comparison of Radiation Doses and Cancer Risks to Receptor 2 of Case VI	215
3.42	Source Releases Assumed for Case VII	217
3.43	Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case VII	219
3.44	Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case VII	220
3.45	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case VII	224
3.46	Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 7 for Case VII	226
A.1	Topics of the RESRAD-BUILD Software Requirements	A-2
A.2	Test Cases for Each Requirement	A-3
A.3	Requirements for Each Test Case	A-4

FIGURES

3.1	Comparison of Calculated Source Particulate Concentrations in the Air of Room 1 for Case I	153
3.2	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 1 for Case I	153
3.3	Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case I	154
3.4	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case I	154
3.5	Comparison of Calculated Source Particulate Concentrations in the Air of Room 1 for Case II	166
3.6	Comparison of Calculated Source Particulate Concentrations on the Floor or Room 1 for Case II	166
3.7	Comparison of Calculated Source Particulate Concentrations in the Air of Room 4 for Case II	167
3.8	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 4 for Case II	167
3.9	Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case III	176
3.10	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case III	176
3.11	Comparison of Calculated Source Particulate Concentrations in the Air of Room 9 for Case III	177
3.12	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 9 for Case III	177
3.13	Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case IV	185
3.14	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case IV	185
3.15	Comparison of Calculated Source Particulate Concentrations in the Air of Room 9 for Case IV	186
3.16	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 9 for Case IV	186
3.17	Comparison of Calculated Source Particulate Concentrations in the Air of Room 1 for Case V	195
3.18	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 1 for Case V	195

FIGURES (CONT.)

3.19	Comparison of Calculated Source Particulate Concentrations in the Air of Room 3 for Case V	196
3.20	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 3 for Case V	196
3.21	Comparison of Calculated Source Particulate Concentrations in the Air of Room 5 for Case V	197
3.22	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 5 for Case V	197
3.23	Comparison of Calculated Source Particulate Concentrations in the Air of Room 3 for Case VI	207
3.24	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 3 for Case VI	207
3.25	Comparison of Calculated Source Particulate Concentrations in the Air of Room 6 for Case VI	208
3.26	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 6 for Case VI	208
3.27	Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case VII	221
3.28	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case VII	221
3.29	Comparison of Calculated Source Particulate Concentrations in the Air of Room 5 for Case VII	222
3.30	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 5 for Case VII	222
3.31	Comparison of Calculated Source Particulate Concentrations in the Air of Room 8 for Case VII	223
3.32	Comparison of Calculated Source Particulate Concentrations on the Floor of Room 8 for Case VII	223

This page intentionally left blank.

1 INTRODUCTION

This report documents the verification of the RESRAD-BUILD code, Version 4.0, which was released on December 22, 2022. Two earlier reports verifying Versions 3.0 and 3.1, respectively, were published in 2001 (Kamboj, et al. 2001) and 2003 (Tetra Tech NUS 2003). Version 4.0 of the RESRAD-BUILD code has many new features and modeling enhancements over the earlier versions, including the previously released Version 3.5. The major new features and modeling enhancements include:

- 1. Provision of a choice between ICRP-107 and ICRP-38 radiological transformation databases, along with an input of cut-off half-life, for use in constructing radiological decay chains and choosing compatible dose and risk coefficient libraries for dose and risk calculations.
- 2. An ability to model complete decay chains, including branches, and evaluate each progeny separately for their contributions to direct external radiation.
- 3. Implementation of a new dynamic ventilation model that forgoes the steady-state assumption as used in previous versions, to conserve mass balance and improve accuracy in the predicted radionuclide concentrations in the air and on the floor over time.
- 4. Increments in the number of compartments (rooms) in a building from 3 to 9 with allowance for air exchange between any pair of rooms and between any room and the outdoor.
- 5. Consideration of periodical vacuuming and its efficiency to remove floor deposition of contaminated materials.
- 6. Consideration of up to 10 release phases with user-defined begin time, end time, and source removal fraction for each phase for point, line, and area sources, to account for different source removal rates and intermittent releases.
- 7. Implementation of both analytical and numerical solutions to time integration and use of the analytical solutions to reduce calculation time whenever feasible or per user's choice.
- 8. A redefined basis for volume source coordinates, as the center of the contaminated region, and the addition of a new direction of erosion parameter, for precise determination of the receptor-source distance at any time.
- 9. Generation of output files containing intermediate calculation results per user's choice, for obtaining insights to the modeling.
- 10. Addition of new appearances for several input forms, to facilitate input data collection, while maintaining the traditional appearances (as in Version 3.5), which can continue to be used, if preferred by users.
- 11. Linking the code to Version 3.3 of the Dose Conversion Factor (DCF) Editor that has an expanded database (including air submersion dose and risk coefficients) and is equipped with improved interactive help entries.

- 12. Provision of context-specific help entries and the User's Manual (including User's Guide) in pdf format to guide the use of the code.
- 13. Streamlining the selection of DCF libraries to ensure proper pairing of external and internal dose coefficient libraries.

Chapter 2 of this report focuses on verifying the external dose and risk modeling for point, line, area, and volume sources, as well as for floor deposition. Besides verification, the external radiation doses calculated by RESRAD-BUILD were also benchmarked with those calculated by the MCNP code (Briemeister 1993). Section J.3 of the RESRAD-BUILD User's Manual Vol. 1 (Yu et al. 2022) documents the results of that benchmarking effort. Chapter 3 of this report focuses on verifying the ventilation modeling, from checking the remaining source inventory, releases of radionuclides to the air, air concentrations and deposited floor concentrations over time, to the radiation dose and risk associated with inhalation, ingestion, and air submersion, with and without vacuuming. The verification efforts involve designing spreadsheets to perform calculations the same as or like those performed by the RESRAD-BUILD code and then comparing the spreadsheet results with those produced by the code. When the results agree or the differences are within acceptable range, the accuracy of model implementation in the code is verified.

In addition to model implementation, the implementation of key functions and features that facilitate the modeling or the use of the code were also verified during the release testing of the code. Appendix A presents the test cases developed for these verification testing, and Appendix B presents the testing results that verify proper implementation of key functions and features.

2 VERIFICATION OF THE EXTERNAL RADIATION MODELING

RESRAD-BUILD User's Manual (Yu et al. 2022) Appendix C describes the modeling of external dose and risk from different types of radiation sources implemented in the code. To verify that the external radiation model was correctly implemented, several Excel[®] spreadsheets were designed to calculate external radiation dose and risk for comparison with the RESRAD-BUILD results. In addition to the external radiation dose coefficients taken from FGR 12 (Eckerman and Ryman 1993), the data needed for the estimates of attenuation factors, buildup factors, and mass absorption fractions in the spreadsheets were taken from Trubey 1991. The comparisons showed that for most cases, the RESRAD-BUILD results and the spreadsheet results were in good agreement; when the results were different, the difference was less than 10% and was judged to be acceptable, considering the approximate nature of the estimated attenuation factors, buildup factors, and mass absorption fractions in the spreadsheets.

2.1 EXTERNAL RADIATION OF POINT SOURCES

External radiation doses from C-14, Mn-54, Co-60, Nb-94, and Tc-99 were calculated for comparison. It was assumed a point source containing 1 pCi of radioactivity of each radionuclide was located at (0 m, 0 m, 0 m). The removable fraction of the source was zero, and there was no release of radioactivity into the indoor air. Three receptors located at (0 m, 0 m, 0.3 m), (1 m, 1 m), and (0 m, 0 m, 4 m) would incur external radiation emitted by the source. Each of them was assumed to spend 50% of the time in a year inside the building.

The average annual external dose and risk without shielding materials between the source and each receptor for the first year were calculated and compared. To verify the attenuation modeling of external radiation due to shielding, water and concrete were assumed to be the shielding materials, both with effective thicknesses of 1 cm, 5 cm, and 50 cm. The attenuated dose and risk received by the receptor located at (1 m, 1 m, 1 m) were then calculated and compared.

Table 2.1 lists literature data of the mass energy absorption coefficients and the absorbedto-effective dose conversion factors used in the spreadsheet. The mass energy absorption coefficients were obtained from Trubey 1991. The ICRP Publication 51 (ICRP 1987) was the source of the absorbed-to-effective dose conversion factors. The mass absorption fraction and the absorbed-to-effective dose conversion factor for the photon energy associated with the decay of the individual radionuclides were calculated by interpolation.

Table 2.2 lists data of the mass attenuation coefficients for air, water, and concrete from Trubey 1991. Like the mass absorption fraction and the absorbed-to-effective dose conversion factor, the mass attenuation coefficients needed for the photon energy associated with the decay of the individual radionuclides were calculated by interpolation.

Tables 2.3 to 2.5 list the data of the buildup factors in air, water, and concrete, respectively, and the estimates based on the data for C-14, Tc-99, Nb-94, Mn-54, and Co-60, the five radionuclides selected for this comparison.

Table 2.1 Literature Data of Mass Energy AbsorptionCoefficients and Absorbed-to-Effective DoseConversion Factors

	Mass Energy	Absorbed-to-
	Absorption	Effective Dose
	Coefficient from	Conversion Factor
	Trubey 1991	from ICRP 51
Energy (MeV)	Air (cm ² /g)	(Sv/Gy)
0.01	4.64	0.0039
0.015	1.3	0.023
0.02	0.5255	0.065
0.03	0.1501	0.23
0.04	0.06694	0.464
0.05	0.04031	0.687
0.06	0.03004	0.83
0.08	0.02393	0.954
0.1	0.02318	0.962
0.15	0.02494	0.891
0.2	0.02672	0.854
0.3	0.02872	0.826
0.4	0.02949	0.82
0.5	0.02966	0.824
0.6	0.02953	0.824
0.8	0.02882	0.832
1	0.02787	0.839
1.5	0.02545	0.856
2	0.02342	0.875
3	0.02054	0.902
4	0.01866	0.917
5	0.01737	0.935
6	0.01644	0.943
8	0.01521	0.969
10	0.01446	0.991

	Mass Attenuation Coefficient (cm ² /g) from Trubey 1991								
Energy (MeV)	Δir	Water	NBS Concrete						
0.01	5 123	5 33	26.56						
0.01	1 615	1 673	8 297						
0.015	0.7784	0 8008	3 651						
0.02	0.2520	0.3058	1 214						
0.03	0.3339	0.3730	0.6122						
0.04	0.2465	0.2085	0.0122						
0.05	0.208	0.2269	0.3944						
0.06	0.1875	0.2058	0.2957						
0.08	0.1663	0.1837	0.2125						
0.1	0.1541	0.1707	0.1783						
0.15	0.1356	0.1505	0.1434						
0.2	0.1234	0.137	0.127						
0.3	0.1068	0.1187	0.1082						
0.4	0.09549	0.1061	0.09628						
0.5	0.08712	0.09678	0.08768						
0.6	0.08055	0.08956	0.08098						
0.8	0.07074	0.07866	0.07103						
1	0.06358	0.07071	0.06382						
1.5	0.05175	0.05754	0.05197						
2	0.04447	0.04941	0.04482						
3	0.03581	0.03969	0.03654						
4	0.03079	0.03403	0.03189						
5	0.02751	0.03031	0.02895						
6	0.02522	0.0277	0.02696						
8	0.02225	0.02429	0.0245						
10	0.02045	0.02219	0.02311						

 Table 2.2 Literature Data of Mass Attenuation Coefficients in Air, Water, and Concrete

Thickness in				Data of Bu	uildup Facto	ors in Air				C-14	Tc-99	Nb-94	Mn-54	Co-60
Mean Free	0.015	0.04	0.05	0.1	0.15	0.6	0.8	1	1.5	0.049	0.101	0.787	0.835	1.25
Path	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
0.5	1.12	2.20	2.48	2.35	2.16	1.56	1.50	1.47	1.42	2.45	2.35	1.50	1.49	1.45
1	1.17	3.38	4.28	4.46	3.83	2.33	2.17	2.08	1.92	4.19	4.45	2.18	2.15	2.00
2	1.25	5.85	8.72	11.40	9.21	4.46	3.94	3.60	3.09	8.43	11.36	3.97	3.88	3.35
3	1.31	8.47	14.10	22.50	18.20	7.34	6.19	5.46	4.42	13.54	22.41	6.26	6.06	4.94
4	1.36	11.20	20.50	38.40	31.50	10.90	8.88	7.60	5.86	19.57	38.26	9.01	8.66	6.73
5	1.39	14.10	27.60	59.90	49.90	15.30	12.00	10.00	7.42	26.25	59.70	12.21	11.65	8.71
6	1.43	17.00	35.70	87.80	74.20	20.30	15.50	12.70	9.08	33.83	87.53	15.81	15.01	10.89
7	1.46	20.10	44.60	123.00	105.00	26.00	19.40	15.60	10.80	42.15	122.64	19.83	18.74	13.20
8	1.48	23.30	54.40	166.00	144.00	32.50	23.70	18.80	12.70	51.29	165.56	24.27	22.84	15.75
10	1.53	30.00	76.80	282.00	249.00	47.90	33.50	25.80	16.70	72.12	281.34	34.44	32.15	21.25
15	1.62	49.00	151.00	800.00	735.00	100.00	64.90	47.00	27.70	140.80	798.70	67.18	61.77	37.35
20	1.68	71.40	256.00	1810.00	1700.00	173.00	105.00	72.80	40.20	237.54	1807.80	109.42	99.37	56.50
25	1.74	97.20	395.00	3570.00	3410.00	266.00	154.00	103.00	53.90	365.22	3566.80	161.28	145.08	78.45
30	1.78	126.00	574.00	6430.00	6210.00	379.00	210.00	136.00	68.50	529.20	6425.60	220.99	197.05	102.25
35	1.82	159.00	798.00	1.06E+04	1.05E+04	512.00	274.00	173.00	84.00	734.10	1.06E+04	289.47	256.33	128.50
40	1.85	195.00	1070.00	1.57E+04	1.70E+04	665.00	345.00	212.00	100.00	982.50	1.57E+04	365.80	321.73	156.00

 Table 2.3 Estimates of Buildup Factors in Air of Different Thicknesses

Thickness in			[Data of Buil	dup Factor	s in Wate			C-14	Tc-99	Nb-94	Mn-54	Co-60	
Mean Free	0.015	0.04	0.05	0.1	0.15	0.6	0.8	1	1.5	0.049	0.101	0.787	0.835	1.25
Path	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
0.5	1.13	2.22	2.52	2.37	2.07	1.56	1.50	1.47	1.41	2.49	2.36	1.50	1.49	1.44
1	1.18	3.47	4.42	4.55	3.89	2.33	2.17	2.08	1.91	4.33	4.54	2.18	2.15	2.00
2	1.27	6.18	9.25	11.80	9.49	4.49	3.96	3.62	3.10	8.94	11.75	3.99	3.90	3.36
3	1.33	9.14	15.30	23.80	19.00	7.44	6.26	5.50	4.43	14.68	23.70	6.34	6.13	4.97
4	1.38	12.30	22.60	41.30	33.30	11.20	9.00	7.68	5.88	21.57	41.14	9.14	8.77	6.78
5	1.43	15.70	31.00	65.20	53.40	15.60	12.20	10.10	7.44	29.47	64.96	12.42	11.83	8.77
6	1.46	19.20	40.50	96.70	80.10	20.80	15.80	12.80	9.11	38.37	96.37	16.13	15.28	10.96
7	1.50	22.90	51.30	137.00	115.00	26.70	19.80	15.80	10.90	48.46	136.56	20.25	19.10	13.35
8	1.53	26.80	63.20	187.00	158.00	33.50	24.20	19.00	12.70	59.56	186.42	24.80	23.29	15.85
10	1.58	35.10	90.90	321.00	277.00	49.30	34.20	26.10	16.70	85.32	320.12	35.18	32.78	21.40
15	1.68	59.20	185.00	938.00	834.00	104.00	66.30	47.70	27.80	172.42	935.92	68.75	63.05	37.75
20	1.75	88.50	323.00	2170.00	1960.00	179.00	108.00	74.00	40.40	299.55	2165.80	112.62	102.05	57.20
25	1.82	123.00	511.00	4360.00	3980.00	276.00	157.00	104.00	54.00	472.20	4352.40	164.74	147.73	79.00
30	1.87	163.00	759.00	7970.00	7320.00	395.00	215.00	139.00	68.70	699.40	7957.00	226.70	201.70	103.85
35	1.91	208.00	1080.00	1.35E+04	1.25E+04	534.00	281.00	177.00	84.30	992.80	1.35E+04	297.45	262.80	130.65
40	1.94	259.00	1470.00	2.11E+04	2.03E+04	695.00	353.00	218.00	101.00	1348.90	2.11E+04	375.23	329.38	159.50

 Table 2.4 Estimates of Buildup Factors in Water of Different Thicknesses

Thickness in			Da	ata of Build	up Factors		C-14	Tc-99	Nb-94	Mn-54	Co-60			
Mean Free	0.015	0.04	0.05	0.1	0.15	0.6	0.8	1	1.5	0.049	0.101	0.787	0.835	1.25
Path	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
0.5	1.02	1.30	1.42	1.89	1.84	1.53	1.48	1.45	1.39	1.41	1.89	1.48	1.47	1.42
1	1.03	1.46	1.74	2.78	2.82	2.18	2.06	1.98	1.85	1.71	2.78	2.07	2.05	1.92
2	1.04	1.69	2.26	4.63	5.13	3.80	3.47	3.24	2.86	2.20	4.64	3.49	3.43	3.05
3	1.05	1.87	2.63	6.63	7.92	5.82	5.18	4.72	4.00	2.55	6.66	5.22	5.10	4.36
4	1.05	2.01	2.95	8.80	11.20	8.25	7.18	6.42	5.25	2.86	8.85	7.25	7.05	5.84
5	1.06	2.14	3.25	11.10	15.00	11.10	9.47	8.33	6.60	3.14	11.18	9.58	9.27	7.47
6	1.06	2.25	3.53	13.60	19.30	14.30	12.00	10.40	8.05	3.40	13.71	12.15	11.72	9.23
7	1.07	2.35	3.79	16.30	24.20	18.00	14.90	12.70	9.58	3.65	16.46	15.10	14.52	11.14
8	1.07	2.45	4.04	19.20	29.70	22.20	18.10	15.20	11.20	3.88	19.41	18.37	17.59	13.20
10	1.08	2.62	4.51	25.60	42.70	31.80	25.10	20.70	14.60	4.32	25.94	25.54	24.33	17.65
15	1.09	2.98	5.57	44.90	87.60	63.60	47.40	37.20	24.20	5.31	45.75	48.45	45.62	30.70
20	1.10	3.27	6.52	69.10	153.00	107.00	75.70	57.10	35.00	6.20	70.78	77.73	72.45	46.05
25	1.10	3.51	7.38	87.90	240.00	161.00	110.00	80.10	46.90	6.99	90.94	113.32	104.77	63.50
30	1.11	3.73	8.18	131.00	353.00	226.00	149.00	106.00	59.60	7.74	135.44	154.01	141.48	82.80
35	1.11	3.91	8.87	170.00	494.00	302.00	193.00	134.00	73.00	8.37	176.48	200.09	182.68	103.50
40	1.11	4.03	9.44	214.00	664.00	389.00	242.00	164.00	87.10	8.90	223.00	251.56	228.35	125.55

Table 2.5 Estimates of Buildup Factors in Concrete of Different Thicknesses

2.1.1 Dose Results without Shielding

Tables 2.6-2.8 show the estimations of the external radiation dose incurred by each receptor when there was no shielding between the radiation source and the receptor. Table 2.9 compares the dose estimates between the spreadsheets and the RESRAD-BUILD code. The comparison shows good agreement in the dose estimates.

2.1.2 Risk Results without Shielding

In RESRAD-BUILD, cancer risks associated with external radiation are calculated by multiplying the estimated external doses with a radionuclide-specific dose-to-risk conversion factor, which is the ratio of the slope factor (SF) for external radiation to the dose conversion factor/dose coefficient (DCF) for external radiation for an infinite volume source. To verify the external risk results from RESRAD-BUILD, the external dose results from RESRAD-BUILD were multiplied by the radionuclide-specific dose-to-risk conversion factor in the spreadsheets, and the multiplication products were compared with the cancer risk results reported by the code.

Table 2.10 presents the radionuclide-specific dose-to-risk conversion factors for external radiation for the radionuclides selected for this comparison. The dose coefficients are from FGR 12 (Eckerman and Ryman 1993), and the slope factors are the FGR 13 (Eckerman et al. 1999) morbidity risk numbers. Table 2.11 compares the cancer risks calculated by the RESRAD-BUILD code and by the spreadsheets. The two sets of calculation results agree with each other.

2.1.3 Dose Results with Water Shielding

Table 2.12 shows the estimation of the attenuation factor and buildup factor when there is shielding of water with a thickness of 1 cm, 5 cm, and 50 cm between the source and the receptor at (1 m, 1 m, 1 m).

Table 2.13 compares the dose estimates between the spreadsheets and the RESRAD-BUILD code. Except for the dose results with a shielding thickness of 1 cm for Tc-99 that show a difference of 13%, the other dose results of RESRAD-BUILD and the spreadsheets are in good agreement.

2.1.4 Risk Results with Water Shielding

Table 2.14 compares the cancer risks calculated by the RESRAD-BUILD code and by the spreadsheets. The spreadsheet results were the multiplication products of the RESRAD-BUILD dose results and the radionuclide-specific dose-to-risk conversion factors presented in Table 2.10. The two sets of calculation results agree with each other.

Table 2.6 Estimates of External Dose from a Point Source at (0, 0, 0) at the Receptor Location (1, 1, 1) (m) without Shielding

Indoor Time	Fraction =	0.5											
1 MeV of en	ergy =	1.60E-06	ergs										
100 erg of er	nergy absor	bed in 1 g	of medium	= 1 rad dos	e								
Total energy	in 1 year fo	or 1 MeV pl	hoton emit	ted by 1 Bq	of activity =	50.49216	erg						
Total energy	in 1 year fo	or 1 Mev pł	hoton emit	ted by 1 pC	i of activity =	1.86821	erg						
Yearly dose	for the ene	rgy absorpt	tion in one	gram of me	edium, impa	rted by 1 N	1eV photons e	emitted by 1	pCi of activity	0.0186821	rad/yr per pCi		
4 π area asso	ociated with	n the distar	nce betwee	en source ar	d receptor	3.77E+05	cm ²						
							Absorbed-	Energy					
		Average					to-Effective	Absorption					
		Source					Dose		Mass			Estimated	Calculated
		Activity					Conversion	Coefficient	Attenuation	Distance in	Estimated	Attenuation	External
	Half-life	in 1st	#	Energy			Factor	in Air	Coefficient	Mean Free	Buildup	Factor with	Dose
Nuclide	(yr)	Year (pCi)	photons	(MeV)	Yield	FE	(Sv/Gy)	(cm^2/g)	for Air (cm ⁻¹)	Path in Air	Factor in Air	Air	(mrem/yr)
C-14	5.73E+03	1.00E+00	1	0.049	8.65E-04	0.1	0.665	4.30E-02	2.59E-04	4.48E-02	1.07E+00	9.56E-01	3.06E-11
Mn-54	8.56E-01	6.85E-01	1	0.835	1	0.825	0.833	2.87E-02	8.48E-05	1.47E-02	1.01E+00	9.85E-01	3.36E-07
CO-60	5.27E+00	9.37E-01	1	1.25286	2	0.49428	0.848	2.66E-02	7.03E-05	1.22E-02	1.01E+00	9.88E-01	1.30E-06
Nb-94	2.03E+04	1.00E+00	1	0.787	2	0.065	0.831	2.89E-02	8.71E-05	1.51E-02	1.01E+00	9.85E-01	9.29E-07
Tc-99	2.13E+05	1.00E+00	1	0.101	1.77E-03	0.98	0.961	2.32E-02	1.88E-04	3.25E-02	1.04E+00	9.68E-01	9.99E-11

Indoor Time	Fraction =	0.5											
1 MeV of en	ergy =	1.60E-06	ergs										
100 erg of energy absorbed in 1 g of medium = 1 rad dose													
Total energy in 1 year for 1 MeV photons emitted by 1 Bq of activity					50.49216	erg							
Total energy in 1 year for 1 Mev photons emitted by 1 pCi of activity					1.86821	erg							
Yearly dose	for the ene	rgy absorpt	tion in one	gram of me	dium, impa	rted by 1 N	1eV photons e	mitted by 1	pCi of activity	0.0186821	rad/yr per pCi		
4 π area asso	ociated with	n the distar	nce betwee	n source an	d receptor	2.01E+06	cm ²						
								Mass					
							Absorbed-	Energy					
		Average					to-Effective	Absorption					
		Source					Dose		Mass			Estimated	Calculated
		Activity					Conversion	Coefficient	Attenuation	Distance in	Estimated	Attenuation	External
	Half-life	in 1st	#	Energy			Factor	in Air	Coefficient	Mean Free	Buildup	Factor with	Dose
Nuclide	(yr)	Year (pCi)	photons	(MeV)	Yield	FE	(Sv/Gy)	(cm ² /g)	for Air (cm ⁻¹)	Path in Air	Factor in Air	Air	(mrem/yr)
C-14	5.73E+03	1.00E+00	1	0.049	8.65E-04	0.1	0.665	4.30E-02	2.59E-04	1.03E-01	1.15E+00	9.02E-01	5.83E-12
Mn-54	8.56E-01	6.85E-01	1	0.835	1	0.825	0.833	2.87E-02	8.48E-05	3.39E-02	1.02E+00	9.67E-01	6.24E-08
CO-60	5.27E+00	9.37E-01	1	1.25286	2	0.49428	0.848	2.66E-02	7.03E-05	2.81E-02	1.01E+00	9.72E-01	2.42E-07
Nb-94	2.03E+04	1.00E+00	1	0.787	2	0.065	0.831	2.89E-02	8.71E-05	3.48E-02	1.02E+00	9.66E-01	1.72E-07
Tc-99	2.13E+05	1.00E+00	1	0.101	1.77E-03	0.98	0.961	2.32E-02	1.88E-04	7.50E-02	1.10E+00	9.28E-01	1.89E-11

Indoor Time	Fraction =	0.5											
1 MeV of en	ergy =	1.60E-06	ergs										
100 erg of er	nergy absor	bed in 1 g	of medium	= 1 rad dos	e								
Total energy in 1 year for 1 MeV photons emitted by 1 Bq of activity				50.49216	erg								
Total energy	Total energy in 1 year for 1 Mev photons emitted by 1 pCi of activity				Ci of activity	1.86821	erg						
Yearly dose	for the ene	rgy absorp	tion in one	gram of me	edium, impa	rted by 1 N	leV photons e	emitted by 1	pCi of activity	0.0186821	rad/yr per pCi		
4 π area asso	ociated wit	h the distar	nce betwee	en source ar	nd receptor	1.13E+04	cm ²						
								Mass					
							Absorbed-	Energy					
		Average					to-Effective	Absorption					
		Source					Dose		Mass			Estimated	Calculated
		Activity					Conversion	Coefficient	Attenuation	Distance in	Estimated	Attenuation	External
	Half-life	in 1st	#	Energy			Factor	in Air	Coefficient	Mean Free	Buildup	Factor with	Dose
Nuclide	(yr)	Year (pCi)	photons	(MeV)	Yield	FE	(Sv/Gy)	(cm ² /g)	for Air (cm ⁻¹)	Path in Air	Factor in Air	Air	(mrem/yr)
C-14	5.73E+03	1.00E+00	1	0.049	8.65E-04	0.1	0.665	4.30E-02	2.59E-04	7.76E-03	1.01E+00	9.92E-01	1.00E-09
Mn-54	8.56E-01	6.85E-01	1	0.835	1	0.825	0.833	2.87E-02	8.48E-05	2.54E-03	1.00E+00	9.97E-01	1.13E-05
CO-60	5.27E+00	9.37E-01	1	1.25286	2	0.49428	0.848	2.66E-02	7.03E-05	2.11E-03	1.00E+00	9.98E-01	4.36E-05
Nb-94	2.03E+04	1.00E+00	1	0.787	2	0.065	0.831	2.89E-02	8.71E-05	2.61E-03	1.00E+00	9.97E-01	3.11E-05
Tc-99	2.13E+05	1.00E+00	1	0.101	1.77E-03	0.98	0.961	2.32E-02	1.88E-04	5.63E-03	1.01E+00	9.94E-01	3.30E-09

	RESRAD-BUII	LD Code Versio	on 4 Results	Spre	eadsheet Resul	ts	Ratio (RESRAD-BUILD/Spreadsheet)			
Nuclide	Receptor (0,0,0.3)(m)	Receptor (1,1,1)(m)	Receptor (0,0,4)(m)	Receptor (0,0,0.3)(m)	Receptor (1,1,1)(m)	Receptor (0,0,4)(m)	Receptor (0,0,0.3)(m)	Receptor (1,1,1)(m)	Receptor (0,0,4)(m)	
C-14	1.01E-09	3.17E-11	6.41E-12	1.00E-09	3.06E-11	5.83E-12	1.01	1.04	1.10	
Mn-54	1.13E-05	3.36E-07	6.28E-08	1.13E-05	3.36E-07	6.24E-08	1.00	1.00	1.01	
CO-60	4.36E-05	1.31E-06	2.44E-07	4.36E-05	1.30E-06	2.42E-07	1.00	1.00	1.01	
Nb-94	3.10E-05	9.28E-07	1.73E-07	3.11E-05	9.29E-07	1.72E-07	1.00	1.00	1.00	
Tc-99	3.31E-09	1.01E-10	1.97E-11	3.30E-09	9.99E-11	1.89E-11	1.00	1.01	1.04	

Table 2.9 Comparison of Estimates of External Dose (mrem/yr) from a Point Source at Different Receptor Locations without Shielding

Table 2.10 Calculation of Radionuclide-Specific Dose-to-Risk Conversion Factors

	External DCF	External SF	Ratio
Nuclides	(mrem/yr per	(Risk/yr per	(Risk/Dose)
C-14	1.34E-05	7.83E-12	5.84E-07
Mn-54	5.16E+00	3.89E-06	7.54E-07
Co-60	16.2	1.24E-05	7.65E-07
Nb-94	9.68	7.29E-06	7.53E-07
Tc-99	1.26E-04	8.14E-11	6.46E-07

	RESRAD-BUI	LD Code Versio	on 4 Results	Spr	eadsheet Resu	Ilts	Ratio (RESRAD-BUILD/Spreadsheet)			
Nuclide	Receptor (0,0,0.3)(m)	Receptor (1,1,1)(m)	Receptor (0,0,4)(m)	Receptor (0,0,0.3)(m)	Receptor (1,1,1)(m)	Receptor (0,0,4)(m)	Receptor (0,0,0.3)(m)	Receptor (1,1,1)(m)	Receptor (0,0,4)(m)	
C-14	5.85E-16	1.85E-17	3.73E-18	5.90E-16	1.85E-17	3.75E-18	0.99	1.00	1.00	
Mn-54	8.49E-12	2.54E-13	4.74E-14	8.52E-12	2.53E-13	4.73E-14	1.00	1.00	1.00	
CO-60	3.34E-11	9.99E-13	1.87E-13	3.34E-11	1.00E-12	1.87E-13	1.00	1.00	1.00	
Nb-94	2.34E-11	6.99E-13	1.31E-13	2.33E-11	6.99E-13	1.30E-13	1.00	1.00	1.01	
Tc-99	2.15E-15	6.56E-17	1.28E-17	2.14E-15	6.52E-17	1.27E-17	1.01	1.01	1.01	

Table 2.11 Comparison of Estimates of External Radiation Cancer Risks (1/yr) from a Point Source at Different Receptor Locations without Shielding

					Mass Att	enuation										
					Coefficie	ent (cm⁻¹)	Distance in Mean Free Path				Estimated Buildup Factor			Estimated Attenuation Factor		
							In Air									
							[Between									
							(0, 0, 0) to	In Water	In Water	In Water				With	With	With
		Energy					(1, 1, 1)	of 1 cm	of 5 cm	of 50 cm	In Water	In Water	In Water	Water of	Water of	Water of
Nuclide	# photons	(MeV)	Yield	FE	Air	Water	(m)]	Thickness	Thickness	Thickness	of 1 cm	of 5 cm	of 50 cm	1 cm	5 cm	50 cm
C-14	1	0.049	8.65E-04	0.1	2.59E-04	2.31E-01	4.48E-02	2.31E-01	1.16E+00	1.16E+01	1.77E+00	5.04E+00	1.12E+02	7.94E-01	3.15E-01	9.62E-06
Mn-54	1	0.835	1	0.825	8.48E-05	7.73E-02	1.47E-02	7.73E-02	3.86E-01	3.86E+00	1.09E+00	1.45E+00	8.41E+00	9.26E-01	6.80E-01	2.10E-02
CO-60	1	1.25	2	0.5	7.04E-05	6.41E-02	1.22E-02	6.41E-02	3.21E-01	3.21E+00	1.06E+00	1.32E+00	5.34E+00	9.38E-01	7.26E-01	4.05E-02
Nb-94	1	0.787	2	0.065	8.71E-05	7.94E-02	1.51E-02	7.94E-02	3.97E-01	3.97E+00	1.09E+00	1.47E+00	9.05E+00	9.24E-01	6.72E-01	1.89E-02
Tc-99	1	0.101	1.77E-03	0.98	1.88E-04	1.70E-01	3.25E-02	1.70E-01	8.51E-01	8.51E+00	1.60E+00	3.90E+00	2.21E+02	8.43E-01	4.27E-01	2.00E-04

Table 2.12 Estimates of Attenuation (Shielding) Factor and Buildup Factor at the Receptor Location (1, 1, 1) (m) with Water Shielding

Table 2.13 Comparison of Estimates of External Radiation Dose (mrem/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses

	Spreadsheet Results	RESRAD-B	UILD Results w Shielding	vith Water	Spreadsheet R	esults with Wa	iter Shielding	Ratio (RESRAD-BUILD/Spreadsheet)			
	(without										
Nuclide	Shielding)	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	
C-14	3.06E-11	4.04E-11	4.72E-11	3.36E-14	4.29E-11	4.85E-11	3.30E-14	0.94	0.97	1.02	
Mn-54	3.36E-07	3.32E-07	3.18E-07	5.79E-08	3.39E-07	3.30E-07	5.93E-08	0.98	0.96	0.98	
CO-60	1.30E-06	1.29E-06	1.22E-06	2.77E-07	1.30E-06	1.25E-06	2.82E-07	0.99	0.98	0.98	
Nb-94	9.29E-07	9.18E-07	8.81E-07	1.55E-07	9.38E-07	9.17E-07	1.59E-07	0.98	0.96	0.98	
Tc-99	9.99E-11	1.18E-10	1.66E-10	4.24E-12	1.35E-10	1.66E-10	4.42E-12	0.87	1.00	0.96	

		RESRAD-B	UILD Results w Shielding	vith Water	Spreadshe	eet Results wit Shielding	h Water	Ratio (RESI	RAD-BUILD/Sp	preadsheet)
Nuclio	de	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm
C-14	1	2.35E-17	2.75E-17	1.96E-20	2.36E-17	2.76E-17	1.96E-20	1.00	1.00	1.00
Mn-5	54	2.51E-13	2.40E-13	4.37E-14	2.50E-13	2.40E-13	4.36E-14	1.00	1.00	1.00
CO-6	0	9.85E-13	9.32E-13	2.11E-13	9.87E-13	9.34E-13	2.12E-13	1.00	1.00	1.00
Nb-9	4	6.91E-13	6.64E-13	1.17E-13	6.91E-13	6.63E-13	1.17E-13	1.00	1.00	1.00
Tc-99	9	7.64E-17	1.08E-16	2.75E-18	7.62E-17	1.07E-16	2.74E-18	1.00	1.01	1.00

Table 2.14 Comparison of Estimates of External Radiation Cancer Risks (1/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses
2.1.5 Dose Results with Concrete Shielding

Table 2.15 shows the estimation of the attenuation factor and buildup factor when there is shielding of concrete with a thickness of 1 cm, 5 cm, and 50 cm between the source and the receptor at (1 m, 1 m, 1 m).

Table 2.16 compares the dose estimates between the spreadsheets and the RESRAD-BUILD code. Except for the dose results with a shielding thickness of 50 cm for C-14 that show a difference of almost 500%, the other dose results of RESRAD-BUILD and the spreadsheets show good agreement. The difference of almost 500% in the C-14 results are ignored because of the extremely small magnitude of both dose estimates, which are essentially zero.

2.1.6 Risk Results with Concrete Shielding

Table 2.17 compares the cancer risks calculated by the RESRAD-BUILD code and by the spreadsheets. The spreadsheet results were the multiplication products of the RESRAD-BUILD dose results and the radionuclide-specific dose-to-risk conversion factors presented in Table 1.10. The two sets of calculation results agree with each other.

2.2 EXTERNAL RADIATION OF LINE SOURCES

To verify the RESRAD-BUILD results of external radiation modeling for line sources, a line source of 1 m located at (0, 0, 0) with a total radioactivity of 1 pCi was considered. The same receptors, at (1 m, 1 m, 1 m), (0 m, 0 m, 0.3 m), and (0 m, 0 m, 4 m), as considered in the verification of point source modeling, were selected for estimating radiation doses and cancer risks. The receptors were assumed to spend 50% of the time in a year inside the building. There was no release of contamination from the line source and no erosion of source materials. Radiation doses and cancer risks were estimated for C-14, Mn-54, Co-60, Nb-94, and Tc-99. The comparison of results between RESRAD-BUILD and the spreadsheets focused on the exposures incurred during the 1st year.

In the spreadsheets designed for this verification, the 1-m line source was evenly divided into 20 segments, and each segment was modeled as a point source. The radiation dose and cancer risk incurred by a receptor from the line source was the sum of doses and risks from each segment. External radiation dose and cancer risk without shielding materials to attenuate the radiation were estimated for each receptor. External radiation dose and cancer risk with water as shielding material of 1 cm, 5 cm, and 50 cm effective thickness were estimated for the receptor at (1 m, 1 m, 1 m). For the same receptor, radiation dose and cancer risk attenuated by concrete of 1 m, 5 cm, and 50 cm effective thickness were also estimated.

					Mass Att	enuation	ation									
					Coefficie	ent (cm⁻¹)	Di	stance in M	ean Free Pa	ath	Estima	ted Buildup	Factor	Estimated Attenuation Factor		
							In Air									
							[Between	In	In	In						
							(0, 0, 0) to	Concrete	Concrete	Concrete	In	In	In	With	With	With
		Energy					(1, 1, 1)	of 1 cm	of 5 cm	of 50 cm	Concrete	Concrete	Concrete	Concrete	Concrete	Concrete
Nuclide	# photons	(MeV)	Yield	FE	Air	Concrete	(m)]	Thickness	Thickness	Thickness	of 1 cm	of 5 cm	of 50 cm	of 1 cm	of 5 cm	of 50 cm
C-14	1	0.049	8.65E-04	0.1	2.59E-04	9.99E-01	4.48E-02	9.99E-01	4.99E+00	4.99E+01	1.71E+00	3.14E+00	8.90E+00	3.68E-01	6.78E-03	2.04E-22
Mn-54	1	0.835	1	0.825	8.48E-05	1.67E-01	1.47E-02	1.67E-01	8.37E-01	8.37E+00	1.18E+00	1.86E+00	1.88E+01	8.46E-01	4.33E-01	2.31E-04
CO-60	1	1.25	2	0.5	7.04E-05	1.39E-01	1.22E-02	1.39E-01	6.95E-01	6.95E+00	1.13E+00	1.61E+00	1.10E+01	8.70E-01	4.99E-01	9.61E-04
Nb-94	1	0.787	2	0.065	8.71E-05	1.72E-01	1.51E-02	1.72E-01	8.60E-01	8.60E+00	1.18E+00	1.90E+00	2.05E+01	8.42E-01	4.23E-01	1.84E-04
Tc-99	1	0.101	1.77E-03	0.98	1.88E-04	4.26E-01	3.25E-02	4.26E-01	2.13E+00	2.13E+01	1.76E+00	4.90E+00	7.61E+01	6.53E-01	1.19E-01	5.55E-10

Table 2.15 Estimates of Attenuation (Shielding) Factor and Buildup Factor at the Receptor Location (1, 1, 1) (m) with Concrete Shielding

Table 2.16 Comparison of Estimates of External Radiation Dose (mrem/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses

	Spreadsheet Calculated	RESRAD-BU with	ILD Code Versi Concrete Shie	on 4 Results Iding	Spreadshe	et Results with Shielding	n Concrete	Ratio	(Code/Spread	sheet)
	Dose (No	1 cm 5 cm 50 cm								
Nuclide	Shield)	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm
C-14	3.06E-11	1.87E-11	7.13E-13	2.77E-31	1.93E-11	6.50E-13	5.56E-32	0.97	1.10	4.98
Mn-54	3.36E-07	3.26E-07	2.70E-07	1.46E-09	3.34E-07	2.70E-07	1.46E-09	0.98	1.00	1.00
CO-60	1.30E-06	1.26E-06	1.05E-06	1.39E-08	1.28E-06	1.05E-06	1.38E-08	0.98	1.00	1.00
Nb-94	9.29E-07	9.01E-07	7.46E-07	3.57E-09	9.26E-07	7.48E-07	3.50E-09	0.97	1.00	1.02
Tc-99	9.99E-11	1.12E-10	5.66E-11	3.96E-18	1.15E-10	5.81E-11	4.22E-18	0.98	0.97	0.94

	RESRAD-BU	IILD Results wit Shielding	th Concrete	Spreadshe	eet Results with Shielding	n Concrete	Ratio (RESRAD-BUILD/Spreadsheet)				
Nuclide	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm		
C-14	1.09E-17	4.15E-19	1.61E-37	1.09E-17	4.17E-19	1.62E-37	1.00	1.00	0.99		
Mn-54	2.46E-13	2.04E-13	1.10E-15	2.46E-13	2.04E-13	1.10E-15	1.00	1.00	1.00		
CO-60	9.63E-13	8.01E-13	1.06E-14	9.64E-13	8.04E-13	1.06E-14	1.00	1.00	1.00		
Nb-94	6.79E-13	5.62E-13	2.69E-15	6.79E-13	5.62E-13	2.69E-15	1.00	1.00	1.00		
Tc-99	7.29E-17	3.67E-17	2.57E-24	7.24E-17	3.66E-17	2.56E-24	1.01	1.00	1.00		

Table 2.17 Comparison of Estimates of External Radiation Cancer Risk (1/yr) from a Point Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses

2.2.1 Dose Results without Shielding

Table 2.18 shows the calculations of distance between the receptor at (1 m, 1 m, 1 m) and the center of each segment of the line source, the 4π area corresponding to the distance, and the geometrical factor for each line segment (G_L) [see Equation C.13 in the RESRAD-BUILD User's Manual (Yu et al., 2022)]. Table 2.19 shows the estimations of the external radiation dose incurred by the receptor when there was no shielding between the line source and the receptor. Likewise, Tables 2.20 and 2.21 show the same calculations/estimations as Tables 2.18 and 2.19, respectively, for the receptor at (0 m, 0 m, 0.3 m), and Tables 2.22 and 2.23 show the same calculations/estimations as Tables 2.18 and 2.19, respectively, for the receptor at (0 m, 0 m, 0.3 m).

Table 2.24 compares the dose estimates between the spreadsheets and the RESRAD-BUILD code. The comparison shows good agreement in the dose estimates.

2.2.2 Risk Results without Shielding

Table 2.25 compares the cancer risks calculated by the RESRAD-BUILD code and by the spreadsheets. The spreadsheet results were the multiplication products of the RESRAD-BUILD dose results and the radionuclide-specific dose-to-risk conversion factors presented in Table 2.10. The two sets of calculation results agree with each other.

2.2.3 Dose Results with Water Shielding

The estimations of buildup and attenuation factors when there is shielding of water with a thickness of 1 cm, 5 cm, and 50 cm between the source and the receptor at (1 m, 1 m, 1 m) are presented in Table 2.12.

Table 2.26 compares the dose estimates between the spreadsheets and the RESRAD-BUILD code. Except for the dose results with a shielding thickness of 1 cm for Tc-99 that show a difference of 13%, the other dose results of RESRAD-BUILD and the spreadsheets are in good agreement.

2.2.4 Risk Results with Water Shielding

Table 2.27 compares the cancer risks calculated by the RESRAD-BUILD code and by the spreadsheets. The spreadsheet results were the multiplication products of the RESRAD-BUILD dose results and the radionuclide-specific dose-to-risk conversion factors presented in Table 2.10. The two sets of calculation results agree with each other.

								4π Area					
	Coordinate	of line segmer	nt center, cm	Coordinate	e of receptor l	ocation, cm		based on			$G_{L}(1/cm^{2})$		
No. of line		1					Distance	Distance					
segment	x	У	z	х	у	z	(cm)	(cm ²)	C-14	Mn-54	Co-60	Nb-94	Tc-99
1	0	2.5	0	100	100	100	1.72E+02	3.71E+05	2.58E-06	2.66E-06	2.66E-06	2.66E-06	2.61E-06
2	0	7.5	0	100	100	100	1.69E+02	3.59E+05	2.67E-06	2.75E-06	2.75E-06	2.74E-06	2.70E-06
3	0	12.5	0	100	100	100	1.66E+02	3.48E+05	2.76E-06	2.84E-06	2.84E-06	2.83E-06	2.79E-06
4	0	17.5	0	100	100	100	1.64E+02	3.37E+05	2.84E-06	2.93E-06	2.93E-06	2.93E-06	2.88E-06
5	0	22.5	0	100	100	100	1.61E+02	3.27E+05	2.93E-06	3.02E-06	3.02E-06	3.02E-06	2.97E-06
6	0	27.5	0	100	100	100	1.59E+02	3.18E+05	3.02E-06	3.11E-06	3.11E-06	3.11E-06	3.06E-06
7	0	32.5	0	100	100	100	1.57E+02	3.09E+05	3.11E-06	3.20E-06	3.20E-06	3.20E-06	3.15E-06
8	0	37.5	0	100	100	100	1.55E+02	3.01E+05	3.20E-06	3.28E-06	3.29E-06	3.28E-06	3.23E-06
9	0	42.5	0	100	100	100	1.53E+02	2.93E+05	3.28E-06	3.37E-06	3.38E-06	3.37E-06	3.32E-06
10	0	47.5	0	100	100	100	1.51E+02	2.86E+05	3.36E-06	3.45E-06	3.46E-06	3.45E-06	3.40E-06
11	0	-2.5	0	100	100	100	1.75E+02	3.84E+05	2.49E-06	2.57E-06	2.58E-06	2.57E-06	2.52E-06
12	0	-7.5	0	100	100	100	1.78E+02	3.97E+05	2.41E-06	2.48E-06	2.49E-06	2.48E-06	2.44E-06
13	0	-12.5	0	100	100	100	1.81E+02	4.11E+05	2.32E-06	2.40E-06	2.41E-06	2.40E-06	2.35E-06
14	0	-17.5	0	100	100	100	1.84E+02	4.25E+05	2.24E-06	2.32E-06	2.32E-06	2.32E-06	2.27E-06
15	0	-22.5	0	100	100	100	1.87E+02	4.40E+05	2.16E-06	2.24E-06	2.24E-06	2.24E-06	2.19E-06
16	0	-27.5	0	100	100	100	1.90E+02	4.56E+05	2.09E-06	2.16E-06	2.16E-06	2.16E-06	2.12E-06
17	0	-32.5	0	100	100	100	1.94E+02	4.72E+05	2.01E-06	2.08E-06	2.09E-06	2.08E-06	2.04E-06
18	0	-37.5	0	100	100	100	1.97E+02	4.89E+05	1.94E-06	2.01E-06	2.02E-06	2.01E-06	1.97E-06
19	0	-42.5	0	100	100	100	2.01E+02	5.07E+05	1.87E-06	1.94E-06	1.95E-06	1.94E-06	1.90E-06
20	0	-47.5	0	100	100	100	2.04E+02	5.25E+05	1.81E-06	1.87E-06	1.88E-06	1.87E-06	1.83E-06
Average								3.88E+05	2.56E-06	2.63E-06	2.64E-06	2.63E-06	2.59E-06

Table 2.18 Calculations of Distance, 4π Area, and Geometrical Factor at the Receptor Location (1, 1, 1) (m)

Table 2.19 Estimates of External Radiation Dose from a Line Source at (0, 0, 0) at the Receptor Location (1, 1, 1) (m) without Shielding

Indoor Time	Fraction =	0.5											
1 MeV of ene	ergy =	1.60E-06	ergs										
100 erg of en	ergy absorbe	d in 1 g of me	dium = 1 rad	dose									
Total energy	in 1 year for 1	MeV photon	emitted by 1	Bq of activity	=	50.49216	erg						
Total energy	Total energy in 1 year for 1 Mev photon emitted by 1 pCi of activity =					1.86820992	erg						
Yearly dose for the energy absorption in one gram of medium, imparted by 1 N					eV photons e	mitted by 1 p	Ci of activity =		0.0186821	rad/yr per p0	Ci		
							Absorbed-						
		Average					to-Effective	Mass Energy				Ratio of	
		Source					Dose	Absorption			Mass	Attenuation	Calculated
		Activity in					Conversion	Coefficient	Distance in	Estimated	Attenuation	Factor/	External
		1st Year		Energy			Factor	in Air	Mean Free	Buildup	Coeff for Air	4π Area for	Dose
Nuclide	Half-life (yr)	(pCi)	# photons	(MeV)	Yield	FE	(Sv/Gy)	(cm ² /g)	Path in Air	Factor in Air	(cm⁻¹)	Air (1/cm ²)	(mrem/yr)
C-14	5.73E+03	1.00E+00	1	0.049	8.65E-04	0.1	0.665	4.30E-02	4.48E-02	1.07E+00	2.59E-04	2.56E-06	3.08E-11
Mn-54	8.56E-01	6.85E-01	1	0.835	1	0.825	0.833	2.87E-02	1.47E-02	1.01E+00	8.48E-05	2.63E-06	3.38E-07
CO-60	5.27E+00	9.37E-01	1	1.25286	2	0.49428	0.848	2.66E-02	1.22E-02	1.01E+00	7.04E-05	2.64E-06	1.31E-06
Nb-94	2.03E+04	1.00E+00	1	0.787	2	0.065	0.831	2.89E-02	1.51E-02	1.01E+00	8.71E-05	2.63E-06	9.36E-07
Tc-99	2.13E+05	1.00E+00	1	0.101	1.77E-03	0.98	0.961	2.32E-02	3.25E-02	1.04E+00	1.88E-04	2.59E-06	1.01E-10

No. of line	Coordinate	of line segmer	nt center, cm	Coordinate	e of receptor l	ocation, cm	Distance	based on	$G_{L}(1/cm^{2})$				
segment	x	У	z	х	У	Z	(cm)	Distance	C-14	Mn-54	Co-60	Nb-94	Tc-99
1	0	2.5	0	0	0	30	3.01E+01	1.14E+04	8.71E-05	8.76E-05	8.76E-05	8.75E-05	8.73E-05
2	0	7.5	0	0	0	30	3.09E+01	1.20E+04	8.25E-05	8.30E-05	8.30E-05	8.30E-05	8.27E-05
3	0	12.5	0	0	0	30	3.25E+01	1.33E+04	7.47E-05	7.51E-05	7.51E-05	7.51E-05	7.49E-05
4	0	17.5	0	0	0	30	3.47E+01	1.52E+04	6.54E-05	6.58E-05	6.58E-05	6.57E-05	6.55E-05
5	0	22.5	0	0	0	30	3.75E+01	1.77E+04	5.60E-05	5.64E-05	5.64E-05	5.64E-05	5.62E-05
6	0	27.5	0	0	0	30	4.07E+01	2.08E+04	4.75E-05	4.79E-05	4.79E-05	4.79E-05	4.77E-05
7	0	32.5	0	0	0	30	4.42E+01	2.46E+04	4.02E-05	4.05E-05	4.05E-05	4.05E-05	4.03E-05
8	0	37.5	0	0	0	30	4.80E+01	2.90E+04	3.41E-05	3.44E-05	3.44E-05	3.43E-05	3.42E-05
9	0	42.5	0	0	0	30	5.20E+01	3.40E+04	2.90E-05	2.93E-05	2.93E-05	2.93E-05	2.91E-05
10	0	47.5	0	0	0	30	5.62E+01	3.97E+04	2.48E-05	2.51E-05	2.51E-05	2.51E-05	2.49E-05
11	0	-2.5	0	0	0	30	3.01E+01	1.14E+04	8.71E-05	8.76E-05	8.76E-05	8.75E-05	8.73E-05
12	0	-7.5	0	0	0	30	3.09E+01	1.20E+04	8.25E-05	8.30E-05	8.30E-05	8.30E-05	8.27E-05
13	0	-12.5	0	0	0	30	3.25E+01	1.33E+04	7.47E-05	7.51E-05	7.51E-05	7.51E-05	7.49E-05
14	0	-17.5	0	0	0	30	3.47E+01	1.52E+04	6.54E-05	6.58E-05	6.58E-05	6.57E-05	6.55E-05
15	0	-22.5	0	0	0	30	3.75E+01	1.77E+04	5.60E-05	5.64E-05	5.64E-05	5.64E-05	5.62E-05
16	0	-27.5	0	0	0	30	4.07E+01	2.08E+04	4.75E-05	4.79E-05	4.79E-05	4.79E-05	4.77E-05
17	0	-32.5	0	0	0	30	4.42E+01	2.46E+04	4.02E-05	4.05E-05	4.05E-05	4.05E-05	4.03E-05
18	0	-37.5	0	0	0	30	4.80E+01	2.90E+04	3.41E-05	3.44E-05	3.44E-05	3.43E-05	3.42E-05
19	0	-42.5	0	0	0	30	5.20E+01	3.40E+04	2.90E-05	2.93E-05	2.93E-05	2.93E-05	2.91E-05
20	0	-47.5	0	0	0	30	5.62E+01	3.97E+04	2.48E-05	2.51E-05	2.51E-05	2.51E-05	2.49E-05
Average								2.18E+04	5.41E-05	5.45E-05	5.45E-05	5.45E-05	5.43E-05

Table 2.20 Calculations of Distance, 4π Area, and Geometrical Factor at the Receptor Location (0, 0, 0.3) (m)

Table 2.21 Estimates of External Dose from a Line Source at (0, 0, 0) at the Receptor Location (0, 0, 0.3) (m) without Shielding

Indoor Time	Fraction =	0.5											
1 MeV of ene	ergy =	1.60E-06	ergs										
100 erg of en	ergy absorbe	d in 1 g of me	dium = 1 rad	dose									
Total energy	in 1 year for 1	MeV photon	emitted by 1	Bq of activity	=	50.49216	erg						
Total energy	in 1 year for 1	Mev photon	emitted by 1	pCi of activity	/ =	1.86820992	erg						
Yearly dose f	early dose for the energy absorption in one gram of medium, imparted by 1				parted by 1 M	eV photons e	mitted by 1 p	Ci of activity =		0.0186821	rad/yr per p0	Ci	
							Absorbed-						
		Average					to-Effective	Mass Energy				Ratio of	
		Source					Dose	Absorption			Mass	Attenuation	Calculated
		Activity in					Conversion	Coefficient	Distance in	Estimated	Attenuation	Factor/	External
		1st Year		Energy			Factor	in Air	Mean Free	Buildup	Coeff for Air	4π Area in	Dose
Nuclide	Half-life (yr)	(pCi)	# photons	(MeV)	Yield	FE	(Sv/Gy)	(cm ² /g)	Path in Air	Factor in Air	(cm⁻¹)	Air (1/cm ²)	(mrem/yr)
C-14	5.73E+03	1.00E+00	1	0.049	8.65E-04	0.1	0.665	4.30E-02	7.76E-03	1.01E+00	2.59E-04	5.41E-05	6.19E-10
Mn-54	8.56E-01	6.85E-01	1	0.835	1	0.825	0.833	2.87E-02	2.54E-03	1.00E+00	8.48E-05	5.45E-05	6.96E-06
CO-60	5.27E+00	9.37E-01	1	1.25286	2	0.49428	0.848	2.66E-02	2.11E-03	1.00E+00	7.04E-05	5.45E-05	2.70E-05
Nb-94	2.03E+04	1.00E+00	1	0.787	2	0.065	0.831	2.89E-02	2.61E-03	1.00E+00	8.71E-05	5.45E-05	1.92E-05
Tc-99	2.13E+05	1.00E+00	1	0.101	1.77E-03	0.98	0.961	2.32E-02	5.63E-03	1.01E+00	1.88E-04	5.43E-05	2.04E-09

No. of line	Coordinate	of line segmer	nt center, cm	Coordinate	e of receptor l	ocation, cm	Distance	based on	$G_L(1/cm^2)$				
segment	х	У	z	х	У	Z	(cm)	Distance	C-14	Mn-54	Co-60	Nb-94	Tc-99
1	0	2.5	0	0	0	400	4.00E+02	2.01E+06	4.48E-07	4.81E-07	4.83E-07	4.80E-07	4.61E-07
2	0	7.5	0	0	0	400	4.00E+02	2.01E+06	4.48E-07	4.80E-07	4.83E-07	4.80E-07	4.61E-07
3	0	12.5	0	0	0	400	4.00E+02	2.01E+06	4.48E-07	4.80E-07	4.83E-07	4.80E-07	4.61E-07
4	0	17.5	0	0	0	400	4.00E+02	2.02E+06	4.47E-07	4.80E-07	4.82E-07	4.79E-07	4.60E-07
5	0	22.5	0	0	0	400	4.01E+02	2.02E+06	4.47E-07	4.79E-07	4.82E-07	4.79E-07	4.60E-07
6	0	27.5	0	0	0	400	4.01E+02	2.02E+06	4.46E-07	4.78E-07	4.81E-07	4.78E-07	4.59E-07
7	0	32.5	0	0	0	400	4.01E+02	2.02E+06	4.45E-07	4.77E-07	4.80E-07	4.77E-07	4.58E-07
8	0	37.5	0	0	0	400	4.02E+02	2.03E+06	4.44E-07	4.76E-07	4.79E-07	4.76E-07	4.57E-07
9	0	42.5	0	0	0	400	4.02E+02	2.03E+06	4.43E-07	4.75E-07	4.78E-07	4.75E-07	4.56E-07
10	0	47.5	0	0	0	400	4.03E+02	2.04E+06	4.42E-07	4.74E-07	4.77E-07	4.73E-07	4.55E-07
11	0	-2.5	0	0	0	400	4.00E+02	2.01E+06	4.48E-07	4.81E-07	4.83E-07	4.80E-07	4.61E-07
12	0	-7.5	0	0	0	400	4.00E+02	2.01E+06	4.48E-07	4.80E-07	4.83E-07	4.80E-07	4.61E-07
13	0	-12.5	0	0	0	400	4.00E+02	2.01E+06	4.48E-07	4.80E-07	4.83E-07	4.80E-07	4.61E-07
14	0	-17.5	0	0	0	400	4.00E+02	2.02E+06	4.47E-07	4.80E-07	4.82E-07	4.79E-07	4.60E-07
15	0	-22.5	0	0	0	400	4.01E+02	2.02E+06	4.47E-07	4.79E-07	4.82E-07	4.79E-07	4.60E-07
16	0	-27.5	0	0	0	400	4.01E+02	2.02E+06	4.46E-07	4.78E-07	4.81E-07	4.78E-07	4.59E-07
17	0	-32.5	0	0	0	400	4.01E+02	2.02E+06	4.45E-07	4.77E-07	4.80E-07	4.77E-07	4.58E-07
18	0	-37.5	0	0	0	400	4.02E+02	2.03E+06	4.44E-07	4.76E-07	4.79E-07	4.76E-07	4.57E-07
19	0	-42.5	0	0	0	400	4.02E+02	2.03E+06	4.43E-07	4.75E-07	4.78E-07	4.75E-07	4.56E-07
20	0	-47.5	0	0	0	400	4.03E+02	2.04E+06	4.42E-07	4.74E-07	4.77E-07	4.73E-07	4.55E-07
Average								2.02E+06	4.46E-07	4.78E-07	4.81E-07	4.78E-07	4.59E-07

Table 2.22 Calculations of Distance, 4π Area, and Geometrical Factor at the Receptor Location (0, 0, 4) (m)

Table 2.23 Estimates of External Dose from a Line Source at (0, 0, 0) at the Receptor Location (0, 0, 4	4) (m	n) without Shielding
---	-------	----------------------

Indoor Time	Fraction =	0.5											
1 MeV of ene	ergy =	1.60E-06	ergs										
100 erg of en	ergy absorbe	d in 1 g of me	dium = 1 rad	dose									
Total energy	Total energy in 1 year for 1 MeV photon emitted by 1 Bq of activity =					50.49216	erg						
Total energy in 1 year for 1 Mev photon emitted by 1 pCi of activity =					1.86820992	erg							
Yearly dose for the energy absorption in one gram of medium, imprated by 1 M					eV photons e	mitted by 1 p	Ci of activity =		0.0186821	rad/yr per pC	Ci		
							Absorbed-						
		Average					to-Effective	Mass Energy				Ratio of	
		Source					Dose	Absorption			Mass	Attenuation	Calculated
		Activity in					Conversion	Coefficient	Distance in	Estimated	Attenuation	Factor/	External
		1st Year		Energy			Factor	in Air	Mean Free	Buildup	Coeff for Air	4π Area in	Dose
Nuclide	Half-life (yr)	(pCi)	# photons	(MeV)	Yield	FE	(Sv/Gy)	(cm ² /g)	Path in Air	Factor in Air	(cm ⁻¹)	Air (1/cm ²)	(mrem/yr)
C-14	5.73E+03	1.00E+00	1	0.049	8.65E-04	0.1	0.665	4.30E-02	1.03E-01	1.15E+00	2.59E-04	4.46E-07	5.80E-12
Mn-54	8.56E-01	6.85E-01	1	0.835	1	0.825	0.833	2.87E-02	3.39E-02	1.02E+00	8.48E-05	4.78E-07	6.20E-08
CO-60	5.27E+00	9.37E-01	1	1.25286	2	0.49428	0.848	2.66E-02	2.81E-02	1.01E+00	7.04E-05	4.81E-07	2.41E-07
Nb-94	2.03E+04	1.00E+00	1	0.787	2	0.065	0.831	2.89E-02	3.48E-02	1.02E+00	8.71E-05	4.78E-07	1.72E-07
Tc-99	2.13E+05	1.00E+00	1	0.101	1.77E-03	0.98	0.961	2.32E-02	7.50E-02	1.10E+00	1.88E-04	4.59E-07	1.88E-11

Table 2.24 Comparison of Estimates of External	l Radiation Dose (mre	m/yr) from a Line S	Source at Differen	t Receptor I	Locations
without Shielding					

	RESRAD-BUI	LD Code Versio	on 4 Results	Spre	eadsheet Resul	ts	Ratio (RESRAD-BUILD/Spreadsheet)			
	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	
Nuclide	(0,0,0.3)(m)	(1,1,1)(m)	(0 <i>,</i> 0 <i>,</i> 4)(m)	(0,0,0.3)(m)	(1,1,1)(m)	(0,0,4)(m)	(0,0,0.3)(m)	(1,1,1)(m)	(0,0,4)(m)	
C-14	6.20E-10	3.20E-11	6.38E-12	6.19E-10	3.08E-11	5.80E-12	1.00	1.04	1.10	
Mn-54	6.95E-06	3.39E-07	6.25E-08	6.96E-06	3.38E-07	6.20E-08	1.00	1.00	1.01	
CO-60	2.70E-05	1.32E-06	2.43E-07	2.70E-05	1.31E-06	2.41E-07	1.00	1.01	1.01	
Nb-94	1.92E-05	9.35E-07	1.73E-07	1.92E-05	9.36E-07	1.72E-07	1.00	1.00	1.01	
Tc-99	2.04E-09	1.02E-10	1.96E-11	2.04E-09	1.01E-10	1.88E-11	1.00	1.01	1.04	

	RESRAD-BUI	LD Code Versio	on 4 Results	Spr	eadsheet Resu	ılts	Ratio (RESRAD-BUILD/Spreadsheet)				
	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor		
Nuclide	(0,0,0.3)(m)	(1,1,1)(m)	(0,0,4)(m)	(0,0,0.3)(m)	(1,1,1)(m)	(0,0,4)(m)	(0,0,0.3)(m)	(1,1,1)(m)	(0,0,4)(m)		
C-14	3.61E-16	1.86E-17	3.71E-18	3.62E-16	1.87E-17	3.73E-18	1.00	0.99	1.00		
Mn-54	5.24E-12	2.56E-13	4.72E-14	5.24E-12	2.56E-13	4.71E-14	1.00	1.00	1.00		
CO-60	2.06E-11	1.01E-12	1.86E-13	2.07E-11	1.01E-12	1.86E-13	1.00	1.00	1.00		
Nb-94	1.45E-11	7.04E-13	1.30E-13	1.45E-11	7.04E-13	1.30E-13	1.00	1.00	1.00		
Tc-99	1.32E-15	6.61E-17	1.27E-17	1.32E-15	6.59E-17	1.27E-17	1.00	1.00	1.00		

Table 2.25 Comparison of Estimates of External Radiation Risks (1/yr) from a Line Source at Different Receptor Locations without Shielding

Table 2.26 Comparison of Estimates of External Radiation Dose (mrem/yr) from a Line Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses

	Spreadsheet	RESRAD-B	UILD Results w	ith Water							
	Results		Shielding		Spreadsheet R	esults with Wa	ater Shielding	Ratio (RESR	AD-BUILD/Sp	readsheet)	
	(Without	1 ere									
Nuclide	Shielding)	1 cm 5 cm		50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	
C-14	3.08E-11	4.07E-11	4.76E-11	3.39E-14	4.32E-11	4.89E-11	3.33E-14	0.94	0.97	1.02	
Mn-54	3.38E-07	3.35E-07	3.20E-07	5.83E-08	3.41E-07	3.33E-07	5.98E-08	0.98	0.96	0.98	
CO-60	1.31E-06	1.30E-06	1.23E-06	2.79E-07	1.31E-06	1.26E-06	2.84E-07	0.99	0.98	0.98	
Nb-94	9.36E-07	9.25E-07	8.88E-07	1.57E-07	9.45E-07	9.24E-07	1.60E-07	0.98	0.96	0.98	
Tc-99	1.01E-10	1.19E-10	1.67E-10	4.27E-12	1.36E-10	1.68E-10	4.46E-12	0.87	1.00	0.96	

	RESRAD-B	UILD Results w Shielding	ith Water	Spreadshe	et Results with Shielding	n Water	Ratio (RESRAD-BUILD/Spreadsheet)				
								•			
Nuclide	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm		
C-14	2.37E-17	2.77E-17	1.97E-20	2.38E-17	2.78E-17	1.98E-20	1.00	1.00	0.99		
Mn-54	2.53E-13	3 2.42E-13 4.40E-14		2.53E-13	2.41E-13	4.40E-14	1.00	1.00	1.00		
CO-60	9.93E-13	9.39E-13	2.13E-13	9.95E-13	9.41E-13	2.14E-13	1.00	1.00	1.00		
Nb-94	6.97E-13	6.69E-13	1.18E-13	6.97E-13	6.69E-13	1.18E-13	1.00	1.00	1.00		
Tc-99	7.69E-17	1.08E-16	2.77E-18	7.69E-17	1.08E-16	2.76E-18	1.00	1.00	1.00		

Table 2.27 Comparison of Estimates of External Radiation Cancer Risks (1/yr) from a Line Source at the Receptor Location (1, 1, 1) (m) with Water Shielding of Different Thicknesses

2.2.5 Dose Results with Concrete Shielding

The estimations of buildup and attenuation factors when there is shielding of concrete with a thickness of 1 cm, 5 cm, and 50 cm between the source and the receptor at (1 m, 1 m, 1 m) are presented in Table 2.15.

Table 2.28 compares the dose estimates between the spreadsheets and the RESRAD-BUILD code. Except for the dose results with a shielding thickness of 1 cm for Tc-99 that show a difference of 13%, the other dose results of RESRAD-BUILD and the spreadsheets are in good agreement.

2.2.6 Risk Results with Concrete Shielding

Table 2.29 compares the cancer risks calculated by the RESRAD-BUILD code and by the spreadsheets. The spreadsheet results were the multiplication products of the RESRAD-BUILD dose results and the radionuclide-specific dose-to-risk conversion factors presented in Table 2.10. The two sets of calculation results agree with each other.

2.3 EXTERNAL RADIATION OF AREA SOURCES

In RESRAD-BUILD, an area source is modeled as a volume source with a very small thickness, 0.001 cm. The modeling of external radiation for volume sources is described in Section C.1 of the User's Manual for RESRAD-BUILD Code Version 4.0 Vol. 1 (Yu et al. 2022). The radiation dose and cancer risk incurred by a receptor from a volume source is calculated as the radiation dose and cancer risk from a standard source, a source of contaminated soil that has an infinite depth and infinite lateral extent with no cover, corrected by F_{AM} , the area and material factor described by Equation (C.4), F_{CD} , the cover and depth factor described by Equation (C.3), and $F_{OFF-SET}$, the offset factor described by Equation (C.9). F_{AM} , the area and material factor, is a function of the buildup factor and attenuation factor.

Table 2.30 lists literature data of the mass attenuation coefficients in air, soil, and concrete and the fluence to the effective dose equivalent conversion factors used in the spreadsheets. The mass attenuation coefficients in air, soil, and concrete were obtained from Trubey 1991, while the fluence to effective dose equivalent conversion factors were obtained from ICRP 51 (ICRP 1987).

Tables 2.31 lists the buildup factors in soil; data from Trubey 1991 were used to estimate buildup factors in soil for C-14, Tc-99, and Mn-54. Buildup factors in air and concrete for C-14, Tc-99, and Mn-54 were presented previously, in Tables 2.3 and 2.5, respectively.

	Spreadsheet	RESRAD-BU	JILD Results with Shielding	th Concrete	Spreadshe	et Results with Shielding	n Concrete	Ratio (Code/Spreadsheet)			
	(Without		Shicking			Siliciung		Natio	(couc) spicad		
Nuclide	Shielding)	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm	
C-14	3.08E-11	1.89E-11	7.18E-13	2.79E-31	1.94E-11	6.55E-13	5.60E-32	0.97	1.10	4.98	
Mn-54	3.38E-07	3.28E-07	2.72E-07	1.47E-09	3.36E-07	2.73E-07	1.47E-09	0.97	1.00	1.00	
CO-60	1.31E-06	1.27E-06	1.06E-06	1.40E-08	1.29E-06	1.06E-06	1.39E-08	0.99	1.00	1.01	
Nb-94	9.36E-07	9.08E-07	7.52E-07	3.60E-09	9.33E-07	7.54E-07	3.53E-09	0.97	1.00	1.02	
Tc-99	1.01E-10	1.13E-10	5.70E-11	3.99E-18	1.16E-10	5.86E-11	4.25E-18	0.98	0.97	0.94	

Table 2.28 Comparison of Estimates of External Radiation Dose (mrem/yr) from a Line Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses

Table 2.29 Comparison of Estimates of External Radiation Cancer Risks from a Line Source at the Receptor Location (1, 1, 1) (m) with Concrete Shielding of Different Thicknesses

	RESRAD-BU	ILD Results wit	th Concrete	Spreadshe	et Results with	n Concrete			
		Shielding			Shielding		Ratio (RESF	RAD-BUILD/Sp	preadsheet)
Nuclide	1 cm	5 cm 50 cm		1 cm	5 cm	50 cm	1 cm	5 cm	50 cm
C-14	1.10E-17	4.18E-19 1.62E-37		1.10E-17	4.20E-19	1.63E-37	1.00	1.00	0.99
Mn-54	2.48E-13	2.05E-13	1.11E-15	2.47E-13	2.05E-13	1.11E-15	1.00	1.00	1.00
CO-60	9.71E-13	8.07E-13	1.07E-14	9.72E-13	8.11E-13	1.07E-14	1.00	0.99	1.00
Nb-94	6.84E-13	5.66E-13	2.71E-15	6.84E-13	5.66E-13	2.71E-15	1.00	1.00	1.00
Tc-99	7.35E-17	3.70E-17	2.59E-24	7.30E-17	3.68E-17	2.58E-24	1.01	1.00	1.00

				Fluence to
	Mass At	tenuation Co	efficient	Effective Dose
		(cm ² /g)		Equivalent
Energy		NBS		Conversion
(MeV)	Air	Concrete	Soil	(pSv cm2)
0.01	5.123	26.56	20.7	0.029
0.015	1.615	8.297	6.45	0.071
0.02	0.7784	3.651	2.86	0.11
0.03	0.3539	1.214	0.977	0.166
0.04	0.2485	0.6122	0.513	0.199
0.05	0.208	0.3944	0.345	0.222
0.06	0.1875	0.2957	0.268	0.24
0.08	0.1663	0.2125	0.202	0.293
0.1	0.1541	0.1783	0.174	0.357
0.15	0.1356	0.1434	0.143	0.534
0.2	0.1234	0.127	0.128	0.731
0.3	0.1068	0.1082	0.11	1.14
0.4	0.09549	0.09628	0.0977	1.55
0.5	0.08712	0.08768	0.089	1.96
0.6	0.08055	0.08098	0.0822	2.34
0.8	0.07074	0.07103	0.0721	3.07
1	0.06358	0.06382	0.0648	3.75
1.5	0.05175	0.05197	0.0528	5.24
2	0.04447	0.04482	0.0455	6.56
3	0.03581	0.03654	0.0369	8.9
4	0.03079	0.03189	0.0321	11
5	0.02751	0.02895	0.029	13
6	0.02522	0.02696	0.0269	14.9
8	0.02225	0.0245	0.0243	18.9
10	0.02045	0.02311	0.0227	22.9

Table 2.30 Literature Data of Mass Attenuation Coefficientsfor Air, Concrete, and Soil and Fluence to Effective DoseEquivalent Conversion Factors

Thickness			Data			C-14	Tc-99	Mn-54			
in Mean	0.04	0.05	0.1	0.15	0.5	0.6	0.8	1	0.049	0.101	0.835
Free Path	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
0.5	1.38	1.67	1.99	1.9	1.58	1.54	1.49	1.45	1.64	1.99	1.48
1	1.62	2.13	3.10	3.01	2.31	2.21	2.09	2	2.08	3.10	2.07
2	1.99	2.80	5.61	5.83	4.18	3.92	3.56	3.3	2.72	5.61	3.51
3	2.27	3.39	8.51	9.41	6.58	6.08	5.35	4.85	3.28	8.53	5.26
4	2.49	3.95	11.80	13.8	9.53	8.67	7.45	6.62	3.80	11.84	7.30
5	2.7	4.48	15.50	19	13	11.7	9.87	8.6	4.30	15.57	9.65
6	2.89	4.97	19.50	25.2	17.1	15.2	12.6	10.8	4.76	19.61	12.29
7	3.06	5.44	24.10	32.3	21.9	19.2	15.6	13.2	5.20	24.26	15.18
8	3.22	5.90	29.00	40.4	27.2	23.7	18.9	15.8	5.63	29.23	18.36
10	3.52	6.80	40.40	60.2	39.9	34.2	26.5	21.6	6.47	40.80	25.64
15	4.18	8.95	77.80	133	83.9	69	50.1	38.8	8.47	78.90	48.12
20	4.73	10.90	129.00	247	147	116	80.3	59.8	10.28	131.36	76.71
25	5.22	13.00	196.00	412	229	176	116	84	12.22	200.32	110.40
30	5.66	15.30	279.00	637	331	249	158	111	14.34	286.16	149.78
35	6.03	17.50	380.00	930	454	334	206	141	16.35	391.00	194.63
40	6.3	19.70	499.00	1300	598	430	258	173	18.36	515.02	243.13

 Table 2.31 Estimates of Buildup Factors in Soil of Different Thicknesses

2.3.1 Circular Area Sources

To verify the RESRAD-BUILD results of external radiation modeling for circular area sources, six area sources of 4 m², 10 m², 36 m², 100 m², 1,000 m², and 10,000 m² centered at (0, 0, 0) with z-direction were considered. Three receptors, located at (0, 0, 0.3) (m), (0, 0, 1) (m), and (0, 0, 4) (m) with distances of 0.3 m, 1 m, and 4 m, respectively, from the sources, were selected for estimating radiation doses and cancer risks. The receptors were assumed to spend 100% of the time in a year inside the building. There was no release of contamination from the area sources and no erosion of source materials. Each area source was assumed to contain C-14, Mn-54, and Tc-99, with a concentration of 1 pCi/m² for each radionuclide. The comparison of results between RESRAD-BUILD and the spreadsheets focused on the exposures incurred during the 1st year.

In the spreadsheets designed for this verification, the area sources were divided into multiple annuli for the calculation of effective F_{AM} for each source. External radiation dose and cancer risk without shielding materials to attenuate the radiation were estimated at the three receptor locations (0, 0, 0.3) (m), (0, 0, 1) (m), and (0, 0, 4) (m). External radiation dose and cancer risk with concrete as shielding material of 1 cm and 5 cm effective thicknesses were also estimated for the receptor location at (0, 0, 1) (m).

2.3.1.1 Dose Results without Shielding

Results for C-14. Radiation dose at the receptor location (0, 0, 1) (m) from each area source considered was estimated first. Table 2.32 shows the calculation of F_{CD} , the cover and depth factor, for C-14. Table 2.33 shows the estimation of F_{AM-ref} for the reference area source, which is made of soil to an infinite extent. In the estimation, an area of nearly 3,000,000 m² was used for the reference source. Tables 2.34 to 2.39 show the estimation of F_{AM} 's for the six circular area sources considered in this comparison. After F_{CD} and F_{AM} 's were available, external radiation dose resulting from C-14 in each of the six circular area sources were estimated by adjusting the external radiation dose conversion factor for an infinite volume source from FGR 12, as shown in Table 2.40.

Radiation doses at the receptor location (0, 0, 0.3) (m) were estimated with the same procedure used for estimating the dose at the receptor location (0, 0, 1) (m). Because the source thickness (assumed to be 0.001 cm) and cover thickness (0 cm) did not change, the value of F_{CD} stayed the same, as shown in Table 2.32. The value of F_{AM} for each of the six circular area sources was estimated as the sum of the F_{AM} 's for the individual annuli that constitute the area source. Because the design of the tables used for estimating F_{AM} 's were the same as that of Tables 2.34 to 2.39, these estimation tables are not presented here; only the final values of F_{AM} for each area source are listed, in Table 2.41, which shows the calculation of radiation doses at the receptor location. Table 2.42 shows the calculation of radiation doses at the receptor location (0, 0, 4) (m).

Table 2.32 Calculation of F_{CD} for C-14 in an Area Source without Cover

Fitting parameters Ai, E	Bi, Kai (cm2/g), Kbi (cr	12/g)	0.642	0.358	0.294	3.39				
Reference source -	Cover material =	none	Cover thic	kness, cm =		0	Density of	cover, g/cr	m3 =	1.6
	Source density , g/c	m3 =	1.6	Source this	ckness, cm	=	0.001			
Surface activity conver	sion factor, (pCi/g)/(oCi/m2)	0.0625							
	$=t_{-}T_{c}=t_{-}$									
$F_{CD} = \frac{D(T_{CD})}{D(T_{CD})}$	$\frac{-c_c(T_S-c_s)}{c=0,T_S=\infty} = Ae^{-K_s}$	$A^{\rho_c t_c}(1-\epsilon)$	$(-\kappa_A \rho_S t_S)$	$+Be^{-\kappa_{B}\mu}$	$P_{c^{t_{c}}}(1-e)$	$-K_B \rho_S t_s)$,			
FCD-surf= 0.00013990	(Note: F	CD-surf = FC	D × Surface	activity cor	nversion fac	ctor)				

										1					
				Fluence to	Effective										
				Effective	Mass			Mass							
				Dose	Attenuation	Effective mass	Mass	Attenuation	Mass						
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	(-		<i>+u</i>)			
				Factor	(source)	Coefficient (ref)	Coefficient	(concrete)	Coefficient	$\mu = \frac{\mu}{2}$	$a\mu_a + i_c\mu_c +$	(μ_s)			
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(/cm)	(soil) (/cm)	(/cm)	(air) (/cm)		$(t_a + t_c + t_c)$)			
1	0.049	8.65E-04	0.1	0.220	2.59E-04	2.59E-04	3.62E-01	9.99E-01	2.59E-04						
ta (cm) =	100		tc (cm) =	• 0		Sourc	e area (m2) =	4	Source-ref	area (m2) =	3.36E+06				
														Receptor	Receptor
exp(-ux)/x2	- dist. in -ref-	dist. in-ref-	mfp-dist. in -	mfp-dist. in-			Vol-source-		4π x dist-ref^2	distance-		ta + tc		location y	location z
ref	air (cm)	cover (cm)	ref-air	ref-cover	BF-ref-air	BF-ref-cover	ref	F _{AM} -ref	(cm2)	ref (cm)	r - ref (m)	(m)	ta (m)	(cm)	(cm)
7.75E-06	1.00E+02	0.00E+00	2.59E-02	0.00E+00	1.08E+00	1.00E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	1.00		
7.67E-06	1.00E+02	0.00E+00	2.60E-02	0.00E+00	1.08E+00	1.00E+00	3.14E-02	2.59E-07	1.27E+05	1.00E+02	1.00E-01	1	1.00		
7.67E-06	1.01E+02	0.00E+00	2.60E-02	0.00E+00	1.08E+00	1.00E+00	1.91E-03	1.58E-08	1.27E+05	1.01E+02	1.03E-01	1	1.00		
7.66E-06	1.01E+02	0.00E+00	2.60E-02	0.00E+00	1.08E+00	1.00E+00	2.03E-03	1.67E-08	1.27E+05	1.01E+02	1.06E-01	1	1.00		
7.66E-06	1.01E+02	0.00E+00	2.60E-02	0.00E+00	1.08E+00	1.00E+00	2.15E-03	1.77E-08	1.27E+05	1.01E+02	1.09E-01	1	1.00		
7.65E-06	1.01E+02	0.00E+00	2.60E-02	0.00E+00	1.08E+00	1.00E+00	2.29E-03	1.88E-08	1.27E+05	1.01E+02	1.13E-01	1	1.00		
7.65E-06	1.01E+02	0.00E+00	2.60E-02	0.00E+00	1.08E+00	1.00E+00	2.42E-03	1.99E-08	1.27E+05	1.01E+02	1.16E-01	1	1.00		
7.64E-06	1.01E+02	0.00E+00	2.61E-02	0.00E+00	1.08E+00	1.00E+00	2.57E-03	2.11E-08	1.28E+05	1.01E+02	1.19E-01	1	1.00	0	100
7.63E-06	1.01E+02	0.00E+00	2.61E-02	0.00E+00	1.08E+00	1.00E+00	2.73E-03	2.24E-08	1.28E+05	1.01E+02	1.23E-01	1	1.00		
2.78E-09	3.43E+03	0.00E+00	8.88E-01	0.00E+00	3.80E+00	1.00E+00	1.44E+02	1.52E-06	1.48E+08	3.43E+03	3.43E+01	1	1.00		
2.63E-09	3.50E+03	0.00E+00	9.05E-01	0.00E+00	3.86E+00	1.00E+00	1.49E+02	1.51E-06	1.54E+08	3.50E+03	3.50E+01	1	1.00		
2.48E-09	3.57E+03	0.00E+00	9.23E-01	0.00E+00	3.92E+00	1.00E+00	1.55E+02	1.51E-06	1.60E+08	3.57E+03	3.57E+01	1	1.00		
2.34E-09	3.64E+03	0.00E+00	9.42E-01	0.00E+00	3.99E+00	1.00E+00	1.62E+02	1.51E-06	1.67E+08	3.64E+03	3.64E+01	1	1.00		
2.21E-09	3.71E+03	0.00E+00	9.61E-01	0.00E+00	4.05E+00	1.00E+00	1.68E+02	1.50E-06	1.73E+08	3.71E+03	3.71E+01	1	1.00		
2.08E-09	3.79E+03	0.00E+00	9.80E-01	0.00E+00	4.12E+00	1.00E+00	1.75E+02	1.50E-06	1.80E+08	3.79E+03	3.79E+01	1	1.00		
5.51E-23	9.94E+04	0.00E+00	2.57E+01	0.00E+00	3.88E+02	1.00E+00	1.21E+05	2.58E-15	1.24E+11	9.94E+04	9.94E+02	1	1.00		
3.17E-23	1.01E+05	0.00E+00	2.62E+01	0.00E+00	4.05E+02	1.00E+00	1.25E+05	1.61E-15	1.29E+11	1.01E+05	1.01E+03	1	1.00		
1.80E-23	1.03E+05	0.00E+00	2.67E+01	0.00E+00	4.22E+02	1.00E+00	1.30E+05	9.93E-16	1.34E+11	1.03E+05	1.03E+03	1	1.00		
							$\sum F_{AM}$ -ref =	3.08E-04							
L						1			1						

Table 2.33 Calculation of F_{AM} for C-14 in a Reference Area Source without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1	Yield 1	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0 220	Effective Mass Attenuation Coefficient (source) (/cm) 2 59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2 59E-04	Mass Attenuation Coefficient (soil) (/cm)	Mass Attenuation Coefficient (concrete) (/cm)	Mass Attenuation Coefficient (air) (/cm) 2 59F-04	μ	$=(t_a\mu_a+t_c,t_a+t$	$\frac{\mu_c + t\mu_s)}{t_c + t}$			
-	0.015	0.002 01	0.1	0.220	2.052 01	2.052 01	5.022 01	5.552 01	2.002 01						
ta (cm) =	= 100		tc (cm) =	0		Source	e area (m2) =	4	Source-ref	area (m2) =	3.36E+06				
exp(-ux)/x2	- mfp-dist. in	- mfp-dist. in-	dist. in -source	dist. in- source-	BE-source-air	BF-source-	Vol-source	E source	4π x dist- source^2	distance- source	r - source	ta + tc	ta (m)	Receptor location y	Receptor
7 755-06	2 50E-02	0.005+00	1 00E±02		1 08F±00	1 005+00			1 265+05	1 00F±02	0.005+00	1	1.00	(em)	(em)
7.67F-06	2.60F-02	0.00E+00	1.00E+02	0.00E+00	1.08E+00	1.00E+00	3.14F-02	2.59F-07	1.27E+05	1.00E+02	1.00E-01	1	1.00		
7.67E-06	2.60E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	1.91E-03	1.58E-08	1.27E+05	1.01E+02	1.03E-01	1	1.00		
7.66E-06	2.60E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.03E-03	1.67E-08	1.27E+05	1.01E+02	1.06E-01	1	1.00		
7.66E-06	2.60E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.15E-03	1.77E-08	1.27E+05	1.01E+02	1.09E-01	1	1.00		
7.65E-06	2.60E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.29E-03	1.88E-08	1.27E+05	1.01E+02	1.13E-01	1	1.00		
7.65E-06	2.60E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.42E-03	1.99E-08	1.27E+05	1.01E+02	1.16E-01	1	1.00		
7.64E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.57E-03	2.11E-08	1.28E+05	1.01E+02	1.19E-01	1	1.00		
7.63E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.73E-03	2.24E-08	1.28E+05	1.01E+02	1.23E-01	1	1.00		
7.63E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	2.90E-03	2.38E-08	1.28E+05	1.01E+02	1.27E-01	1	1.00		
7.62E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	3.07E-03	2.52E-08	1.28E+05	1.01E+02	1.30E-01	1	1.00		
7.61E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	3.26E-03	2.67E-08	1.28E+05	1.01E+02	1.34E-01	1	1.00		
7.60E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	3.46E-03	2.83E-08	1.28E+05	1.01E+02	1.38E-01	1	1.00		
7.59E-06	2.61E-02	0.00E+00	1.01E+02	0.00E+00	1.08E+00	1.00E+00	3.67E-03	3.00E-08	1.28E+05	1.01E+02	1.43E-01	1	1.00	0	100
3.82E-06	3.66E-02	0.00E+00	1.42E+02	0.00E+00	1.11E+00	1.00E+00	1.81E-01	7.68E-07	2.52E+05	1.42E+02	1.00E+00	1	1.00		
3.71E-06	3.72E-02	0.00E+00	1.44E+02	0.00E+00	1.11E+00	1.00E+00	1.93E-01	7.91E-07	2.60E+05	1.44E+02	1.03E+00	1	1.00		
3.59E-06	3.78E-02	0.00E+00	1.46E+02	0.00E+00	1.11E+00	1.00E+00	2.04E-01	8.14E-07	2.68E+05	1.46E+02	1.06E+00	1	1.00		
3.48E-06	3.84E-02	0.00E+00	1.48E+02	0.00E+00	1.11E+00	1.00E+00	2.17E-01	8.38E-07	2.77E+05	1.48E+02	1.10E+00	1	1.00		
3.36E-06	3.90E-02	0.00E+00	1.51E+02	0.00E+00	1.11E+00	1.00E+00	2.30E-01	8.61E-07	2.86E+05	1.51E+02	1.13E+00	1	1.00		
						Σ	F _{AM} -source =	2.15E-05							
							F _{AM} =	7.00E-02							

Table 2.34 Calculation of F_{AM} for C-14 in an Area Source of 4 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.220	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04	Mass Attenuation Coefficient (soil) (/cm) 3.62E-01	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ	$=\frac{(t_a\mu_a+t_c\mu_a)}{(t_a+t_c\mu_a)}$	$(t_c + t\mu_s)$ $(t_c + t)$			
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	10	Source-ref a	area (m2) =	3.36E+06				
exp(-			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
ux)/x2 -	mfp-dist. in	- mfp-dist. in-	source-air	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
3.25E-06	3.97E-02	0.00E+00	1.53E+02	0.00E+00	1.12E+00	1.00E+00	2.44E-01	8.84E-07	2.96E+05	1.53E+02	1.16E+00	1	1.00		
3.14E-06	4.04E-02	0.00E+00	1.56E+02	0.00E+00	1.12E+00	1.00E+00	2.59E-01	9.07E-07	3.06E+05	1.56E+02	1.20E+00	1	1.00		
3.03E-06	4.11E-02	0.00E+00	1.59E+02	0.00E+00	1.12E+00	1.00E+00	2.75E-01	9.30E-07	3.17E+05	1.59E+02	1.23E+00	1	1.00		
2.92E-06	4.18E-02	0.00E+00	1.62E+02	0.00E+00	1.12E+00	1.00E+00	2.91E-01	9.53E-07	3.29E+05	1.62E+02	1.27E+00	1	1.00		
2.81E-06	4.26E-02	0.00E+00	1.65E+02	0.00E+00	1.12E+00	1.00E+00	3.09E-01	9.76E-07	3.41E+05	1.65E+02	1.31E+00	1	1.00		
2.70E-06	4.34E-02	0.00E+00	1.68E+02	0.00E+00	1.13E+00	1.00E+00	3.28E-01	9.98E-07	3.54E+05	1.68E+02	1.35E+00	1	1.00		
2.60E-06	4.43E-02	0.00E+00	1.71E+02	0.00E+00	1.13E+00	1.00E+00	3.48E-01	1.02E-06	3.68E+05	1.71E+02	1.39E+00	1	1.00		
2.50E-06	4.51E-02	0.00E+00	1.75E+02	0.00E+00	1.13E+00	1.00E+00	3.69E-01	1.04E-06	3.83E+05	1.75E+02	1.43E+00	1	1.00		
2.40E-06	4.61E-02	0.00E+00	1.78E+02	0.00E+00	1.13E+00	1.00E+00	3.91E-01	1.06E-06	3.98E+05	1.78E+02	1.47E+00	1	1.00	0	100
2.30E-06	4.70E-02	0.00E+00	1.82E+02	0.00E+00	1.14E+00	1.00E+00	4.15E-01	1.08E-06	4.15E+05	1.82E+02	1.52E+00	1	1.00		
2.20E-06	4.80E-02	0.00E+00	1.86E+02	0.00E+00	1.14E+00	1.00E+00	4.41E-01	1.11E-06	4.33E+05	1.86E+02	1.56E+00	1	1.00		
2.11E-06	4.90E-02	0.00E+00	1.89E+02	0.00E+00	1.14E+00	1.00E+00	4.67E-01	1.13E-06	4.51E+05	1.89E+02	1.61E+00	1	1.00		
2.02E-06	5.01E-02	0.00E+00	1.94E+02	0.00E+00	1.15E+00	1.00E+00	4.96E-01	1.15E-06	4.71E+05	1.94E+02	1.66E+00	1	1.00		
1.93E-06	5.12E-02	0.00E+00	1.98E+02	0.00E+00	1.15E+00	1.00E+00	5.26E-01	1.17E-06	4.92E+05	1.98E+02	1.71E+00	1	1.00		
1.84E-06	5.23E-02	0.00E+00	2.02E+02	0.00E+00	1.15E+00	1.00E+00	5.58E-01	1.19E-06	5.15E+05	2.02E+02	1.76E+00	1	1.00		
1.79E-06	5.31E-02	0.00E+00	2.05E+02	0.00E+00	1.15E+00	1.00E+00	3.93E-01	8.11E-07	5.30E+05	2.05E+02	1.79E+00	1	1.00		
						Σ	F _{AM} -source =	3.79E-05							
							F _{AM} =	1.23E-01							

Table 2.35 Calculation of F_{AM} for C-14 in an Area Source of 10 m² without Cover at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass							
				Dose	Attenuation	mass	Mass	Attenuation	Mass		$(t_a \mu_a + t_a)$	$u_{c} + t\mu_{c}$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	μ	$=\frac{(u + u)}{(t + t)}$	(+t)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient		(ra r r	c · · ·)			
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.049	8.65E-04	0.1	0.220	2.59E-04	2.59E-04	3.62E-01	9.99E-01	2.59E-04						
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	36	Source-ref	area (m2) =	3.36E+06				
exp(-			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
ux)/x2 -	mfp-dist. in	- mfp-dist. in-	source-air	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.68E-06	5.48E-02	0.00E+00	2.12E+02	0.00E+00	1.16E+00	1.00E+00	4.25E-01	8.28E-07	5.64E+05	2.12E+02	1.87E+00	1	1.00		
1.63E-06	5.56E-02	0.00E+00	2.15E+02	0.00E+00	1.16E+00	1.00E+00	4.42E-01	8.36E-07	5.81E+05	2.15E+02	1.90E+00	1	1.00		
1.58E-06	5.65E-02	0.00E+00	2.18E+02	0.00E+00	1.16E+00	1.00E+00	4.60E-01	8.44E-07	6.00E+05	2.18E+02	1.94E+00	1	1.00		
1.53E-06	5.74E-02	0.00E+00	2.22E+02	0.00E+00	1.17E+00	1.00E+00	4.79E-01	8.52E-07	6.19E+05	2.22E+02	1.98E+00	1	1.00		
1.48E-06	5.83E-02	0.00E+00	2.25E+02	0.00E+00	1.17E+00	1.00E+00	4.98E-01	8.60E-07	6.39E+05	2.25E+02	2.02E+00	1	1.00		
1.43E-06	5.93E-02	0.00E+00	2.29E+02	0.00E+00	1.17E+00	1.00E+00	5.18E-01	8.68E-07	6.60E+05	2.29E+02	2.06E+00	1	1.00		
1.38E-06	6.02E-02	0.00E+00	2.33E+02	0.00E+00	1.17E+00	1.00E+00	5.39E-01	8.76E-07	6.81E+05	2.33E+02	2.10E+00	1	1.00		
1.34E-06	6.12E-02	0.00E+00	2.37E+02	0.00E+00	1.18E+00	1.00E+00	5.61E-01	8.83E-07	7.04E+05	2.37E+02	2.14E+00	1	1.00		
1.29E-06	6.22E-02	0.00E+00	2.40E+02	0.00E+00	1.18E+00	1.00E+00	5.84E-01	8.91E-07	7.27E+05	2.40E+02	2.19E+00	1	1.00		
1.25E-06	6.32E-02	0.00E+00	2.44E+02	0.00E+00	1.18E+00	1.00E+00	6.07E-01	8.98E-07	7.51E+05	2.44E+02	2.23E+00	1	1.00	0	100
1.21E-06	6.43E-02	0.00E+00	2.49E+02	0.00E+00	1.19E+00	1.00E+00	6.32E-01	9.05E-07	7.76E+05	2.49E+02	2.28E+00	1	1.00		
1.17E-06	6.54E-02	0.00E+00	2.53E+02	0.00E+00	1.19E+00	1.00E+00	6.57E-01	9.13E-07	8.03E+05	2.53E+02	2.32E+00	1	1.00		
7.60E-07	8.04E-02	0.00E+00	3.11E+02	0.00E+00	1.23E+00	1.00E+00	1.06E+00	9.91E-07	1.21E+06	3.11E+02	2.94E+00	1	1.00		
7.32E-07	8.19E-02	0.00E+00	3.16E+02	0.00E+00	1.24E+00	1.00E+00	1.10E+00	9.97E-07	1.26E+06	3.16E+02	3.00E+00	1	1.00		
7.05E-07	8.33E-02	0.00E+00	3.22E+02	0.00E+00	1.24E+00	1.00E+00	1.14E+00	1.00E-06	1.30E+06	3.22E+02	3.06E+00	1	1.00		
6.79E-07	8.48E-02	0.00E+00	3.28E+02	0.00E+00	1.25E+00	1.00E+00	1.19E+00	1.01E-06	1.35E+06	3.28E+02	3.12E+00	1	1.00		
6.54E-07	8.64E-02	0.00E+00	3.34E+02	0.00E+00	1.25E+00	1.00E+00	1.24E+00	1.01E-06	1.40E+06	3.34E+02	3.19E+00	1	1.00		
6.30E-07	8.80E-02	0.00E+00	3.40E+02	0.00E+00	1.26E+00	1.00E+00	1.29E+00	1.02E-06	1.45E+06	3.40E+02	3.25E+00	1	1.00		
6.07E-07	8.96E-02	0.00E+00	3.46E+02	0.00E+00	1.26E+00	1.00E+00	1.34E+00	1.03E-06	1.51E+06	3.46E+02	3.31E+00	1	1.00		
						Σ	F _{AM} -source =	6.78E-05							
							F _{AM} =	2.20E-01							

Table 2.36 Calculation of F_{AM} for C-14 in an Area Source of 36 m² without Cover at the Receptor Location (0, 0, 1) (m)

				Character to	E ((((((((((
				Fluence to	Effective	Fff = +1 +									
				Effective	iviass	Effective		iviass			<i>(</i>				
				Dose	Attenuation	mass	Mass	Attenuation	Iviass	<i>u</i> =	$\frac{(t_a \mu_a + t_c \mu)}{(t_a \mu_a + t_c \mu)}$	$(c_c + t\mu_s)$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	· · ·	$(t_a + t_c)$	+t)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)	_					
1	0.049	8.65E-04	0.1	0.220	2.59E-04	2.59E-04	3.62E-01	9.99E-01	2.59E-04						
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	100	Source-ref	area (m2) =	3.36E+06				
															-
			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	- mfp-dist. in-	source-air	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
5.62E-07	9.29E-02	0.00E+00	3.59E+02	0.00E+00	1.27E+00	1.00E+00	1.45E+00	1.04E-06	1.62E+06	3.59E+02	3.45E+00	1	1.00		
5.41E-07	9.46E-02	0.00E+00	3.66E+02	0.00E+00	1.27E+00	1.00E+00	1.51E+00	1.04E-06	1.68E+06	3.66E+02	3.52E+00	1	1.00		
5.21E-07	9.64E-02	0.00E+00	3.72E+02	0.00E+00	1.28E+00	1.00E+00	1.57E+00	1.05E-06	1.74E+06	3.72E+02	3.59E+00	1	1.00		
5.01E-07	9.81E-02	0.00E+00	3.79E+02	0.00E+00	1.29E+00	1.00E+00	1.63E+00	1.05E-06	1.81E+06	3.79E+02	3.66E+00	1	1.00		
4.82E-07	1.00E-01	0.00E+00	3.86E+02	0.00E+00	1.29E+00	1.00E+00	1.70E+00	1.06E-06	1.88E+06	3.86E+02	3.73E+00	1	1.00		
4.64E-07	1.02E-01	0.00E+00	3.94E+02	0.00E+00	1.30E+00	1.00E+00	1.77E+00	1.06E-06	1.95E+06	3.94E+02	3.81E+00	1	1.00		
4.46E-07	1.04E-01	0.00E+00	4.01E+02	0.00E+00	1.30E+00	1.00E+00	1.84E+00	1.07E-06	2.02E+06	4.01E+02	3.88E+00	1	1.00		
4.29E-07	1.06E-01	0.00E+00	4.09E+02	0.00E+00	1.31E+00	1.00E+00	1.91E+00	1.07E-06	2.10E+06	4.09E+02	3.96E+00	1	1.00		
4.12E-07	1.08E-01	0.00E+00	4.16E+02	0.00E+00	1.31E+00	1.00E+00	1.99E+00	1.08E-06	2.18E+06	4.16E+02	4.04E+00	1	1.00		
3.96E-07	1.10E-01	0.00E+00	4.24E+02	0.00E+00	1.32E+00	1.00E+00	2.07E+00	1.08E-06	2.26E+06	4.24E+02	4.12E+00	1	1.00		
3.81E-07	1.12E-01	0.00E+00	4.32E+02	0.00E+00	1.32E+00	1.00E+00	2.16E+00	1.09E-06	2.35E+06	4.32E+02	4.20E+00	1	1.00		
3.66E-07	1.14E-01	0.00E+00	4.40E+02	0.00E+00	1.33E+00	1.00E+00	2.24E+00	1.09E-06	2.44E+06	4.40E+02	4.29E+00	1	1.00		
3.52E-07	1.16E-01	0.00E+00	4.49E+02	0.00E+00	1.34E+00	1.00E+00	2.33E+00	1.10E-06	2.53E+06	4.49E+02	4.37E+00	1	1.00	0	100
3.38E-07	1.18E-01	0.00E+00	4.57E+02	0.00E+00	1.34E+00	1.00E+00	2.43E+00	1.10E-06	2.63E+06	4.57E+02	4.46E+00	1	1.00		
3.25E-07	1.21E-01	0.00E+00	4.66E+02	0.00E+00	1.35E+00	1.00E+00	2.53E+00	1.11E-06	2.73E+06	4.66E+02	4.55E+00	1	1.00		
3.12E-07	1.23E-01	0.00E+00	4.75E+02	0.00E+00	1.36E+00	1.00E+00	2.63E+00	1.11E-06	2.83E+06	4.75E+02	4.64E+00	1	1.00		
3.00E-07	1.25E-01	0.00E+00	4.84E+02	0.00E+00	1.36E+00	1.00E+00	2.73E+00	1.12E-06	2.94E+06	4.84E+02	4.73E+00	1	1.00		
2.88E-07	1.28E-01	0.00E+00	4.93E+02	0.00E+00	1.37E+00	1.00E+00	2.85E+00	1.12E-06	3.06E+06	4.93E+02	4.83E+00	1	1.00		
2.77E-07	1.30E-01	0.00E+00	5.03E+02	0.00E+00	1.38E+00	1.00E+00	2.96E+00	1.13E-06	3.18E+06	5.03E+02	4.93E+00	1	1.00		
2.66E-07	1.33E-01	0.00E+00	5.12E+02	0.00E+00	1.38E+00	1.00E+00	3.08E+00	1.13E-06	3.30E+06	5.12E+02	5.02E+00	1	1.00		
2.55E-07	1.35E-01	0.00E+00	5.22E+02	0.00E+00	1.39E+00	1.00E+00	3.20E+00	1.14E-06	3.43E+06	5.22E+02	5.12E+00	1	1.00		
2.45E-07	1.38E-01	0.00E+00	5.32E+02	0.00E+00	1.40E+00	1.00E+00	3.33E+00	1.14E-06	3.56E+06	5.32E+02	5.23E+00	1	1.00		
2.35E-07	1.40E-01	0.00E+00	5.42E+02	0.00E+00	1.41E+00	1.00E+00	3.47E+00	1.15E-06	3.70E+06	5.42E+02	5.33E+00	1	1.00		1
2.26E-07	1.43E-01	0.00E+00	5.53E+02	0.00E+00	1.42E+00	1.00E+00	3.61E+00	1.15E-06	3.84E+06	5.53E+02	5.44E+00	1	1.00		1
2.16E-07	1.46E-01	0.00E+00	5.64E+02	0.00E+00	1.42E+00	1.00E+00	3.75E+00	1.16E-06	3.99E+06	5.64E+02	5.55E+00	1	1.00		
2.08E-07	1.49F-01	0.00F+00	5.75F+02	0.00F+00	1.43F+00	1.00F+00	3.91F+00	1.16E-06	4.15E+06	5.75F+02	5.66F+00	1	1.00		
	1	0.002.00	552.02	0.002.00	21.02.00	7	Eursource -	9 64E-05		5.752.02	2.002.00	-	2.00		-
						2		2.125.04							
							FAM =	3.13E-01							

Table 2.37 Calculation of F_{AM} for C-14 in an Area Source of 100 m² without Cover at the Receptor Location of (0, 0, 1) (m)

# photons	Energy 1	Yield 1	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv-cm2)	Effective Mass Attenuation Coefficient (source) (/cm)	Effective mass Attenuation Coefficient (ref) (/cm)	Mass Attenuation Coefficient (soil) (/cm)	Mass Attenuation Coefficient (concrete) (/cm)	Mass Attenuation Coefficient (air) (/cm)	μ=	$=\frac{(t_a\mu_a+t_c\mu_a)}{(t_a+t_c)}$	$\left(\frac{t_c + t\mu_s}{t_c + t}\right) + t$			
	01015	0.002.01	0.12	0.220	21052 01	21052 01	01022 01	51552 01	21052 01						
ta <mark>(</mark> cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	1000	Source-ref	area (m2) =	3.36E+06				
			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	mfp-dist. in-	source-air	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.99E-07	1.52E-01	0.00E+00	5.86E+02	0.00E+00	1.44E+00	1.00E+00	4.06E+00	1.17E-06	4.31E+06	5.86E+02	5.77E+00	1	1.00		
1.91E-07	1.54E-01	0.00E+00	5.97E+02	0.00E+00	1.45E+00	1.00E+00	4.23E+00	1.17E-06	4.48E+06	5.97E+02	5.89E+00	1	1.00		
1.83E-07	1.57E-01	0.00E+00	6.09E+02	0.00E+00	1.46E+00	1.00E+00	4.40E+00	1.18E-06	4.66E+06	6.09E+02	6.00E+00	1	1.00		
1.76E-07	1.61E-01	0.00E+00	6.20E+02	0.00E+00	1.47E+00	1.00E+00	4.58E+00	1.18E-06	4.84E+06	6.20E+02	6.12E+00	1	1.00		
1.69E-07	1.64E-01	0.00E+00	6.33E+02	0.00E+00	1.48E+00	1.00E+00	4.76E+00	1.19E-06	5.03E+06	6.33E+02	6.25E+00	1	1.00		
1.62E-07	1.67E-01	0.00E+00	6.45E+02	0.00E+00	1.48E+00	1.00E+00	4.95E+00	1.19E-06	5.23E+06	6.45E+02	6.37E+00	1	1.00		
1.55E-07	1.70E-01	0.00E+00	6.58E+02	0.00E+00	1.49E+00	1.00E+00	5.15E+00	1.20E-06	5.43E+06	6.58E+02	6.50E+00	1	1.00		
1.49E-07	1.73E-01	0.00E+00	6.70E+02	0.00E+00	1.50E+00	1.00E+00	5.36E+00	1.20E-06	5.65E+06	6.70E+02	6.63E+00	1	1.00		
1.43E-07	1.77E-01	0.00E+00	6.83E+02	0.00E+00	1.51E+00	1.00E+00	5.58E+00	1.20E-06	5.87E+06	6.83E+02	6.76E+00	1	1.00	0	100
1.37E-07	1.80E-01	0.00E+00	6.97E+02	0.00E+00	1.52E+00	1.00E+00	5.80E+00	1.21E-06	6.10E+06	6.97E+02	6.90E+00	1	1.00		
1.31E-07	1.84E-01	0.00E+00	7.11E+02	0.00E+00	1.53E+00	1.00E+00	6.04E+00	1.21E-06	6.35E+06	7.11E+02	7.03E+00	1	1.00		
2.00E-08	4.19E-01	0.00E+00	1.62E+03	0.00E+00	2.22E+00	1.00E+00	3.19E+01	1.41E-06	3.30E+07	1.62E+03	1.62E+01	1	1.00		
1.90E-08	4.27E-01	0.00E+00	1.65E+03	0.00E+00	2.24E+00	1.00E+00	3.32E+01	1.41E-06	3.43E+07	1.65E+03	1.65E+01	1	1.00		
1.81E-08	4.36E-01	0.00E+00	1.68E+03	0.00E+00	2.27E+00	1.00E+00	3.45E+01	1.42E-06	3.57E+07	1.68E+03	1.68E+01	1	1.00		
1.73E-08	4.44E-01	0.00E+00	1.72E+03	0.00E+00	2.29E+00	1.00E+00	3.59E+01	1.42E-06	3.71E+07	1.72E+03	1.71E+01	1	1.00		
1.65E-08	4.53E-01	0.00E+00	1.75E+03	0.00E+00	2.32E+00	1.00E+00	3.73E+01	1.42E-06	3.86E+07	1.75E+03	1.75E+01	1	1.00		
1.57E-08	4.62E-01	0.00E+00	1.79E+03	0.00E+00	2.34E+00	1.00E+00	3.88E+01	1.43E-06	4.01E+07	1.79E+03	1.78E+01	1	1.00		
						Σ	F _{AM} -source =	1.72E-04							
							F _{AM} =	5.59E-01							

Table 2.38 Calculation of F_{AM} for C-14 in an Area Source of 1,000 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.220	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04	Mass Attenuation Coefficient (soil) (/cm) 3.62E-01	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ	$=\frac{(t_a\mu_a+t_c)}{(t_a+t_a)}$	$(\mu_c + t\mu_s)$ $(\mu_c + t)$			
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	10000	Source-ref	area (m2) =	3.36E+06				
()			()				,								
			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	mfp-dist. in-	source-air	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.49E-08	4.72E-01	0.00E+00	1.82E+03	0.00E+00	2.37E+00	1.00E+00	4.04E+01	1.43E-06	4.18E+07	1.82E+03	1.82E+01	1	1.00		
1.42E-08	4.81E-01	0.00E+00	1.86E+03	0.00E+00	2.40E+00	1.00E+00	4.21E+01	1.43E-06	4.34E+07	1.86E+03	1.86E+01	1	1.00		
1.35E-08	4.90E-01	0.00E+00	1.90E+03	0.00E+00	2.42E+00	1.00E+00	4.37E+01	1.44E-06	4.52E+07	1.90E+03	1.89E+01	1	1.00		
1.29E-08	5.00E-01	0.00E+00	1.93E+03	0.00E+00	2.45E+00	1.00E+00	4.55E+01	1.44E-06	4.70E+07	1.93E+03	1.93E+01	1	1.00		
1.23E-08	5.10E-01	0.00E+00	1.97E+03	0.00E+00	2.49E+00	1.00E+00	4.74E+01	1.45E-06	4.89E+07	1.97E+03	1.97E+01	1	1.00		
1.17E-08	5.20E-01	0.00E+00	2.01E+03	0.00E+00	2.52E+00	1.00E+00	4.93E+01	1.45E-06	5.09E+07	2.01E+03	2.01E+01	1	1.00		
1.11E-08	5.31E-01	0.00E+00	2.05E+03	0.00E+00	2.56E+00	1.00E+00	5.13E+01	1.46E-06	5.29E+07	2.05E+03	2.05E+01	1	1.00		
1.06E-08	5.41E-01	0.00E+00	2.09E+03	0.00E+00	2.60E+00	1.00E+00	5.33E+01	1.46E-06	5.51E+07	2.09E+03	2.09E+01	1	1.00		
1.01E-08	5.52E-01	0.00E+00	2.13E+03	0.00E+00	2.63E+00	1.00E+00	5.55E+01	1.47E-06	5.73E+07	2.13E+03	2.13E+01	1	1.00		
9.55E-09	5.63E-01	0.00E+00	2.18E+03	0.00E+00	2.67E+00	1.00E+00	5.77E+01	1.47E-06	5.96E+07	2.18E+03	2.17E+01	1	1.00		
9.08E-09	5.74E-01	0.00E+00	2.22E+03	0.00E+00	2.71E+00	1.00E+00	6.01E+01	1.48E-06	6.20E+07	2.22E+03	2.22E+01	1	1.00	0	100
8.63E-09	5.86E-01	0.00E+00	2.26E+03	0.00E+00	2.75E+00	1.00E+00	6.25E+01	1.48E-06	6.45E+07	2.26E+03	2.26E+01	1	1.00		
8.20E-09	5.98E-01	0.00E+00	2.31E+03	0.00E+00	2.79E+00	1.00E+00	6.50E+01	1.49E-06	6.71E+07	2.31E+03	2.31E+01	1	1.00		
8.19E-10	1.32E+00	0.00E+00	5.10E+03	0.00E+00	5.54E+00	1.00E+00	3.17E+02	1.44E-06	3.27E+08	5.10E+03	5.10E+01	1	1.00		
7.67E-10	1.34E+00	0.00E+00	5.20E+03	0.00E+00	5.65E+00	1.00E+00	3.30E+02	1.43E-06	3.40E+08	5.20E+03	5.20E+01	1	1.00		
7.17E-10	1.37E+00	0.00E+00	5.30E+03	0.00E+00	5.77E+00	1.00E+00	3.43E+02	1.42E-06	3.54E+08	5.30E+03	5.30E+01	1	1.00		
6.71E-10	1.40E+00	0.00E+00	5.41E+03	0.00E+00	5.88E+00	1.00E+00	3.57E+02	1.41E-06	3.68E+08	5.41E+03	5.41E+01	1	1.00		
6.27E-10	1.43E+00	0.00E+00	5.52E+03	0.00E+00	6.00E+00	1.00E+00	3.71E+02	1.40E-06	3.83E+08	5.52E+03	5.52E+01	1	1.00		
5.86E-10	1.46E+00	0.00E+00	5.63E+03	0.00E+00	6.12E+00	1.00E+00	3.86E+02	1.39E-06	3.98E+08	5.63E+03	5.63E+01	1	1.00		
						Σ	F _{AM} -source =	2.58E-04							
							F _{AM} =	8.38E-01							

Table 2.39 Calculation of F_{AM} for C-14 in an Area Source of 10,000 m² without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.40 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Area Sources without Cover

DCF-inf		Average				Estimated
(mrem/yr		Decay Factor		Area of		Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
				10,000	8.38E-01	1.58E-09
				1,000	5.59E-01	1.05E-09
1 255 05	5 725+02	1.005+00	1 405 04	100	3.13E-01	5.90E-10
1.55E-05	J./JE+05	1.002+00	1.402-04	36	2.20E-01	4.15E-10
				10	1.23E-01	2.32E-10
				4	7.00E-02	1.32E-10

Table 2.41 Estimation of External Radiation Dose at the Receptor Location (0, 0, 0.3) (m) from C-14 in Six Area Sources without Cover

DCF-inf		Average				Estimated
(mrem/yr		Decay Factor		Area of		Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
				10,000	1.03E+00	1.94E-09
				1,000	7.54E-01	1.42E-09
1 255 05	5 725+02	1.005+00	1 405 04	100	5.06E-01	9.52E-10
1.55E-05	J./JE+05	1.002+00	1.402-04	36	4.09E-01	7.69E-10
				10	2.98E-01	5.61E-10
				4	2.23E-01	4.20E-10

Table 2.42 Estimation of External Radiation Dose at the Receptor Location (0, 0, 4) (m) from C-14 in Six Area Sources without Cover

DCF-inf		Average			, I	Estimated
(mrem/yr		Decay Factor		Area of	, I	Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
				10,000	5.97E-01	1.12E-09
				1,000	3.22E-01	6.06E-10
1 255 05	E 72E 102	1.005+00	1 405 04	100	1.08E-01	2.03E-10
1.55E-05	5.75E+05	1.00E+00	1.40E-04	36	5.21E-02	9.80E-11
				10	1.75E-02	3.30E-11
				4	7.31E-03	1.38E-11

Comparison of the dose results for C-14 between the spreadsheets and RESRAD-BUILD are presented in Table 2.43. Because of the limited number of annuli used in the spreadsheets to approximate the area of the circular sources, it is expected that the estimations of external radiation doses are not as precise by spreadsheets as by the RESRAD-BUILD code. In general, the differences are less than 3%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Results for Mn-54. Radiation dose at the receptor location (0, 0, 1) (m) from each area source considered was estimated first. Table 2.44 shows the calculation of F_{CD} , the cover and depth factor, for Mn-54. Table 2.45 shows the estimation of F_{AM-ref} for the reference area source, which is made of soil having an infinite extent. In the estimation, an area of about 3,000,000 m² was used for the reference source. Tables 2.46 to 2.51 show the estimation of F_{AM} 's for the six circular area sources considered in this comparison. After F_{CD} and F_{AM} 's were available, external radiation doses resulting from Mn-54 in each of the six circular area sources were estimated by adjusting the external radiation dose conversion factor for an infinite volume source from FGR 12, as shown in Table 2.52.

Radiation doses at the receptor location (0, 0, 0.3) (m) were estimated with the same procedure used for estimating the doses at the receptor location (0, 0, 1) (m). Because the source thickness (assumed to be 0.001 cm) and cover thickness (0 cm) did not change, the value of F_{CD} stayed the same, as shown in Table 2.44. The values of F_{AM} for each of the six circular area sources were estimated as the sum of the F_{AM} 's for individual annuli that constitute the area source. Because the design of tables used for estimating F_{AM} 's were the same as that of Tables 2.46 to 2.51, these estimation tables are not presented here; only the final values of F_{AM} for each area source are presented, in Table 2.53, which shows the calculation of radiation doses at the receptor location. Table 2.54 shows the calculation of radiation doses at the receptor location (0, 0, 4) (m).

Comparison of the dose results for Mn-54 between the spreadsheets and RESRAD-BUILD are presented in Table 2.55. Because of the limited number of annuli used in the spreadsheets to approximate the area of the circular sources, it is expected that the estimation of external radiation doses is not as precise by spreadsheets as by the RESRAD-BUILD code. In general, the largest differences are about 3%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Results for Tc-99. Radiation dose at the receptor location (0, 0, 1) (m) from each area source considered was estimated first. Table 2.56 shows the calculation of F_{CD} , the cover and depth factor, for Tc-99. Table 2.57 shows the estimation of F_{AM-ref} for the reference area source, which is made of soil having an infinite extent. In the estimation, an area of about 3,000,000 m² was used for the reference source. Tables 2.58 to 2.63 show the estimation of F_{AM} 's for the six circular area sources considered in this comparison. After F_{CD} and F_{AM} 's were available, external radiation doses resulting from Tc-99 in each of the six circular area sources were estimated by adjusting the external radiation dose conversion factor for an infinite volume source from FGR 12, as shown in Table 2.64.

	Recept	or Location (0,	0, 1) (m)	Recepto	or Location (0, 0	, 0.3) (m)	Recept	or Location (0, 0), 4) (m)
				Dose					
	Dose Results		Ratio -	Results		Ratio -	Dose Results		Ratio -
	from	Dose Results	RESRAD-	from	Dose Results	RESRAD-	from	Dose Results	RESRAD-
Area of	RESRAD-	from	BUILD/	RESRAD-	from	BUILD/	RESRAD-	from	BUILD/
Source (m ²)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets
10,000	1.58E-09	1.58E-09	1.00	1.96E-09	1.94E-09	1.01	1.13E-09	1.12E-09	1.01
1,000	1.04E-09	1.05E-09	0.99	1.42E-09	1.42E-09	1.00	6.00E-10	6.06E-10	0.99
100	5.83E-10	5.90E-10	0.99	9.52E-10	9.52E-10	1.00	1.98E-10	2.03E-10	0.97
36	4.11E-10	4.15E-10	0.99	7.72E-10	7.69E-10	1.00	9.56E-11	9.80E-11	0.98
10	2.29E-10	2.32E-10	0.99	5.62E-10	5.61E-10	1.00	3.17E-11	3.30E-11	0.96
4	1.30E-10	1.32E-10	0.99	4.22E-10	4.20E-10	1.01	1.34E-11	1.38E-11	0.97

Table 2.43 Comparison of Radiation Dose (mrem/yr) Estimated by RESRAD-BUILD and Spreadsheets from C-14 in Six Area Sources without Cover

Table 2.44 Calculation of F_{CD} for Mn-54 in an Area Source without Cover

Fitting parameters Ai, B	i, Kai (cm2/g), Kbi (cm	2/g)	0.085	0.915	1.22	0.088				
Reference source -	Cover material =	none	Cover thic	kness, cm =		0	Density of	cover, g/cr	n3 =	1.6
	Source density , g/cm	13 =	1.6	Source this	ckness, cm	=	0.001			
Surface activity conver	sion factor, (pCi/g)/(p0	Ci/m2)	0.0625							
	-t Tt)						L			
$F_{CD} = \frac{D(T_{CD})}{D(T_{CD})}$	$\frac{e^{-\kappa_c,T_S=\varepsilon_s}}{e^{-0,T_S=\infty}} = Ae^{-\kappa_A}$	$\rho_{c}t_{c}(1-\epsilon)$	$e^{-K_A \rho_S t_S})$	$+Be^{-K_{BI}}$	$p_{c^{t_{c}}}(1-e^{-e^{t_{c}}})$	$e^{-K_B \rho_S t_s})$				
FCD-surf= 0.00001841	(Note: FC	ctor)								

				Fluence to	Effective										
				Effective	Mass	Effective		Mass							
				Dose	Attenuation	mass	Mass	Attenuation	Mass		$(t \mu + t)$	(1 + t)			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	μ	$=\frac{(a\mu_a + ic)}{(4 + ic)}$	$\left(\frac{u_c + i\mu_s}{2}\right)$			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient		$(t_a + t)$	(z + t)			
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.835	1	0.825	3.189	8.48E-05	8.48E-05	7.08E-02	1.67E-01	8.48E-05						
ta (cm) =	100	tc (cm) =	0	Source-ref a	rea (m2) =	3 36E±06									
tu (ciii) –	100		0	Source rend	rca (mz) –	5.502100									
														Receptor	Receptor
exp(-ux)/x2	- dist. in -ref-	dist. in-ref-	mfp-dist. in -	mfp-dist. in-			Vol-source-		4π x dist-	distance-ref				location y,	location z,
ref	air (cm)	cover (cm)	ref-air	ref-cover	BF-ref-air	BF-ref-cover	ref	F _{AM} -ref	ref^2 (cm2)	(cm)	r - ref (m)	ta + tc (m)	ta (m)	cm	cm
7.89E-06	1.00E+02	0.00E+00	8.48E-03	0.00E+00	1.01E+00	1.00E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	1.00E+00	0	1		
7.81E-06	1.00E+02	0.00E+00	8.52E-03	0.00E+00	1.01E+00	1.00E+00	3.14E-02	2.47E-07	1.27E+05	1.00E+02	1.00E+00	0	1		
7.80E-06	1.01E+02	0.00E+00	8.52E-03	0.00E+00	1.01E+00	1.00E+00	1.91E-03	1.51E-08	1.27E+05	1.01E+02	1.00E+00	0	1		
7.80E-06	1.01E+02	0.00E+00	8.52E-03	0.00E+00	1.01E+00	1.00E+00	2.03E-03	1.60E-08	1.27E+05	1.01E+02	1.00E+00	0	1		
7.79E-06	1.01E+02	0.00E+00	8.53E-03	0.00E+00	1.01E+00	1.00E+00	2.15E-03	1.69E-08	1.27E+05	1.01E+02	1.00E+00	0	1		
7.79E-06	1.01E+02	0.00E+00	8.53E-03	0.00E+00	1.01E+00	1.00E+00	2.29E-03	1.79E-08	1.27E+05	1.01E+02	1.00E+00	0	1		
7.78E-06	1.01E+02	0.00E+00	8.53E-03	0.00E+00	1.01E+00	1.00E+00	2.42E-03	1.90E-08	1.27E+05	1.01E+02	1.00E+00	0	1		
7.78E-06	1.01E+02	0.00E+00	8.54E-03	0.00E+00	1.01E+00	1.00E+00	2.57E-03	2.02E-08	1.28E+05	1.01E+02	1.00E+00	0	1	0	100
7.77E-06	1.01E+02	0.00E+00	8.54E-03	0.00E+00	1.01E+00	1.00E+00	2.73E-03	2.14E-08	1.28E+05	1.01E+02	1.00E+00	0	1		
5.05E-09	3.43E+03	0.00E+00	2.91E-01	0.00E+00	1.29E+00	1.00E+00	1.44E+02	9.34E-07	1.48E+08	3.43E+03	1.00E+00	34	1		
4.83E-09	3.50E+03	0.00E+00	2.97E-01	0.00E+00	1.29E+00	1.00E+00	1.49E+02	9.33E-07	1.54E+08	3.50E+03	1.00E+00	35	1		
4.61E-09	3.57E+03	0.00E+00	3.03E-01	0.00E+00	1.30E+00	1.00E+00	1.55E+02	9.31E-07	1.60E+08	3.57E+03	1.00E+00	36	1		
4.41E-09	3.64E+03	0.00E+00	3.09E-01	0.00E+00	1.31E+00	1.00E+00	1.62E+02	9.30E-07	1.67E+08	3.64E+03	1.00E+00	36	1		
4.21E-09	3.71E+03	0.00E+00	3.15E-01	0.00E+00	1.31E+00	1.00E+00	1.68E+02	9.29E-07	1.73E+08	3.71E+03	1.00E+00	37	1		
4.02E-09	3.79E+03	0.00E+00	3.21E-01	0.00E+00	1.32E+00	1.00E+00	1.75E+02	9.27E-07	1.80E+08	3.79E+03	1.00E+00	38	1		
1.77E-15	9.94E+04	0.00E+00	8.42E+00	0.00E+00	2.48E+01	1.00E+00	1.21E+05	5.29E-09	1.24E+11	9.94E+04	1.00E+00	994	1		
1.44E-15	1.01E+05	0.00E+00	8.59E+00	0.00E+00	2.56E+01	1.00E+00	1.25E+05	4.61E-09	1.29E+11	1.01E+05	1.00E+00	1014	1		
1.16E-15	1.03E+05	0.00E+00	8.76E+00	0.00E+00	2.64E+01	1.00E+00	1.30E+05	4.00E-09	1.34E+11	1.03E+05	1.00E+00	1034	1		
							∑ F _{AM} -ref =	1.83E-04							

Table 2.45 Calculation of F_{AM} for Mn-54 in a Reference Area Source without Cover at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass			6				
				Dose	Attenuation	mass	Mass	Attenuation	Mass	μ	$=\frac{(t_a\mu_a+t_a)}{(t_a\mu_a+t_a)}$	$(\mu_c + t\mu_s)$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		$(t_a +$	$t_c + t$)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.835	1	0.825	3.189	8.48E-05	8.48E-05	7.08E-02	1.67E-01	8.48E-05						
				_		_		-			<i>.</i> - \				
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	4		Source-ret a	rea (m2) =	3.36E+06			
			diate in	attan ta					An example to					Decenter	December
aur (and a disk in	dist. in -	aist. In-		DE severe			4π x dist-					Receptor	Receptor
exp(-ux)/x2 -	mip-dist. in	mip-dist. in-	source-air	source-		BF-source-	Val source	-	source ²	distance-	r - source	to 1 to (m)	ta (m)	location y	location z
source	-source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	voi-source	F _{AM} -source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
7.89E-06	8.48E-03	0.00E+00	1.00E+02	0.00E+00	1.01E+00	1.00E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	1		
7.81E-06	8.52E-03	0.00E+00	1.00E+02	0.00E+00	1.01E+00	1.00E+00	3.14E-02	2.47E-07	1.27E+05	1.00E+02	1.00E-01	1	1		
7.80E-06	8.52E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	1.91E-03	1.51E-08	1.27E+05	1.01E+02	1.03E-01	1	1		
7.80E-06	8.52E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.03E-03	1.60E-08	1.27E+05	1.01E+02	1.06E-01	1	1		
7.79E-06	8.53E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.15E-03	1.69E-08	1.27E+05	1.01E+02	1.09E-01	1	1		
7.79E-06	8.53E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.29E-03	1.79E-08	1.27E+05	1.01E+02	1.13E-01	1	1		
7.78E-06	8.53E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.42E-03	1.90E-08	1.27E+05	1.01E+02	1.16E-01	1	1		
7.78E-06	8.54E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.57E-03	2.02E-08	1.28E+05	1.01E+02	1.19E-01	1	1		
7.77E-06	8.54E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.73E-03	2.14E-08	1.28E+05	1.01E+02	1.23E-01	1	1		
7.76E-06	8.55E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	2.90E-03	2.27E-08	1.28E+05	1.01E+02	1.27E-01	1	1		
7.75E-06	8.55E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	3.07E-03	2.40E-08	1.28E+05	1.01E+02	1.30E-01	1	1		
7.75E-06	8.55E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	3.26E-03	2.55E-08	1.28E+05	1.01E+02	1.34E-01	1	1		
7.74E-06	8.56E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	3.46E-03	2.70E-08	1.28E+05	1.01E+02	1.38E-01	1	1		
7.73E-06	8.56E-03	0.00E+00	1.01E+02	0.00E+00	1.01E+00	1.00E+00	3.67E-03	2.86E-08	1.28E+05	1.01E+02	1.43E-01	1	1	0	100
													0		
3.92E-06	1.20E-02	0.00E+00	1.42E+02	0.00E+00	1.01E+00	1.00E+00	1.81E-01	7.20E-07	2.52E+05	1.42E+02	1.00E+00	1	1		
3.80E-06	1.22E-02	0.00E+00	1.44E+02	0.00E+00	1.01E+00	1.00E+00	1.93E-01	7.41E-07	2.60E+05	1.44E+02	1.03E+00	1	1		
3.68E-06	1.24E-02	0.00E+00	1.46E+02	0.00E+00	1.01E+00	1.00E+00	2.04E-01	7.62E-07	2.68E+05	1.46E+02	1.06E+00	1	1		
3.57E-06	1.26E-02	0.00E+00	1.48E+02	0.00E+00	1.01E+00	1.00E+00	2.17E-01	7.83E-07	2.77E+05	1.48E+02	1.10E+00	1	1		
3.45E-06	1.28E-02	0.00E+00	1.51E+02	0.00E+00	1.01E+00	1.00E+00	2.30E-01	8.04E-07	2.86E+05	1.51E+02	1.13E+00	1	1		
						∑FAM-source	=	2.03E-05							
							FAM=	7.73E-02							

Table 2.46 Calculation of F_{AM} for Mn-54 in an Area Source of 4 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.835	Yield 1 1	FE 0.825	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 8.48E-05	Effective mass Attenuation Coefficient (ref) (/cm) 8.48E-05	Mass Attenuation Coefficient (soil) (/cm) 7.08E-02	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ =	$=\frac{(t_a\mu_a+t_c\mu_a)}{(t_a+t_c)}$	$\frac{u_c + t\mu_s}{(t+t)}$			
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	10		Siource-re	f area (m2) =	3.36E+06			
exp(-ux)/x2 source	- mfp-dist. in -source-air	mfp-dist. in- source-cover	dist. in - source-air (cm)	dist. in- source- cover (cm)	BF-source-air	BF-source- cover	Vol-source	F _{AM} -source	4π x dist- source^2 (cm2)	distance- source (cm)	r - source (m)	ta + tc (m)	ta (m)	Receptor location y (cm)	Receptor location z (cm)
3.34E-06	1.30E-02	0.00E+00	1.53E+02	0.00E+00	1.01E+00	1.00E+00	2.44E-01	8.25E-07	2.96E+05	1.53E+02	1.16E+00	1	1		
3.22E-06	1.32E-02	0.00E+00	1.56E+02	0.00E+00	1.01E+00	1.00E+00	2.59E-01	8.45E-07	3.06E+05	1.56E+02	1.20E+00	1	1		
3.11E-06	1.35E-02	0.00E+00	1.59E+02	0.00E+00	1.01E+00	1.00E+00	2.75E-01	8.66E-07	3.17E+05	1.59E+02	1.23E+00	1	1		
3.00E-06	1.37E-02	0.00E+00	1.62E+02	0.00E+00	1.01E+00	1.00E+00	2.91E-01	8.86E-07	3.29E+05	1.62E+02	1.27E+00	1	1		
2.89E-06	1.40E-02	0.00E+00	1.65E+02	0.00E+00	1.01E+00	1.00E+00	3.09E-01	9.06E-07	3.41E+05	1.65E+02	1.31E+00	1	1		
2.78E-06	1.42E-02	0.00E+00	1.68E+02	0.00E+00	1.01E+00	1.00E+00	3.28E-01	9.25E-07	3.54E+05	1.68E+02	1.35E+00	1	1		
2.68E-06	1.45E-02	0.00E+00	1.71E+02	0.00E+00	1.01E+00	1.00E+00	3.48E-01	9.45E-07	3.68E+05	1.71E+02	1.39E+00	1	1		
2.57E-06	1.48E-02	0.00E+00	1.75E+02	0.00E+00	1.01E+00	1.00E+00	3.69E-01	9.64E-07	3.83E+05	1.75E+02	1.43E+00	1	1		
2.47E-06	1.51E-02	0.00E+00	1.78E+02	0.00E+00	1.01E+00	1.00E+00	3.91E-01	9.82E-07	3.98E+05	1.78E+02	1.47E+00	1	1	0	100
2.37E-06	1.54E-02	0.00E+00	1.82E+02	0.00E+00	1.02E+00	1.00E+00	4.15E-01	1.00E-06	4.15E+05	1.82E+02	1.52E+00	1	1		
2.28E-06	1.57E-02	0.00E+00	1.86E+02	0.00E+00	1.02E+00	1.00E+00	4.41E-01	1.02E-06	4.33E+05	1.86E+02	1.56E+00	1	1		
2.18E-06	1.61E-02	0.00E+00	1.89E+02	0.00E+00	1.02E+00	1.00E+00	4.67E-01	1.04E-06	4.51E+05	1.89E+02	1.61E+00	1	1		
2.09E-06	1.64E-02	0.00E+00	1.94E+02	0.00E+00	1.02E+00	1.00E+00	4.96E-01	1.05E-06	4.71E+05	1.94E+02	1.66E+00	1	1		
2.00E-06	1.68E-02	0.00E+00	1.98E+02	0.00E+00	1.02E+00	1.00E+00	5.26E-01	1.07E-06	4.92E+05	1.98E+02	1.71E+00	1	1		
1.91E-06	1.72E-02	0.00E+00	2.02E+02	0.00E+00	1.02E+00	1.00E+00	5.58E-01	1.08E-06	5.15E+05	2.02E+02	1.76E+00	1	1		
1.85E-06	1.74E-02	0.00E+00	2.05E+02	0.00E+00	1.02E+00	1.00E+00	3.93E-01	7.40E-07	5.30E+05	2.05E+02	1.79E+00	1	1		
						∑FAM-source	=	3.55E-05							
							FAM=	1.35E-01							

Table 2.47 Calculation of F_{AM} for Mn-54 in an Area Source of 10 m² without Cover at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass							
				Dose	Attenuation	mass	Mass	Attenuation	Mass		$(t \mu + t)$	$(\mu + t\mu)$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	μ:	$=\frac{(ara + cr}{(t + t)}$	(1, t)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient		$(l_a + l)$	(r+i)			
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.835	1	0.825	3.189	8.48E-05	8.48E-05	7.08E-02	1.67E-01	8.48E-05						
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	36		Siource-re	f area (m2) =	3.36E+06			
			dist. in -	dist. in-					4π x dist-					Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	mfp-dist. in-	source-air	source-		BF-source-			source^2	distance-	r - source			location y	location z
source	-source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
1.74E-06	1.80E-02	0.00E+00	2.12E+02	0.00E+00	1.02E+00	1.00E+00	4.25E-01	7.54E-07	5.64E+05	2.12E+02	1.87E+00	1	1		
1.69E-06	1.82E-02	0.00E+00	2.15E+02	0.00E+00	1.02E+00	1.00E+00	4.42E-01	7.61E-07	5.81E+05	2.15E+02	1.90E+00	1	1		
1.64E-06	1.85E-02	0.00E+00	2.18E+02	0.00E+00	1.02E+00	1.00E+00	4.60E-01	7.67E-07	6.00E+05	2.18E+02	1.94E+00	1	1		
1.59E-06	1.88E-02	0.00E+00	2.22E+02	0.00E+00	1.02E+00	1.00E+00	4.79E-01	7.73E-07	6.19E+05	2.22E+02	1.98E+00	1	1		
1.54E-06	1.91E-02	0.00E+00	2.25E+02	0.00E+00	1.02E+00	1.00E+00	4.98E-01	7.79E-07	6.39E+05	2.25E+02	2.02E+00	1	1		
1.49E-06	1.94E-02	0.00E+00	2.29E+02	0.00E+00	1.02E+00	1.00E+00	5.18E-01	7.85E-07	6.60E+05	2.29E+02	2.06E+00	1	1		
1.44E-06	1.97E-02	0.00E+00	2.33E+02	0.00E+00	1.02E+00	1.00E+00	5.39E-01	7.91E-07	6.81E+05	2.33E+02	2.10E+00	1	1		
1.39E-06	2.01E-02	0.00E+00	2.37E+02	0.00E+00	1.02E+00	1.00E+00	5.61E-01	7.97E-07	7.04E+05	2.37E+02	2.14E+00	1	1		
1.35E-06	2.04E-02	0.00E+00	2.40E+02	0.00E+00	1.02E+00	1.00E+00	5.84E-01	8.03E-07	7.27E+05	2.40E+02	2.19E+00	1	1		
1.30E-06	2.07E-02	0.00E+00	2.44E+02	0.00E+00	1.02E+00	1.00E+00	6.07E-01	8.08E-07	7.51E+05	2.44E+02	2.23E+00	1	1	0	100
1.26E-06	2.11E-02	0.00E+00	2.49E+02	0.00E+00	1.02E+00	1.00E+00	6.32E-01	8.13E-07	7.76E+05	2.49E+02	2.28E+00	1	1		
1.22E-06	2.14E-02	0.00E+00	2.53E+02	0.00E+00	1.02E+00	1.00E+00	6.57E-01	8.18E-07	8.03E+05	2.53E+02	2.32E+00	1	1		
8.02E-07	2.64E-02	0.00E+00	3.11E+02	0.00E+00	1.03E+00	1.00E+00	1.06E+00	8.70E-07	1.21E+06	3.11E+02	2.94E+00	1	1		
7.73E-07	2.68E-02	0.00E+00	3.16E+02	0.00E+00	1.03E+00	1.00E+00	1.10E+00	8.73E-07	1.26E+06	3.16E+02	3.00E+00	1	1		
7.46E-07	2.73E-02	0.00E+00	3.22E+02	0.00E+00	1.03E+00	1.00E+00	1.14E+00	8.77E-07	1.30E+06	3.22E+02	3.06E+00	1	1		
7.19E-07	2.78E-02	0.00E+00	3.28E+02	0.00E+00	1.03E+00	1.00E+00	1.19E+00	8.80E-07	1.35E+06	3.28E+02	3.12E+00	1	1		
6.94E-07	2.83E-02	0.00E+00	3.34E+02	0.00E+00	1.03E+00	1.00E+00	1.24E+00	8.83E-07	1.40E+06	3.34E+02	3.19E+00	1	1		
6.69E-07	2.88E-02	0.00E+00	3.40E+02	0.00E+00	1.03E+00	1.00E+00	1.29E+00	8.86E-07	1.45E+06	3.40E+02	3.25E+00	1	1		
6.44E-07	2.93E-02	0.00E+00	3.46E+02	0.00E+00	1.03E+00	1.00E+00	1.34E+00	8.89E-07	1.51E+06	3.46E+02	3.31E+00	1	1		
						∑FAM-source	=	6.20E-05							
							FAM=	2.36E-01							

Table 2.48 Calculation of F_{AM} for Mn-54 in an Area Source of 36 m² without Cover at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass							
				Dose	Attenuation	mass	Mass	Attenuation	Mass		(4 4				
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	$\mu =$	$\frac{(t_a \mu_a + t_c \mu)}{(t_a \mu_a + t_c \mu)}$	$\frac{c}{c} + t\mu_s$			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient		$(t_a + t_c)$	+t)			
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.835	1	0.825	3.189	8.48E-05	8.48E-05	7.08E-02	1.67E-01	8.48E-05						
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	100		Siource-re	f area (m2) =	3.36E+06			
			dist. in -	dist. in-					4π x dist-					Receptor	Receptor
exp(-ux)/x2	mfp-dist. in	mfp-dist. in-	source-air	source-		BF-source-			source^2	distance-	r - source			location y	location z
source	-source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
5.99E-07	3.04E-02	0.00E+00	3.59E+02	0.00E+00	1.03E+00	1.00E+00	1.45E+00	8.95E-07	1.62E+06	3.59E+02	3.45E+00	1	1		
5.77E-07	3.10E-02	0.00E+00	3.66E+02	0.00E+00	1.03E+00	1.00E+00	1.51E+00	8.97E-07	1.68E+06	3.66E+02	3.52E+00	1	1		
5.56E-07	3.16E-02	0.00E+00	3.72E+02	0.00E+00	1.03E+00	1.00E+00	1.57E+00	9.00E-07	1.74E+06	3.72E+02	3.59E+00	1	1		
5.35E-07	3.22E-02	0.00E+00	3.79E+02	0.00E+00	1.03E+00	1.00E+00	1.63E+00	9.03E-07	1.81E+06	3.79E+02	3.66E+00	1	1		
5.16E-07	3.28E-02	0.00E+00	3.86E+02	0.00E+00	1.03E+00	1.00E+00	1.70E+00	9.05E-07	1.88E+06	3.86E+02	3.73E+00	1	1		
4.96E-07	3.34E-02	0.00E+00	3.94E+02	0.00E+00	1.03E+00	1.00E+00	1.77E+00	9.07E-07	1.95E+06	3.94E+02	3.81E+00	1	1		
4.78E-07	3.40E-02	0.00E+00	4.01E+02	0.00E+00	1.03E+00	1.00E+00	1.84E+00	9.10E-07	2.02E+06	4.01E+02	3.88E+00	1	1		
4.60E-07	3.46E-02	0.00E+00	4.09E+02	0.00E+00	1.03E+00	1.00E+00	1.91E+00	9.12E-07	2.10E+06	4.09E+02	3.96E+00	1	1		
4.43E-07	3.53E-02	0.00E+00	4.16E+02	0.00E+00	1.03E+00	1.00E+00	1.99E+00	9.14E-07	2.18E+06	4.16E+02	4.04E+00	1	1		
4.27E-07	3.60E-02	0.00E+00	4.24E+02	0.00E+00	1.04E+00	1.00E+00	2.07E+00	9.16E-07	2.26E+06	4.24E+02	4.12E+00	1	1		
4.11E-07	3.66E-02	0.00E+00	4.32E+02	0.00E+00	1.04E+00	1.00E+00	2.16E+00	9.18E-07	2.35E+06	4.32E+02	4.20E+00	1	1		
3.95E-07	3.73E-02	0.00E+00	4.40E+02	0.00E+00	1.04E+00	1.00E+00	2.24E+00	9.20E-07	2.44E+06	4.40E+02	4.29E+00	1	1		
3.80E-07	3.80E-02	0.00E+00	4.49E+02	0.00E+00	1.04E+00	1.00E+00	2.33E+00	9.22E-07	2.53E+06	4.49E+02	4.37E+00	1	1	0	100
3.66E-07	3.88E-02	0.00E+00	4.57E+02	0.00E+00	1.04E+00	1.00E+00	2.43E+00	9.23E-07	2.63E+06	4.57E+02	4.46E+00	1	1		
3.52E-07	3.95E-02	0.00E+00	4.66E+02	0.00E+00	1.04E+00	1.00E+00	2.53E+00	9.25E-07	2.73E+06	4.66E+02	4.55E+00	1	1		
3.39E-07	4.02E-02	0.00E+00	4.75E+02	0.00E+00	1.04E+00	1.00E+00	2.63E+00	9.27E-07	2.83E+06	4.75E+02	4.64E+00	1	1		
3.26E-07	4.10E-02	0.00E+00	4.84E+02	0.00E+00	1.04E+00	1.00E+00	2.73E+00	9.28E-07	2.94E+06	4.84E+02	4.73E+00	1	1		
3.14E-07	4.18E-02	0.00E+00	4.93E+02	0.00E+00	1.04E+00	1.00E+00	2.85E+00	9.30E-07	3.06E+06	4.93E+02	4.83E+00	1	1		
3.02E-07	4.26E-02	0.00E+00	5.03E+02	0.00E+00	1.04E+00	1.00E+00	2.96E+00	9.31E-07	3.18E+06	5.03E+02	4.93E+00	1	1		
2.90E-07	4.34E-02	0.00E+00	5.12E+02	0.00E+00	1.04E+00	1.00E+00	3.08E+00	9.33E-07	3.30E+06	5.12E+02	5.02E+00	1	1		
2.79E-07	4.43E-02	0.00E+00	5.22E+02	0.00E+00	1.04E+00	1.00E+00	3.20E+00	9.34E-07	3.43E+06	5.22E+02	5.12E+00	1	1		
2.69E-07	4.51E-02	0.00E+00	5.32E+02	0.00E+00	1.04E+00	1.00E+00	3.33E+00	9.35E-07	3.56E+06	5.32E+02	5.23E+00	1	1		
2.58E-07	4.60E-02	0.00E+00	5.42E+02	0.00E+00	1.05E+00	1.00E+00	3.47E+00	9.36E-07	3.70E+06	5.42E+02	5.33E+00	1	1		
2.48E-07	4.69E-02	0.00E+00	5.53E+02	0.00E+00	1.05E+00	1.00E+00	3.61E+00	9.38E-07	3.84E+06	5.53E+02	5.44E+00	1	1		
2.39E-07	4.78E-02	0.00E+00	5.64E+02	0.00E+00	1.05E+00	1.00E+00	3.75E+00	9.39E-07	3.99E+06	5.64E+02	5.55E+00	1	1		
2.30E-07	4.87E-02	0.00E+00	5.75E+02	0.00E+00	1.05E+00	1.00E+00	3.91E+00	9.40E-07	4.15E+06	5.75E+02	5.66E+00	1	1		
						∑FAM-source	=	8.60E-05							
							FAM=	3.27E-01							

Table 2.49 Calculation of F_{AM} for Mn-54 in an Area Source of 100 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 0.835 100	Yield 1	FE 0.825 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 8.48E-05	Effective mass Attenuation Coefficient (ref) (/cm) 8.48E-05 Sourc	Mass Attenuation Coefficient (soil) (/cm) 7.08E-02 e area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01 1000	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ = Siource-re	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$ f area (m2) =	$\frac{t_c + t\mu_s}{t_c} + t)$ 3.36E+06			
exp(-ux)/x2 -	mfn-dist in -	mfn-dist in-	dist in -source-	dist. in-		BE-source-			4π x dist-	distance-				Receptor	Receptor
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	Vol-source	Esource	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
2.21E-07	4.96E-02	0.00E+00	5.86E+02	0.00E+00	1.05E+00	1.00E+00	4.06E+00	9.41E-07	4.31E+06	5.86E+02	5.77E+00	1	1		
2.12E-07	5.06E-02	0.00E+00	5.97E+02	0.00E+00	1.05E+00	1.00E+00	4.23E+00	9.42E-07	4.48E+06	5.97E+02	5.89E+00	1	1		
2.04E-07	5.16E-02	0.00E+00	6.09E+02	0.00E+00	1.05E+00	1.00E+00	4.40E+00	9.43E-07	4.66E+06	6.09E+02	6.00E+00	1	1		
1.96E-07	5.26E-02	0.00E+00	6.20E+02	0.00E+00	1.05E+00	1.00E+00	4.58E+00	9.44E-07	4.84E+06	6.20E+02	6.12E+00	1	1		
1.88E-07	5.36E-02	0.00E+00	6.33E+02	0.00E+00	1.05E+00	1.00E+00	4.76E+00	9.45E-07	5.03E+06	6.33E+02	6.25E+00	1	1		
1.81E-07	5.47E-02	0.00E+00	6.45E+02	0.00E+00	1.05E+00	1.00E+00	4.95E+00	9.46E-07	5.23E+06	6.45E+02	6.37E+00	1	1		
1.74E-07	5.57E-02	0.00E+00	6.58E+02	0.00E+00	1.06E+00	1.00E+00	5.15E+00	9.46E-07	5.43E+06	6.58E+02	6.50E+00	1	1		
1.67E-07	5.68E-02	0.00E+00	6.70E+02	0.00E+00	1.06E+00	1.00E+00	5.36E+00	9.47E-07	5.65E+06	6.70E+02	6.63E+00	1	1		
1.61E-07	5.79E-02	0.00E+00	6.83E+02	0.00E+00	1.06E+00	1.00E+00	5.58E+00	9.48E-07	5.87E+06	6.83E+02	6.76E+00	1	1	0	100
1.54E-07	5.91E-02	0.00E+00	6.97E+02	0.00E+00	1.06E+00	1.00E+00	5.80E+00	9.49E-07	6.10E+06	6.97E+02	6.90E+00	1	1		
1.48E-07	6.02E-02	0.00E+00	7.11E+02	0.00E+00	1.06E+00	1.00E+00	6.04E+00	9.49E-07	6.35E+06	7.11E+02	7.03E+00	1	1		
2.65E-08	1.37E-01	0.00E+00	1.62E+03	0.00E+00	1.14E+00	1.00E+00	3.19E+01	9.58E-07	3.30E+07	1.62E+03	1.62E+01	1	1		
2.54E-08	1.40E-01	0.00E+00	1.65E+03	0.00E+00	1.14E+00	1.00E+00	3.32E+01	9.57E-07	3.43E+07	1.65E+03	1.65E+01	1	1		
2.43E-08	1.43E-01	0.00E+00	1.68E+03	0.00E+00	1.14E+00	1.00E+00	3.45E+01	9.57E-07	3.57E+07	1.68E+03	1.68E+01	1	1		
2.33E-08	1.46E-01	0.00E+00	1.72E+03	0.00E+00	1.14E+00	1.00E+00	3.59E+01	9.57E-07	3.71E+07	1.72E+03	1.71E+01	1	1		
2.23E-08	1.49E-01	0.00E+00	1.75E+03	0.00E+00	1.15E+00	1.00E+00	3.73E+01	9.57E-07	3.86E+07	1.75E+03	1.75E+01	1	1		
2.14E-08	1.51E-01	0.00E+00	1.79E+03	0.00E+00	1.15E+00	1.00E+00	3.88E+01	9.56E-07	4.01E+07	1.79E+03	1.78E+01	1	1		
						∑FAM-source=		1.41E-04							
							FAM=	5.37E-01							

Table 2.50 Calculation of F_{AM} for Mn-54 in an Area Source of 1,000 m² without Cover at the Receptor Location of (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass							
				Dose	Attenuation	mass	Mass	Attenuation	Mass		(
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	$\mu =$	$(t_a \mu_a + t_c \mu_a)$	$(\pm t\mu_s)$			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient	1	$(t_a + t_c + t_c)$	+t)			
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.835	1	0.825	3.189	8.48E-05	8.48E-05	7.08E-02	1.67E-01	8.48E-05						
ta (cm) =	100		tc (cm) =	0		Sourc	e area (m2) =	10000		Siource-re	f area (m2) =	3.36E+06			
			dist. in -	dist. in-					4π x dist-					Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	mfp-dist. in-	source-air	source-		BF-source-			source^2	distance-	r - source			location y	location z
source	-source-air	source-cover	(cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
2.05E-08	1.55E-01	0.00E+00	1.82E+03	0.00E+00	1.15E+00	1.00E+00	4.04E+01	9.56E-07	4.18E+07	1.82E+03	1.82E+01	1	1		
1.97E-08	1.58E-01	0.00E+00	1.86E+03	0.00E+00	1.16E+00	1.00E+00	4.21E+01	9.56E-07	4.34E+07	1.86E+03	1.86E+01	1	1		
1.88E-08	1.61E-01	0.00E+00	1.90E+03	0.00E+00	1.16E+00	1.00E+00	4.37E+01	9.55E-07	4.52E+07	1.90E+03	1.89E+01	1	1		
1.81E-08	1.64E-01	0.00E+00	1.93E+03	0.00E+00	1.16E+00	1.00E+00	4.55E+01	9.55E-07	4.70E+07	1.93E+03	1.93E+01	1	1		
1.73E-08	1.67E-01	0.00E+00	1.97E+03	0.00E+00	1.17E+00	1.00E+00	4.74E+01	9.55E-07	4.89E+07	1.97E+03	1.97E+01	1	1		
1.66E-08	1.71E-01	0.00E+00	2.01E+03	0.00E+00	1.17E+00	1.00E+00	4.93E+01	9.54E-07	5.09E+07	2.01E+03	2.01E+01	1	1		
1.59E-08	1.74E-01	0.00E+00	2.05E+03	0.00E+00	1.17E+00	1.00E+00	5.13E+01	9.54E-07	5.29E+07	2.05E+03	2.05E+01	1	1		
1.52E-08	1.77E-01	0.00E+00	2.09E+03	0.00E+00	1.18E+00	1.00E+00	5.33E+01	9.53E-07	5.51E+07	2.09E+03	2.09E+01	1	1		
1.46E-08	1.81E-01	0.00E+00	2.13E+03	0.00E+00	1.18E+00	1.00E+00	5.55E+01	9.53E-07	5.73E+07	2.13E+03	2.13E+01	1	1		
1.40E-08	1.85E-01	0.00E+00	2.18E+03	0.00E+00	1.18E+00	1.00E+00	5.77E+01	9.53E-07	5.96E+07	2.18E+03	2.17E+01	1	1		
1.34E-08	1.88E-01	0.00E+00	2.22E+03	0.00E+00	1.19E+00	1.00E+00	6.01E+01	9.52E-07	6.20E+07	2.22E+03	2.22E+01	1	1	0	100
1.28E-08	1.92E-01	0.00E+00	2.26E+03	0.00E+00	1.19E+00	1.00E+00	6.25E+01	9.52E-07	6.45E+07	2.26E+03	2.26E+01	1	1		
1.23E-08	1.96E-01	0.00E+00	2.31E+03	0.00E+00	1.19E+00	1.00E+00	6.50E+01	9.51E-07	6.71E+07	2.31E+03	2.31E+01	1	1		
1.99E-09	4.32E-01	0.00E+00	5.10E+03	0.00E+00	1.43E+00	1.00E+00	3.17E+02	8.99E-07	3.27E+08	5.10E+03	5.10E+01	1	1		
1.89E-09	4.41E-01	0.00E+00	5.20E+03	0.00E+00	1.44E+00	1.00E+00	3.30E+02	8.97E-07	3.40E+08	5.20E+03	5.20E+01	1	1		
1.80E-09	4.50E-01	0.00E+00	5.30E+03	0.00E+00	1.44E+00	1.00E+00	3.43E+02	8.94E-07	3.54E+08	5.30E+03	5.30E+01	1	1		
1.72E-09	4.59E-01	0.00E+00	5.41E+03	0.00E+00	1.45E+00	1.00E+00	3.57E+02	8.92E-07	3.68E+08	5.41E+03	5.41E+01	1	1		
1.64E-09	4.68E-01	0.00E+00	5.52E+03	0.00E+00	1.46E+00	1.00E+00	3.71E+02	8.89E-07	3.83E+08	5.52E+03	5.52E+01	1	1		
1.56E-09	4.77E-01	0.00E+00	5.63E+03	0.00E+00	1.47E+00	1.00E+00	3.86E+02	8.87E-07	3.98E+08	5.63E+03	5.63E+01	1	1		
						∑FAM-source	=	1.95E-04							
							FAM=	7.42E-01							

Table 2.51 Calculation of F_{AM} for Mn-54 in an Area Source of 10,000 m² without Cover at the Receptor Location of (0, 0, 1) (m)

Table 2.52 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six Area Sources without Cover

DCF-inf		Average				Estimated
(mrem/yr		Decay Factor		Area of		Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
	8.56E-01	6.85E-01		10,000	7.42E-01	4.83E-05
				1,000	5.37E-01	3.49E-05
F 16F 100			1.84E-05	100	3.27E-01	2.12E-05
5.10E+00				36	2.36E-01	1.53E-05
				10	1.35E-01	8.77E-06
				4	7.73E-02	5.03E-06

Table 2.53 Estimation of External Radiation Dose at the Receptor Location (0, 0, 0.3) (m) from Mn-54 in Six Area Sources without Cover

DCF-inf		Average				Estimated
(mrem/yr		Decay Factor		Area of		Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
	8.56E-01			10,000	9.64E-01	6.28E-05
		6.85E-01		1,000	7.58E-01	4.94E-05
5 165,00			1.84E-05	100	5.46E-01	3.55E-05
5.102+00				36	4.51E-01	2.93E-05
				10	3.34E-01	2.18E-05
				4	2.53E-01	1.65E-05

 Table 2.54 Estimation of External Radiation Dose at the Receptor

 Location (0, 0, 4) (m) from Mn-54 in Six Area Sources without Cover

DCF-inf		Average				Estimated
(mrem/yr		Decay Factor		Area of		Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
	8.56E-01			10,000	4.85E-01	3.16E-05
		6.85E-01		1,000	2.83E-01	1.85E-05
5 165 00			1.84E-05	100	1.03E-01	6.73E-06
3.102+00				36	5.09E-02	3.31E-06
				10	1.73E-02	1.13E-06
				4	7.26E-03	4.73E-07
Table 2.55 Comparison of Radiation Doses (mrem/yr) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in Six Area Sourc	es					
--	----					
without Cover						

	Recept	tor Location (0,	0, 1) (m)	Recept	tor Location (0,	0, 0.3) (m)	Recep	tor Location (0	, 0, 4) (m)
				Dose Results			Dose Results		
	Dose Results	Dose Results	Ratio -	from	Dose Results	Ratio -	from	Dose Results	Ratio -
Area of	from RESRAD-	from	RESRAD-BUILD/	RESRAD-	from	RESRAD-BUILD/	RESRAD-	from	RESRAD-BUILD/
Source (m ²)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets
10,000	4.80E-05	4.83E-05	0.99	6.25E-05	6.28E-05	1.00	3.13E-05	3.16E-05	0.99
1,000	3.46E-05	3.49E-05	0.99	4.92E-05	4.94E-05	1.00	1.82E-05	1.85E-05	0.99
100	2.10E-05	2.12E-05	0.99	3.55E-05	3.55E-05	1.00	6.58E-06	6.73E-06	0.98
36	1.52E-05	1.53E-05	0.99	2.94E-05	2.93E-05	1.00	3.25E-06	3.31E-06	0.98
10	8.65E-06	8.77E-06	0.99	2.17E-05	2.18E-05	1.00	1.09E-06	1.13E-06	0.97
4	4.97E-06	5.03E-06	0.99	1.65E-05	1.65E-05	1.00	4.61E-07	4.73E-07	0.97

Table 2.56 Calculation of *F*_{CD} for Tc-99 in an Area Source without Cover

Fitting parameters Ai, B	i, Kai (cm2/g), Kbi (cn	n2/g)	0.787	0.213	0.211	2.63				
Reference source -	Cover material =	none	Cover thic	kness, cm =		0	Density of	cover, g/cr	n3 =	1.6
	Source density , g/c	m3 =	1.6	Source thic	kness, cm	=	0.001			
Surface activity convers	sion factor, (pCi/g)/(p	oCi/m2)	0.0625							
D(7	-+ T -+)						4			
$F_{CD} = \frac{D(T_c)}{D(T_c)}$	$\frac{=\iota_c, \iota_s=\iota_s)}{\iota_s=0, \tau_s=\infty)} = Ae^{-K_A}$	$A^{\rho_{c}t_{c}}(1-t)$	$e^{-K_A \rho_S t_S})$	$+Be^{-\kappa_B\rho}$	$c^{t_c}(1-\epsilon)$	$e^{-K_B \rho_S t_s})$,			
FCD-surf= 0.00007250	(Note: Fo	CD-surf = FC	D × Surface	activity con	version fa	ctor)				

Interfact <	# photons	Energy 1 0.101	Yield 1 0.001772	FE 0.98	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 1.88E-04	Effective mass Attenuation Coefficient (ref) (/cm) 1.88E-04	Mass Attenuation Coefficient (soil) (/cm) 2.77E-01	Mass Attenuatio n Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuatio n Coefficient (air) (/cm) 1.88E-04	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$(t_{s}^{c}+t\mu_{s}))$ $(t_{s}^{c}+t\mu_{s})$			
exp(-w)/x2 dist.in- air (cm) ref-cove in-ref-air (cm) in-ref-sir in-ref-air (cm) ref-cove in-ref-air (cm) BF-ref-air in-ref-air (cm) BF-ref-air in-ref-air (cm) BF-ref-air (cm) BF-ref-air (cove in-ref-air (cm) BF-ref-air (cm) Receptor (covin air (cm) Receptor (covin air (cm) Receptor (covin air (cm)	cu (only	100		co (citi)			oourco re	(iii2)	51552.00							
Tell an (cm) (cm) interferant (cm)	exp(-ux)/x2 -	dist. in -ref-	dist. in- ref-cover	mfp-dist.	mfp-dist. in	PE rof air	BF-ref-	Vol-source-	Г. rof	4π x dist-	distance-	r rof(m)	ta + tc	ta (m)	Receptor location y	Receptor location z
7.73E-06 1.000100 0.000100 1.000100 <th< td=""><td>7 81E-06</td><td>1 00E+02</td><td>0.00E+00</td><td>1 88F-02</td><td>0.00E+00</td><td>1.05E+00</td><td>1 00F+00</td><td>0.00E+00</td><td></td><td>1 26E+05</td><td>1 00F+02</td><td>0.00E+00</td><td>(11)</td><td>1 00</td><td>(cm)</td><td>(cm)</td></th<>	7 81E-06	1 00E+02	0.00E+00	1 88F-02	0.00E+00	1.05E+00	1 00F+00	0.00E+00		1 26E+05	1 00F+02	0.00E+00	(11)	1 00	(cm)	(cm)
7.72E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.91E+03 1.55E-08 1.27E+05 1.01E+02 1.03E-01 1 1.00 1 1.00 1 7.72E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.00E+00 2.33E-03 1.65E-08 1.27E+05 1.01E+02 1.06E-01 1 1.00	7.73E-06	1.00E+02	0.00E+00	1.88E-02	0.00E+00	1.05E+00	1.00E+00	3.14E-02	2.55E-07	1.27E+05	1.00E+02	1.00E-01	1	1.00		
7.72E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.00E+00 2.03E-03 1.65E-08 1.27E+05 1.01E+02 1.00E+01 1 1.00 1 1.00 1 7.71E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.00E+00 2.29E-03 1.85E-08 1.27E+05 1.01E+02 1.18E-01 1 1.00 <	7.72E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	1.91E-03	1.55E-08	1.27E+05	1.01E+02	1.03E-01	1	1.00		
7.71E-06 $1.00E+00$ $1.08E+00$ $1.00E+00$ </td <td>7.72E-06</td> <td>1.01E+02</td> <td>0.00E+00</td> <td>1.89E-02</td> <td>0.00E+00</td> <td>1.05E+00</td> <td>1.00E+00</td> <td>2.03E-03</td> <td>1.65E-08</td> <td>1.27E+05</td> <td>1.01E+02</td> <td>1.06E-01</td> <td>1</td> <td>1.00</td> <td></td> <td></td>	7.72E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	2.03E-03	1.65E-08	1.27E+05	1.01E+02	1.06E-01	1	1.00		
7.71E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.00E+00 2.29E-03 1.85E-08 1.27E+05 1.01E+02 1.1E 1.00 1.00 1.00 7.70E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.00E+00 2.42E-03 1.96E-08 1.27E+05 1.01E+02 1.01E+01 1.0 1.00 0 1.00 0 1.00 0 1.00 1.00 1.00 0 0	7.71E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	2.15E-03	1.75E-08	1.27E+05	1.01E+02	1.09E-01	1	1.00		
7.70E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.00E+00 2.42E-03 1.96E-08 1.27E+05 1.01E+02 1.16E-01 1 1.00 100 100 7.70E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.05E+00 1.00E+00 2.57E-03 2.08E-08 1.28E+05 1.01E+02 1.9E-01 1 1.00 0 100 100 7.69E-06 1.01E+02 0.00E+00 1.88E-02 0.00E+00 1.89E-02 0.00E+00 1.00E+00 2.73E-03 2.21E-08 1.28E+05 1.01E+02 1.32E-01 1 1.00 0 1.00E \cdot <	7.71E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	2.29E-03	1.85E-08	1.27E+05	1.01E+02	1.13E-01	1	1.00		
7.70E-061.01E+020.00E+001.89E-020.00E+001.05E+001.00E+002.57E-032.08E-081.28E+051.01E+021.19E-0111.0001007.69E-061.01E+020.00E+001.89E-020.00E+001.05E+001.00E+002.73E-032.21E-081.28E+051.01E+021.23E-0111.000100100 \cdot	7.70E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	2.42E-03	1.96E-08	1.27E+05	1.01E+02	1.16E-01	1	1.00		
7.69E-06 1.01E+02 0.00E+00 1.89E-02 0.00E+00 1.00E+00 1.00E+00 2.73E-03 2.21E-08 1.28E+05 1.01E+02 1.23E-01 1 1.00 $(1,0)$ <td>7.70E-06</td> <td>1.01E+02</td> <td>0.00E+00</td> <td>1.89E-02</td> <td>0.00E+00</td> <td>1.05E+00</td> <td>1.00E+00</td> <td>2.57E-03</td> <td>2.08E-08</td> <td>1.28E+05</td> <td>1.01E+02</td> <td>1.19E-01</td> <td>1</td> <td>1.00</td> <td>0</td> <td>100</td>	7.70E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	2.57E-03	2.08E-08	1.28E+05	1.01E+02	1.19E-01	1	1.00	0	100
n n	7.69E-06	1.01E+02	0.00E+00	1.89E-02	0.00E+00	1.05E+00	1.00E+00	2.73E-03	2.21E-08	1.28E+05	1.01E+02	1.23E-01	1	1.00		
3.55E-09 $3.43E+03$ $0.00E+00$ $6.43E-01$ $0.00E+00$ $2.95E+00$ $1.00E+00$ $1.44E+02$ $1.50E-06$ $1.48E+08$ $3.43E+03$ $3.43E+01$ 1 1.00 $3.37E-09$ $3.50E+03$ $0.00E+00$ $6.56E-01$ $0.00E+00$ $3.00E+00$ $1.49E+02$ $1.51E-06$ $1.54E+08$ $3.50E+03$ $3.50E+01$ 1 1.00 $3.20E-09$ $3.57E+03$ $0.00E+00$ $6.69E-01$ $0.00E+00$ $3.06E+00$ $1.00E+00$ $1.55E+02$ $1.52E-06$ $1.60E+08$ $3.57E+03$ $3.57E+01$ 1 1.00 $3.03E-09$ $3.64E+03$ $0.00E+00$ $6.83E-01$ $0.00E+00$ $3.11E+00$ $1.00E+00$ $1.55E+02$ $1.53E-06$ $1.67E+08$ $3.64E+03$ $3.64E+01$ 1 1.00 $2.87E-09$ $3.71E+03$ $0.00E+00$ $6.96E-01$ $0.00E+00$ $3.17E+00$ $1.60E+00$ $1.58E+02$ $1.53E-06$ $1.73E+08$ $3.71E+03$ $3.71E+01$ 1 1.00 $2.72E-09$ $3.79E+03$ $0.00E+00$ $6.96E-01$ $0.00E+00$ $3.23E+00$ $1.00E+00$ $1.58E+02$ $1.58E+02$ $1.58E+08$ $3.79E+03$ $3.79E+01$ 1 1.00 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $0.00E+00$ $1.58E+03$ $1.00E+00$ $1.53E+03$ $1.00E+00$ $1.21E+05$ $1.20E+11$ $1.24E+11$ $9.94E+04$ $9.94E+02$ 1 1.00 $4.29E+02$ $1.01E+05$ <td></td>																
3.37E-09 3.50E+03 0.00E+00 6.56E-01 0.00E+00 3.00E+00 1.49E+02 1.51E-06 1.54E+08 3.50E+01 1 1.00 3.20E-09 3.57E+03 0.00E+00 6.69E-01 0.00E+00 3.06E+00 1.55E+02 1.52E-06 1.60E+08 3.57E+03 3.57E+01 1 1.00 3.03E-09 3.64E+03 0.00E+00 6.83E-01 0.00E+00 3.11E+00 1.00E+00 1.52E+02 1.53E-06 1.67E+08 3.64E+03 3.64E+01 1 1.00 2.87E-09 3.71E+03 0.00E+00 6.96E-01 0.00E+00 3.23E+00 1.00E+00 1.58E+02 1.53E+06 1.73E+08 3.71E+03 3.71E+01 1 1.00 2.72E-09 3.79E+03 0.00E+00 7.10E-01 0.00E+00 3.23E+00 1.00E+00 1.57E+02 1.54E+06 1.80E+08 3.79E+03 3.79E+01 1 1.00 <td>3.55E-09</td> <td>3.43E+03</td> <td>0.00E+00</td> <td>6.43E-01</td> <td>0.00E+00</td> <td>2.95E+00</td> <td>1.00E+00</td> <td>1.44E+02</td> <td>1.50E-06</td> <td>1.48E+08</td> <td>3.43E+03</td> <td>3.43E+01</td> <td>1</td> <td>1.00</td> <td></td> <td></td>	3.55E-09	3.43E+03	0.00E+00	6.43E-01	0.00E+00	2.95E+00	1.00E+00	1.44E+02	1.50E-06	1.48E+08	3.43E+03	3.43E+01	1	1.00		
3.20E-09 3.57E+03 0.00E+00 6.69E-01 0.00E+00 3.06E+00 1.00E+00 1.55E+02 1.52E-06 1.60E+08 3.57E+03 3.57E+01 1 1.00 3.03E-09 3.64E+03 0.00E+00 6.83E-01 0.00E+00 3.11E+00 1.00E+00 1.62E+02 1.53E-06 1.67E+08 3.64E+03 3.64E+01 1 1.00 2.87E-09 3.71E+03 0.00E+00 6.96E-01 0.00E+00 3.17E+00 1.68E+02 1.53E+06 1.73E+08 3.71E+03 3.71E+01 1 1.00 2.72E-09 3.79E+03 0.00E+00 7.10E-01 0.00E+00 3.23E+00 1.75E+02 1.54E+06 1.80E+08 3.79E+03 3.79E+01 1 1.00	3.37E-09	3.50E+03	0.00E+00	6.56E-01	0.00E+00	3.00E+00	1.00E+00	1.49E+02	1.51E-06	1.54E+08	3.50E+03	3.50E+01	1	1.00		
3.03E-09 3.64E+03 0.00E+00 6.83E-01 0.00E+00 3.11E+00 1.00E+00 1.62E+02 1.53E-06 1.67E+08 3.64E+03 3.64E+01 1 1.00 2.87E-09 3.71E+03 0.00E+00 6.96E-01 0.00E+00 3.17E+00 1.68E+02 1.53E-06 1.73E+08 3.71E+03 3.71E+01 1 1.00 2.72E-09 3.79E+03 0.00E+00 7.10E-01 0.00E+00 3.23E+00 1.00E+00 1.75E+02 1.54E-06 1.80E+08 3.79E+03 3.79E+01 1 1.00	3.20E-09	3.57E+03	0.00E+00	6.69E-01	0.00E+00	3.06E+00	1.00E+00	1.55E+02	1.52E-06	1.60E+08	3.57E+03	3.57E+01	1	1.00		
2.87E-09 3.71E+03 0.00E+00 6.96E-01 0.00E+00 3.17E+00 1.00E+00 1.58E+02 1.53E+06 1.73E+08 3.71E+03 3.71E+01 1 1.00 2.72E-09 3.79E+03 0.00E+00 7.10E-01 0.00E+00 3.23E+00 1.00E+00 1.75E+02 1.54E-06 1.80E+08 3.79E+03 3.79E+01 1 1.00 <	3.03E-09	3.64E+03	0.00E+00	6.83E-01	0.00E+00	3.11E+00	1.00E+00	1.62E+02	1.53E-06	1.67E+08	3.64E+03	3.64E+01	1	1.00		
2.72E-09 3.79E+03 0.00E+00 7.10E-01 0.00E+00 3.23E+00 1.00E+00 1.75E+02 1.54E-06 1.80E+08 3.79E+01 1 1.00 <	2.87E-09	3.71E+03	0.00E+00	6.96E-01	0.00E+00	3.17E+00	1.00E+00	1.68E+02	1.53E-06	1.73E+08	3.71E+03	3.71E+01	1	1.00		
n. n. <th< td=""><td>2.72E-09</td><td>3.79E+03</td><td>0.00E+00</td><td>7.10E-01</td><td>0.00E+00</td><td>3.23E+00</td><td>1.00E+00</td><td>1.75E+02</td><td>1.54E-06</td><td>1.80E+08</td><td>3.79E+03</td><td>3.79E+01</td><td>1</td><td>1.00</td><td></td><td></td></th<>	2.72E-09	3.79E+03	0.00E+00	7.10E-01	0.00E+00	3.23E+00	1.00E+00	1.75E+02	1.54E-06	1.80E+08	3.79E+03	3.79E+01	1	1.00		
6.49E-20 9.94E+04 0.00E+00 1.86E+01 0.00E+00 1.53E+03 1.00E+00 1.21E+05 1.20E+11 1.24E+11 9.94E+04 9.94E+02 1 1.00 4.29E-20 1.01E+05 0.00E+00 1.9E+01 0.00E+00 1.61E+03 1.00E+00 1.25E+05 8.66E-12 1.29E+11 1.01E+05 1.01E+03 1 1.00 2.82E-20 1.03E+05 0.00E+00 1.68E+03 1.00E+00 1.30E+05 6.20E-12 1.34E+11 1.03E+05 1.03E+03 1 1.00																
4.29E-20 1.01E+05 0.00E+00 1.90E+01 0.00E+00 1.61E+03 1.00E+00 1.25E+05 8.66E-12 1.29E+11 1.01E+03 1.01E+03 1 1.00 2.82E-20 1.03E+05 0.00E+00 1.94E+01 0.00E+00 1.68E+03 1.00E+00 1.30E+05 6.20E-12 1.34E+11 1.03E+05 1.03E+03 1 1.00	6.49E-20	9.94E+04	0.00E+00	1.86E+01	0.00E+00	1.53E+03	1.00E+00	1.21E+05	1.20E-11	1.24E+11	9.94E+04	9.94E+02	1	1.00		
2.82E-20 1.03E+03 0.00E+00 1.94E+01 0.00E+00 1.68E+03 1.00E+00 1.30E+03 0.20E-12 1.34E+11 1.03E+03 1.03E+03 1 1.00	4.29E-20	1.01E+05	0.00E+00	1.90E+01	0.00E+00	1.61E+03	1.00E+00	1.25E+05	8.66E-12	1.29E+11	1.01E+05	1.01E+03	1	1.00		
	2.82E-20	1.03E+05	0.00E+00	1.94E+01	0.00E+00	1.08E+03	1.00E+00	1.30E+05	0.20E-12	1.34E+11	1.03E+05	1.03E+03	1	1.00		

Table 2.57 Calculation of F_{AM} for Tc-99 in a Reference Area Source without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.101	Yield 1 0.001772	FE 0.98	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 1.88E-04	Effective mass Attenuation Coefficient (ref) (/cm) 1.88E-04	Mass Attenuation Coefficient (soil) (/cm) 2.77E-01	Mass Attenuatio n Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuatio n Coefficient (air) (/cm) 1.88E-04	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\left(\frac{t_{c}+t\mu_{s}}{t+t}\right)$			
ta (cm) =	= 100		tc (cm) =	0		Sourc	e area (m2) =	4	Source-ref	area (m2) =	3.36E+06				
		mfp-dist.	dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	- in-source-	source-	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	cover	air (cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
7.81E-06	1.88E-02	0.00E+00	1.00E+02	0.00E+00	1.05E+00	1.00E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	1.00		
7.73E-06	1.88E-02	0.00E+00	1.00E+02	0.00E+00	1.05E+00	1.00E+00	3.14E-02	2.55E-07	1.27E+05	1.00E+02	1.00E-01	1	1.00		
7.72E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	1.91E-03	1.55E-08	1.27E+05	1.01E+02	1.03E-01	1	1.00		
7.72E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.03E-03	1.65E-08	1.27E+05	1.01E+02	1.06E-01	1	1.00		
7.71E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.15E-03	1.75E-08	1.27E+05	1.01E+02	1.09E-01	1	1.00		
7.71E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.29E-03	1.85E-08	1.27E+05	1.01E+02	1.13E-01	1	1.00		
7.70E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.42E-03	1.96E-08	1.27E+05	1.01E+02	1.16E-01	1	1.00		
7.70E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.57E-03	2.08E-08	1.28E+05	1.01E+02	1.19E-01	1	1.00		
7.69E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.73E-03	2.21E-08	1.28E+05	1.01E+02	1.23E-01	1	1.00		
7.68E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	2.90E-03	2.34E-08	1.28E+05	1.01E+02	1.27E-01	1	1.00		
7.67E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	3.07E-03	2.48E-08	1.28E+05	1.01E+02	1.30E-01	1	1.00		
7.67E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	3.26E-03	2.63E-08	1.28E+05	1.01E+02	1.34E-01	1	1.00		
7.66E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	3.46E-03	2.78E-08	1.28E+05	1.01E+02	1.38E-01	1	1.00		
7.65E-06	1.89E-02	0.00E+00	1.01E+02	0.00E+00	1.05E+00	1.00E+00	3.67E-03	2.95E-08	1.28E+05	1.01E+02	1.43E-01	1	1.00	1	100
													0.00		
3.86E-06	2.66E-02	0.00E+00	1.42E+02	0.00E+00	1.07E+00	1.00E+00	1.81E-01	7.51E-07	2.52E+05	1.42E+02	1.00E+00	1	1.00		
3.75E-06	2.70E-02	0.00E+00	1.44E+02	0.00E+00	1.07E+00	1.00E+00	1.93E-01	7.74E-07	2.60E+05	1.44E+02	1.03E+00	1	1.00		
3.63E-06	2.74E-02	0.00E+00	1.46E+02	0.00E+00	1.07E+00	1.00E+00	2.04E-01	7.96E-07	2.68E+05	1.46E+02	1.06E+00	1	1.00		
3.51E-06	2.78E-02	0.00E+00	1.48E+02	0.00E+00	1.07E+00	1.00E+00	2.17E-01	8.19E-07	2.77E+05	1.48E+02	1.10E+00	1	1.00		
3.40E-06	2.83E-02	0.00E+00	1.51E+02	0.00E+00	1.08E+00	1.00E+00	2.30E-01	8.41E-07	2.86E+05	1.51E+02	1.13E+00	1	1.00		
						ΣF	AM-source =	2.11E-05							
							FAM =	6.00E-02							

Table 2.58 Calculation of F_{AM} for Tc-99 in an Area Source of 4 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.101	Yield 1 0.001772	FE 0.98	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 1.88E-04	Effective mass Attenuation Coefficient (ref) (/cm) 1.88E-04	Mass Attenuation Coefficient (soil) (/cm) 2.77E-01	Mass Attenuatio n Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuatio n Coefficient (air) (/cm) 1.88E-04	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	(t,t)			
	100			-			(10	a (()	2252262				
ta (cm) =	= 100		tc (cm) =	0		Sourc	e area (m2) =	10	Source-ref	area (m2) =	3359362				
exp(-ux)/x2 - source	mfp-dist. in source-air	mfp-dist. - in-source- cover	dist. in - source- air (cm)	dist. in- source- cover (cm)	BF-source- air	BF-source- cover	Vol-source	F _{AM} -source	4π x dist- source^2 (cm2)	distance- source (cm)	r - source (m)	ta + tc (m)	ta (m)	Receptor location y (cm)	Receptor location z (cm)
3.29E-06	2.88E-02	0.00E+00	1.53E+02	0.00E+00	1.08E+00	1.00E+00	2.44E-01	8.64E-07	2.96E+05	1.53E+02	1.16E+00	1	1.00		
3.17E-06	2.93E-02	0.00E+00	1.56E+02	0.00E+00	1.08E+00	1.00E+00	2.59E-01	8.86E-07	3.06E+05	1.56E+02	1.20E+00	1	1.00		
3.06E-06	2.98E-02	0.00E+00	1.59E+02	0.00E+00	1.08E+00	1.00E+00	2.75E-01	9.08E-07	3.17E+05	1.59E+02	1.23E+00	1	1.00		
2.95E-06	3.03E-02	0.00E+00	1.62E+02	0.00E+00	1.08E+00	1.00E+00	2.91E-01	9.30E-07	3.29E+05	1.62E+02	1.27E+00	1	1.00		
2.84E-06	3.09E-02	0.00E+00	1.65E+02	0.00E+00	1.08E+00	1.00E+00	3.09E-01	9.52E-07	3.41E+05	1.65E+02	1.31E+00	1	1.00		
2.74E-06	3.15E-02	0.00E+00	1.68E+02	0.00E+00	1.08E+00	1.00E+00	3.28E-01	9.73E-07	3.54E+05	1.68E+02	1.35E+00	1	1.00		
2.63E-06	3.21E-02	0.00E+00	1.71E+02	0.00E+00	1.09E+00	1.00E+00	3.48E-01	9.94E-07	3.68E+05	1.71E+02	1.39E+00	1	1.00		
2.53E-06	3.27E-02	0.00E+00	1.75E+02	0.00E+00	1.09E+00	1.00E+00	3.69E-01	1.01E-06	3.83E+05	1.75E+02	1.43E+00	1	1.00		
2.43E-06	3.34E-02	0.00E+00	1.78E+02	0.00E+00	1.09E+00	1.00E+00	3.91E-01	1.04E-06	3.98E+05	1.78E+02	1.47E+00	1	1.00	0	100
2.33E-06	3.41E-02	0.00E+00	1.82E+02	0.00E+00	1.09E+00	1.00E+00	4.15E-01	1.06E-06	4.15E+05	1.82E+02	1.52E+00	1	1.00		
2.23E-06	3.48E-02	0.00E+00	1.86E+02	0.00E+00	1.09E+00	1.00E+00	4.41E-01	1.08E-06	4.33E+05	1.86E+02	1.56E+00	1	1.00		
2.14E-06	3.55E-02	0.00E+00	1.89E+02	0.00E+00	1.10E+00	1.00E+00	4.67E-01	1.09E-06	4.51E+05	1.89E+02	1.61E+00	1	1.00		
2.05E-06	3.63E-02	0.00E+00	1.94E+02	0.00E+00	1.10E+00	1.00E+00	4.96E-01	1.11E-06	4.71E+05	1.94E+02	1.66E+00	1	1.00		
1.96E-06	3.71E-02	0.00E+00	1.98E+02	0.00E+00	1.10E+00	1.00E+00	5.26E-01	1.13E-06	4.92E+05	1.98E+02	1./1E+00	1	1.00		
1.87E-06	3.79E-02	0.00E+00	2.02E+02	0.00E+00	1.10E+00	1.00E+00	5.58E-01	1.15E-06	5.15E+05	2.02E+02	1.76E+00	1	1.00		
1.81E-06	3.85E-02	0.00E+00	2.05E+02	0.00E+00	1.10E+00	T.00E+00	3.93E-01	7.8/E-U/	5.30E+05	2.05E+02	1.79E+00	1	1.00		
						Σ	FAM-source =	3./1E-05							
							F _{AM} =	1.05E-01							

Table 2.59 Calculation of F_{AM} for Tc-99 in an Area Source of 10 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 0.101 = 100	Yield 1 0.001772	FE 0.98 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361 0	Effective Mass Attenuation Coefficient (source) (/cm) 1.88E-04	Effective mass Attenuation Coefficient (ref) (/cm) 1.88E-04 Sourc	Mass Attenuation Coefficient (soil) (/cm) 2.77E-01 e area (m2) =	Mass Attenuatio n Coefficient (concrete) (/cm) 4.26E-01 36	Mass Attenuatio n Coefficient (air) (/cm) 1.88E-04	μ= Gource-ref	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\frac{1}{2}\left(t+t\mu_{z}\right)+t$			
		مرابع الم	مالية أبر	allan in					4	-11-4				Decenter	Decenter
exp(-ux)/x2 -	mfn-dist in	- in-source-	source-	source-	BE-source-	BE-source-			4/LX dist-	source		ta + to		location v	location z
source	source-air	cover	air (cm)	cover (cm)	air	cover	Vol-source	Esource	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.71E-06	3.97E-02	0.00E+00	2.12E+02	0.00E+00	1.11E+00	1.00E+00	4.25E-01	8.02E-07	5.64E+05	2.12E+02	1.87E+00	1	1.00	(0)	(0)
1.65E-06	4.03E-02	0.00E+00	2.15E+02	0.00E+00	1.11E+00	1.00E+00	4.42E-01	8.10E-07	5.81E+05	2.15E+02	1.90E+00	1	1.00		
1.60E-06	4.10E-02	0.00E+00	2.18E+02	0.00E+00	1.11E+00	1.00E+00	4.60E-01	8.18E-07	6.00E+05	2.18E+02	1.94E+00	1	1.00		
1.55E-06	4.16E-02	0.00E+00	2.22E+02	0.00E+00	1.11E+00	1.00E+00	4.79E-01	8.25E-07	6.19E+05	2.22E+02	1.98E+00	1	1.00		
1.50E-06	4.23E-02	0.00E+00	2.25E+02	0.00E+00	1.11E+00	1.00E+00	4.98E-01	8.33E-07	6.39E+05	2.25E+02	2.02E+00	1	1.00		
1.45E-06	4.30E-02	0.00E+00	2.29E+02	0.00E+00	1.12E+00	1.00E+00	5.18E-01	8.40E-07	6.60E+05	2.29E+02	2.06E+00	1	1.00		
1.41E-06	4.37E-02	0.00E+00	2.33E+02	0.00E+00	1.12E+00	1.00E+00	5.39E-01	8.47E-07	6.81E+05	2.33E+02	2.10E+00	1	1.00		
1.36E-06	4.44E-02	0.00E+00	2.37E+02	0.00E+00	1.12E+00	1.00E+00	5.61E-01	8.54E-07	7.04E+05	2.37E+02	2.14E+00	1	1.00		
1.32E-06	4.51E-02	0.00E+00	2.40E+02	0.00E+00	1.12E+00	1.00E+00	5.84E-01	8.61E-07	7.27E+05	2.40E+02	2.19E+00	1	1.00		
1.27E-06	4.58E-02	0.00E+00	2.44E+02	0.00E+00	1.12E+00	1.00E+00	6.07E-01	8.67E-07	7.51E+05	2.44E+02	2.23E+00	1	1.00	0	100
1.23E-06	4.66E-02	0.00E+00	2.49E+02	0.00E+00	1.13E+00	1.00E+00	6.32E-01	8.74E-07	7.76E+05	2.49E+02	2.28E+00	1	1.00		
1.19E-06	4.74E-02	0.00E+00	2.53E+02	0.00E+00	1.13E+00	1.00E+00	6.57E-01	8.80E-07	8.03E+05	2.53E+02	2.32E+00	1	1.00		
7.77E-07	5.83E-02	0.00E+00	3.11E+02	0.00E+00	1.16E+00	1.00E+00	1.06E+00	9.50E-07	1.21E+06	3.11E+02	2.94E+00	1	1.00		
7.49E-07	5.93E-02	0.00E+00	3.16E+02	0.00E+00	1.16E+00	1.00E+00	1.10E+00	9.55E-07	1.26E+06	3.16E+02	3.00E+00	1	1.00		
7.22E-07	6.04E-02	0.00E+00	3.22E+02	0.00E+00	1.16E+00	1.00E+00	1.14E+00	9.60E-07	1.30E+06	3.22E+02	3.06E+00	1	1.00		
6.95E-07	6.15E-02	0.00E+00	3.28E+02	0.00E+00	1.17E+00	1.00E+00	1.19E+00	9.65E-07	1.35E+06	3.28E+02	3.12E+00	1	1.00		
6.70E-07	6.26E-02	0.00E+00	3.34E+02	0.00E+00	1.17E+00	1.00E+00	1.24E+00	9.70E-07	1.40E+06	3.34E+02	3.19E+00	1	1.00		
6.46E-07	6.38E-02	0.00E+00	3.40E+02	0.00E+00	1.17E+00	1.00E+00	1.29E+00	9.75E-07	1.45E+06	3.40E+02	3.25E+00	1	1.00		
6.22E-07	6.49E-02	0.00E+00	3.46E+02	0.00E+00	1.17E+00	1.00E+00	1.34E+00	9.80E-07	1.51E+06	3.46E+02	3.31E+00	1	1.00		
						Σ	F _{AM} -source =	6.58E-05							
							F _{AM} =	1.87E-01							

Table 2.60 Calculation of F_{AM} for Tc-99 in an Area Source of 36 m² without Cover at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective			Mass			(()			
				Effective	Mass	Effective		Attenuatio	Mass	μ=	$\frac{(t_a \mu_a + t_c \mu_a)}{(t_a \mu_a + t_c \mu_a)}$	$\frac{c}{c} + t\mu_s$			
				Dose	Attenuation	mass	Mass	n	Attenuatio		$(t_a + t_c)$	+t)			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	n						
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.101	0.001772	0.98	0.361	1.88E-04	1.88E-04	2.77E-01	4.26E-01	1.88E-04						
ta (cm) -	- 100		te (cm) -	0		Source	e area (m2) -	100	Source-ref	area (m2) -	3 45+06				
	- 100		te (em) -	U		Sourc	e alea (1112) -	100	Jource-ren a	area (mz) -	3.42+00				
		mfp-dist.	dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	- mfp-dist. in	in-source-	source-	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	cover	air (cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
5.77E-07	6.73E-02	0.00E+00	3.59E+02	0.00E+00	1.18E+00	1.00E+00	1.45E+00	9.89E-07	1.62E+06	3.59E+02	3.45E+00	1	1.00		
5.55E-07	6.86E-02	0.00E+00	3.66E+02	0.00E+00	1.18E+00	1.00E+00	1.51E+00	9.94E-07	1.68E+06	3.66E+02	3.52E+00	1	1.00		
5.35E-07	6.99E-02	0.00E+00	3.72E+02	0.00E+00	1.19E+00	1.00E+00	1.57E+00	9.98E-07	1.74E+06	3.72E+02	3.59E+00	1	1.00		
5.15E-07	7.11E-02	0.00E+00	3.79E+02	0.00E+00	1.19E+00	1.00E+00	1.63E+00	1.00E-06	1.81E+06	3.79E+02	3.66E+00	1	1.00		
4.95E-07	7.25E-02	0.00E+00	3.86E+02	0.00E+00	1.20E+00	1.00E+00	1.70E+00	1.01E-06	1.88E+06	3.86E+02	3.73E+00	1	1.00		
4.77E-07	7.38E-02	0.00E+00	3.94E+02	0.00E+00	1.20E+00	1.00E+00	1.77E+00	1.01E-06	1.95E+06	3.94E+02	3.81E+00	1	1.00		
4.59E-07	7.52E-02	0.00E+00	4.01E+02	0.00E+00	1.20E+00	1.00E+00	1.84E+00	1.02E-06	2.02E+06	4.01E+02	3.88E+00	1	1.00		
4.41E-07	7.66E-02	0.00E+00	4.09E+02	0.00E+00	1.21E+00	1.00E+00	1.91E+00	1.02E-06	2.10E+06	4.09E+02	3.96E+00	1	1.00		
4.25E-07	7.81E-02	0.00E+00	4.16E+02	0.00E+00	1.21E+00	1.00E+00	1.99E+00	1.02E-06	2.18E+06	4.16E+02	4.04E+00	1	1.00		
4.08E-07	7.95E-02	0.00E+00	4.24E+02	0.00E+00	1.21E+00	1.00E+00	2.07E+00	1.03E-06	2.26E+06	4.24E+02	4.12E+00	1	1.00		
3.93E-07	8.10E-02	0.00E+00	4.32E+02	0.00E+00	1.22E+00	1.00E+00	2.16E+00	1.03E-06	2.35E+06	4.32E+02	4.20E+00	1	1.00		
3.78E-07	8.26E-02	0.00E+00	4.40E+02	0.00E+00	1.22E+00	1.00E+00	2.24E+00	1.04E-06	2.44E+06	4.40E+02	4.29E+00	1	1.00		
3.63E-07	8.41E-02	0.00E+00	4.49E+02	0.00E+00	1.23E+00	1.00E+00	2.33E+00	1.04E-06	2.53E+06	4.49E+02	4.37E+00	1	1.00	0	100
3.49E-07	8.57E-02	0.00E+00	4.57E+02	0.00E+00	1.23E+00	1.00E+00	2.43E+00	1.04E-06	2.63E+06	4.57E+02	4.46E+00	1	1.00		
3.36E-07	8.74E-02	0.00E+00	4.66E+02	0.00E+00	1.24E+00	1.00E+00	2.53E+00	1.05E-06	2.73E+06	4.66E+02	4.55E+00	1	1.00		
3.23E-07	8.90E-02	0.00E+00	4.75E+02	0.00E+00	1.24E+00	1.00E+00	2.63E+00	1.05E-06	2.83E+06	4.75E+02	4.64E+00	1	1.00		
3.10E-07	9.07E-02	0.00E+00	4.84E+02	0.00E+00	1.24E+00	1.00E+00	2.73E+00	1.06E-06	2.94E+06	4.84E+02	4.73E+00	1	1.00		
2.98E-07	9.25E-02	0.00E+00	4.93E+02	0.00E+00	1.25E+00	1.00E+00	2.85E+00	1.06E-06	3.06E+06	4.93E+02	4.83E+00	1	1.00		
2.87E-07	9.43E-02	0.00E+00	5.03E+02	0.00E+00	1.25E+00	1.00E+00	2.96E+00	1.06E-06	3.18E+06	5.03E+02	4.93E+00	1	1.00		
2.75E-07	9.61E-02	0.00E+00	5.12E+02	0.00E+00	1.26E+00	1.00E+00	3.08E+00	1.07E-06	3.30E+06	5.12E+02	5.02E+00	1	1.00		
2.65E-07	9.79E-02	0.00E+00	5.22E+02	0.00E+00	1.26E+00	1.00E+00	3.20E+00	1.07E-06	3.43E+06	5.22E+02	5.12E+00	1	1.00		
2.54E-07	9.98E-02	0.00E+00	5.32E+02	0.00E+00	1.27E+00	1.00E+00	3.33E+00	1.08E-06	3.56E+06	5.32E+02	5.23E+00	1	1.00		
2.44E-07	1.02E-01	0.00E+00	5.42E+02	0.00E+00	1.27E+00	1.00E+00	3.47E+00	1.08E-06	3.70E+06	5.42E+02	5.33E+00	1	1.00		
2.35E-07	1.04E-01	0.00E+00	5.53E+02	0.00E+00	1.28E+00	1.00E+00	3.61E+00	1.08E-06	3.84E+06	5.53E+02	5.44E+00	1	1.00		
2.25E-07	1.06E-01	0.00E+00	5.64E+02	0.00E+00	1.28E+00	1.00E+00	3.75E+00	1.09E-06	3.99E+06	5.64E+02	5.55E+00	1	1.00		
2.16E-07	1.08E-01	0.00E+00	5.75E+02	0.00E+00	1.29E+00	1.00E+00	3.91E+00	1.09E-06	4.15E+06	5.75E+02	5.66E+00	1	1.00		
						Σ	F _{AM} -source =	9.29E-05							
							F _{AM} =	2.64E-01							

Table 2.61 Calculation of F_{AM} for Tc-99 in an Area Source of 100 m² without Cover at the Receptor Location (0, 0, 1) (m)

				Eluence to	Effective			Mass							
				Effective	Mass	Effective		Attenuatio	Mass		$(t_a \mu_a + t_c \mu)$	$(t_s + t\mu_s)$			
				Dose	Attenuation	mass	Mass	n	Attenuatio	μ=	(t_a+t_a)	(+t)			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	n		(a c	,			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FF	(nSv-cm2)	(Jcm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.101	0.001772	0.98	0.361	1.88E-04	1.88E-04	2.77E-01	4.26E-01	1.88E-04						
											-				
ta (cm) =	= 100		tc (cm) =	0		Sourc	e area (m2) =	1000	Source-ref	area (m2) =	3.36E+06				
		mfp-dist.	dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	in-source-	source-	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	cover	air (cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
2.08E-07	1.10E-01	0.00E+00	5.86E+02	0.00E+00	1.30E+00	1.00E+00	4.06E+00	1.09E-06	4.31E+06	5.86E+02	5.77E+00	1	1.00		
2.00E-07	1.12E-01	0.00E+00	5.97E+02	0.00E+00	1.30E+00	1.00E+00	4.23E+00	1.10E-06	4.48E+06	5.97E+02	5.89E+00	1	1.00		
1.92E-07	1.14E-01	0.00E+00	6.09E+02	0.00E+00	1.31E+00	1.00E+00	4.40E+00	1.10E-06	4.66E+06	6.09E+02	6.00E+00	1	1.00		
1.84E-07	1.16E-01	0.00E+00	6.20E+02	0.00E+00	1.31E+00	1.00E+00	4.58E+00	1.11E-06	4.84E+06	6.20E+02	6.12E+00	1	1.00		
1.77E-07	1.19E-01	0.00E+00	6.33E+02	0.00E+00	1.32E+00	1.00E+00	4.76E+00	1.11E-06	5.03E+06	6.33E+02	6.25E+00	1	1.00		
1.69E-07	1.21E-01	0.00E+00	6.45E+02	0.00E+00	1.33E+00	1.00E+00	4.95E+00	1.11E-06	5.23E+06	6.45E+02	6.37E+00	1	1.00		
1.63E-07	1.23E-01	0.00E+00	6.58E+02	0.00E+00	1.33E+00	1.00E+00	5.15E+00	1.12E-06	5.43E+06	6.58E+02	6.50E+00	1	1.00		
1.56E-07	1.26E-01	0.00E+00	6.70E+02	0.00E+00	1.34E+00	1.00E+00	5.36E+00	1.12E-06	5.65E+06	6.70E+02	6.63E+00	1	1.00		
1.50E-07	1.28E-01	0.00E+00	6.83E+02	0.00E+00	1.35E+00	1.00E+00	5.58E+00	1.12E-06	5.87E+06	6.83E+02	6.76E+00	1	1.00	0	100
1.44E-07	1.31E-01	0.00E+00	6.97E+02	0.00E+00	1.35E+00	1.00E+00	5.80E+00	1.13E-06	6.10E+06	6.97E+02	6.90E+00	1	1.00		
1.38E-07	1.33E-01	0.00E+00	7.11E+02	0.00E+00	1.36E+00	1.00E+00	6.04E+00	1.13E-06	6.35E+06	7.11E+02	7.03E+00	1	1.00		
2.24E-08	3.04E-01	0.00E+00	1.62E+03	0.00E+00	1.82E+00	1.00E+00	3.19E+01	1.30E-06	3.30E+07	1.62E+03	1.62E+01	1	1.00		
2.14E-08	3.10E-01	0.00E+00	1.65E+03	0.00E+00	1.83E+00	1.00E+00	3.32E+01	1.30E-06	3.43E+07	1.65E+03	1.65E+01	1	1.00		
2.04E-08	3.16E-01	0.00E+00	1.68E+03	0.00E+00	1.85E+00	1.00E+00	3.45E+01	1.31E-06	3.57E+07	1.68E+03	1.68E+01	1	1.00		
1.95E-08	3.22E-01	0.00E+00	1.72E+03	0.00E+00	1.87E+00	1.00E+00	3.59E+01	1.31E-06	3.71E+07	1.72E+03	1.71E+01	1	1.00		
1.87E-08	3.29E-01	0.00E+00	1.75E+03	0.00E+00	1.88E+00	1.00E+00	3.73E+01	1.31E-06	3.86E+07	1.75E+03	1.75E+01	1	1.00		
1.78E-08	3.35E-01	0.00E+00	1.79E+03	0.00E+00	1.90E+00	1.00E+00	3.88E+01	1.32E-06	4.01E+07	1.79E+03	1.78E+01	1	1.00		
						Σ	F _{AM} -source =	1.63E-04							
							F _{AM} =	4.62E-01							

Table 2.62 Calculation of F_{AM} for Tc-99 in an Area Source of 1,000 m² without Cover at the Receptor Location (0, 0, 10) (m)

# photons 1 ta (cm) =	Energy 1 0.101	Yield 1 0.001772	FE 0.98 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 1.88E-04	Effective mass Attenuation Coefficient (ref) (/cm) 1.88E-04 Sourc	Mass Attenuation Coefficient (soil) (/cm) 2.77E-01 e area (m2) =	Mass Attenuatio n Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuatio n Coefficient (air) (/cm) 1.88E-04 Source-ref	μ= 	$\frac{1}{2} \frac{(t_a \mu_a + t_c \mu_a)}{(t_a + t_c)}$	$(z_{s}^{c}+t\mu_{s})$ $(z_{s}^{c}+t\mu_{s})$			
		mfp-dist.	dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	in-source-	source-	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	cover	air (cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.70E-08	3.42E-01	0.00E+00	1.82E+03	0.00E+00	1.92E+00	1.00E+00	4.04E+01	1.32E-06	4.18E+07	1.82E+03	1.82E+01	1	1.00		
1.62E-08	3.49E-01	0.00E+00	1.86E+03	0.00E+00	1.94E+00	1.00E+00	4.21E+01	1.32E-06	4.34E+07	1.86E+03	1.86E+01	1	1.00		
1.55E-08	3.56E-01	0.00E+00	1.90E+03	0.00E+00	1.96E+00	1.00E+00	4.37E+01	1.33E-06	4.52E+07	1.90E+03	1.89E+01	1	1.00		
1.48E-08	3.63E-01	0.00E+00	1.93E+03	0.00E+00	1.98E+00	1.00E+00	4.55E+01	1.33E-06	4.70E+07	1.93E+03	1.93E+01	1	1.00		
1.41E-08	3.70E-01	0.00E+00	1.97E+03	0.00E+00	2.00E+00	1.00E+00	4.74E+01	1.34E-06	4.89E+07	1.97E+03	1.97E+01	1	1.00		
1.35E-08	3.77E-01	0.00E+00	2.01E+03	0.00E+00	2.02E+00	1.00E+00	4.93E+01	1.34E-06	5.09E+07	2.01E+03	2.01E+01	1	1.00		
1.29E-08	3.85E-01	0.00E+00	2.05E+03	0.00E+00	2.04E+00	1.00E+00	5.13E+01	1.34E-06	5.29E+07	2.05E+03	2.05E+01	1	1.00		
1.23E-08	3.93E-01	0.00E+00	2.09E+03	0.00E+00	2.06E+00	1.00E+00	5.33E+01	1.35E-06	5.51E+07	2.09E+03	2.09E+01	1	1.00		
1.17E-08	4.00E-01	0.00E+00	2.13E+03	0.00E+00	2.08E+00	1.00E+00	5.55E+01	1.35E-06	5.73E+07	2.13E+03	2.13E+01	1	1.00		
1.12E-08	4.08E-01	0.00E+00	2.18E+03	0.00E+00	2.10E+00	1.00E+00	5.77E+01	1.35E-06	5.96E+07	2.18E+03	2.17E+01	1	1.00		
1.06E-08	4.16E-01	0.00E+00	2.22E+03	0.00E+00	2.12E+00	1.00E+00	6.01E+01	1.36E-06	6.20E+07	2.22E+03	2.22E+01	1	1.00	0	100
1.01E-08	4.25E-01	0.00E+00	2.26E+03	0.00E+00	2.14E+00	1.00E+00	6.25E+01	1.36E-06	6.45E+07	2.26E+03	2.26E+01	1	1.00		
9.66E-09	4.33E-01	0.00E+00	2.31E+03	0.00E+00	2.17E+00	1.00E+00	6.50E+01	1.36E-06	6.71E+07	2.31E+03	2.31E+01	1	1.00		
1.18E-09	9.56E-01	0.00E+00	5.10E+03	0.00E+00	4.26E+00	1.00E+00	3.17E+02	1.59E-06	3.27E+08	5.10E+03	5.10E+01	1	1.00		
1.11E-09	9.75E-01	0.00E+00	5.20E+03	0.00E+00	4.34E+00	1.00E+00	3.30E+02	1.59E-06	3.40E+08	5.20E+03	5.20E+01	1	1.00		
1.05E-09	9.95E-01	0.00E+00	5.30E+03	0.00E+00	4.42E+00	1.00E+00	3.43E+02	1.59E-06	3.54E+08	5.30E+03	5.30E+01	1	1.00		
9.86E-10	1.01E+00	0.00E+00	5.41E+03	0.00E+00	4.55E+00	1.00E+00	3.57E+02	1.60E-06	3.68E+08	5.41E+03	5.41E+01	1	1.00		
9.29E-10	1.03E+00	0.00E+00	5.52E+03	0.00E+00	4.69E+00	1.00E+00	3.71E+02	1.62E-06	3.83E+08	5.52E+03	5.52E+01	1	1.00		
8.74E-10	1.06E+00	0.00E+00	5.63E+03	0.00E+00	4.83E+00	1.00E+00	3.86E+02	1.63E-06	3.98E+08	5.63E+03	5.63E+01	1	1.00		
						Σ	F _{AM} -source =	2.48E-04							
							F _{AM} =	7.04E-01							

Table 2.63 Calculation of F_{AM} for Tc-99 in an Area Source of 10,000 m² without Cover at the Receptor Location (0, 0, 1) (m)

		Average				
DCF-inf		Decay		Area of		Estimated
(mrem/yr per		Factor in		Source		Dose
pCi/g)	Half-life, yr	1st year	F _{CD} -surf	(m2)	F _{AM}	(mrem/yr)
				10,000	7.04E-01	6.40E-09
				1,000	4.62E-01	4.20E-09
1 265 04	2 125 05	1.005.00	7 255 05	100	2.64E-01	2.40E-09
1.202-04	2.132+03	1.002+00	7.232-03	36	1.87E-01	1.70E-09
				10	1.05E-01	9.58E-10
				4	6.00E-02	5.46E-10

Table 2.64 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six Area Sources without Cover

Radiation doses at the receptor location (0, 0, 0.3) (m) were estimated with the same procedure used for estimating the doses at the receptor location (0, 0, 1) (m). Because the source thickness (assumed to be 0.001 cm) and cover thickness (0 cm) did not change, the value of F_{CD} stayed the same, as shown in Table 2.56. The values of F_{AM} for each of the six circular area sources were estimated as the sum of the F_{AM} 's for individual annuli that constitute the area source. Because the design of tables used for estimating F_{AM} 's was the same as that of Tables 2.58 to 2.63, these estimation tables are not presented here; only the final value of F_{AM} for each area source are presented, in Table 2.65, which shows the calculation of radiation doses at the receptor location (0, 0, 0.3) (m). Table 2.66 shows the calculation of radiation doses at the receptor location (0, 0, 4) (m).

Comparison of the dose results for Tc-99 between the spreadsheets and RESRAD-BUILD are presented in Table 2.67. Because of the limited number of annuli used in the spreadsheets to approximate the area of the circular sources, it is expected that the estimation of external radiation doses is not as precise by spreadsheets as by the RESRAD-BUILD code. In general, the differences are less than 3%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD code.

2.3.1.2 Risk Results without Shielding

In the spreadsheets, estimates of cancer risks were obtained by multiplying the RESRAD-BUILD dose results with the radionuclide-specific dose-to-risk conversion factors presented in Table 2.10. Tables 2.68, 2.69, and 2.70 compare the cancer risk estimates from the spreadsheets and from the RESRAD-BUILD code for C-14, Mn-54, and Tc-99, respectively, at the three receptor locations associated with external radiation from the six circular area sources without cover. The estimates from the spreadsheets and from RESRAD-BUILD agree with each other.

Table 2.65 Estimation of External Radiation Dose at the Receptor Location (0, 0, 0.3) (m) from Tc-99 in Six Area Sources without Cover

DCF-inf		Average		Area of		Estimated
(mrem/yr per		Decay Factor		Source		Dose
pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	(m2)	F _{AM}	(mrem/yr)
				10,000	8.72E-01	7.94E-09
				1,000	6.31E-01	5.74E-09
1 265 04	2 125,05	1.005+00	7 255 05	100	4.30E-01	3.92E-09
1.202-04	2.132+03	1.002+00	7.23E-03	36	3.50E-01	3.18E-09
				10	2.57E-01	2.33E-09
				4	1.93E-01	1.75E-09

Table 2.66 Estimation of External Radiation Dose at the Receptor Location (0, 0, 4) (m) from Tc-99 in Six Area Sources without Cover

DCF-inf		Average		Area of		Estimated
(mrem/yr per		Decay Factor		Source		Dose
pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	(m2)	F _{AM}	(mrem/yr)
1.26E-04				10,000	4.99E-01	4.54E-09
				1,000	2.61E-01	2.38E-09
	2 125,05	1.005+00	7 255 05	100	8.88E-02	8.08E-10
	2.132+03	1.002+00	7.23E-03	36	4.30E-02	3.92E-10
				10	1.45E-02	1.32E-10
				4	6.07E-03	5.52E-11

	Recept	tor Location (0,	0, 1) (m)	Recept	or Location (0,	0, 0.3) (m)	Recept	or Location (0	, 0, 4) (m)
				Dose					
	Dose Results		Ratio -	Results		Ratio -	Dose Results	Dose Results	
	from	Dose Results	RESRAD-	from	Dose Results	RESRAD-	from	from	Ratio -
Area of	RESRAD-	from	BUILD/	RESRAD-	from	BUILD/	RESRAD-	Spreadsheet	RESRAD-BUILD/
Source (m ²)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets	BUILD	s	Spreadsheets
10,000	6.50E-09	6.40E-09	1.02	8.12E-09	7.94E-09	1.02	4.61E-09	4.54E-09	1.01
1,000	4.19E-09	4.20E-09	1.00	5.80E-09	5.74E-09	1.01	2.34E-09	2.38E-09	0.98
100	2.41E-09	2.40E-09	1.00	3.99E-09	3.92E-09	1.02	7.88E-10	8.08E-10	0.97
36	1.72E-09	1.70E-09	1.01	3.27E-09	3.18E-09	1.03	3.84E-10	3.92E-10	0.98
10	9.66E-10	9.58E-10	1.01	2.41E-09	2.33E-09	1.03	1.28E-10	1.32E-10	0.97
4	5.53E-10	5.46E-10	1.01	1.81E-09	1.75E-09	1.03	5.39E-11	5.52E-11	0.98

Table 2.67 Comparison of Radiation Doses (mrem/yr) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Six Area Sources without Cover

Table 2.68 Comparison of Cancer Risks (1/yr) Estimated by Spreadsheets and RESRAD-BUILD from C-14 in Six Area Sources without Cover

	Recept	tor Location (0,	, 0, 1) (m)	Recepto	or Location (0, 0	, 0.3) (m)	Recep	otor Location (0,	0, 4) (m)
				Dose					
	Dose Results			Results		Ratio -	Dose Results		
	from	Dose Results	Ratio -	from	Dose Results	RESRAD-	from	Dose Results	Ratio -
Area of	RESRAD-	from	RESRAD-BUILD/	RESRAD-	from	BUILD/	RESRAD-	from	RESRAD-BUILD/
Source (m2)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets
10,000	9.22E-16	9.23E-16	1.00	1.14E-15	1.15E-15	0.99	6.57E-16	6.60E-16	1.00
1,000	6.08E-16	6.08E-16	1.00	8.26E-16	8.30E-16	1.00	3.49E-16	3.51E-16	1.00
100	3.39E-16	3.41E-16	1.00	5.54E-16	5.56E-16	1.00	1.15E-16	1.16E-16	0.99
36	2.39E-16	2.40E-16	1.00	4.49E-16	4.51E-16	1.00	5.57E-17	5.59E-17	1.00
10	1.33E-16	1.34E-16	0.99	3.27E-16	3.28E-16	1.00	1.85E-17	1.85E-17	1.00
4	7.59E-17	7.60E-17	1.00	2.46E-16	2.47E-16	1.00	7.77E-18	7.83E-18	0.99

	Recept	tor Location (0,	0, 1) (m)	Recept	tor Location <mark>(</mark> 0,	0, 0.3) (m)	Recep	tor Location (O	, 0, 4) (m)
				Dose Results			Dose Results		
	Dose Results	Dose Results	Ratio -	from	Dose Results	Ratio -	from	Dose Results	Ratio -
Area of	from RESRAD-	from	RESRAD-BUILD/	RESRAD-	from	RESRAD-BUILD/	RESRAD-	from	RESRAD-BUILD/
Source (m2)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets
10,000	3.62E-11	3.62E-11	1.00	4.72E-11	4.71E-11	1.00	2.35E-11	2.36E-11	1.00
1,000	2.61E-11	2.61E-11	1.00	3.71E-11	3.71E-11	1.00	1.37E-11	1.37E-11	1.00
100	1.59E-11	1.58E-11	1.00	2.68E-11	2.68E-11	1.00	4.96E-12	4.96E-12	1.00
36	1.15E-11	1.15E-11	1.00	2.21E-11	2.22E-11	1.00	2.45E-12	2.45E-12	1.00
10	6.52E-12	6.52E-12	1.00	1.64E-11	1.64E-11	1.00	8.23E-13	8.22E-13	1.00
4	3.75E-12	3.75E-12	1.00	1.24E-11	1.24E-11	0.99	3.47E-13	3.48E-13	1.00

Table 2.69 Comparison of Cancer Risks (1/yr) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in Six Area Sources without Cover

Table 2.70 Comparison of Cancer Risks (1/yr) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Six Area Source without Cover

	Recept	tor Location (0,	0, 1) (m)	Recepto	or Location (0, 0	0, 0.3) (m)	Recept	or Location (0,	, 0, 4) (m)
				Dose					
	Dose Results		Ratio -	Results		Ratio -	Dose Results	Dose Results	
	from	Dose Results	RESRAD-	from	Dose Results	RESRAD-	from	from	Ratio -
Area of	RESRAD-	from	BUILD/	RESRAD-	from	BUILD/	RESRAD-	Spreadsheet	RESRAD-BUILD/
Source (m2)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets	BUILD	S	Spreadsheets
10,000	4.22E-15	4.20E-15	1.00	5.20E-15	5.25E-15	0.99	2.99E-15	2.98E-15	1.00
1,000	2.61E-15	2.71E-15	0.96	3.76E-15	3.75E-15	1.00	1.52E-15	1.51E-15	1.01
100	1.59E-15	1.56E-15	1.02	2.59E-15	2.58E-15	1.00	5.11E-16	5.09E-16	1.00
36	1.15E-15	1.11E-15	1.03	2.12E-15	2.11E-15	1.00	2.49E-16	2.48E-16	1.00
10	6.27E-16	6.24E-16	1.00	1.56E-15	1.56E-15	1.00	8.30E-17	8.27E-17	1.00
4	3.58E-16	3.57E-16	1.00	1.18E-15	1.17E-15	1.01	3.50E-17	3.48E-17	1.01

2.3.1.3 Dose Results with Concrete Shielding

Results for C-14. To verify external dose modeling when radiation was attenuated by shielding materials in RESRAD-BUILD, the radiation doses at the receptor location (0, 0, 1) (m) from each of the six area sources with a concrete cover of 1-cm thickness were estimated with spreadsheets.

Table 2.71 shows the calculation of F_{CD} , the cover and depth factor, for C-14. Table 2.72 shows the estimation of F_{AM-ref} for the reference area source, which is made of soil having an infinite extent. In the estimation, an area of about 3,000,000 m² was used for the reference source. Tables 2.73 to 2.78 show the estimation of F_{AM} 's for the six circular area sources considered in this comparison. After F_{CD} and F_{AM} 's were available, external radiation doses resulting from C-14 in each of the six circular area sources were estimated by adjusting the external radiation dose conversion factor for an infinite volume source from FGR 12, as shown in Table 2.79.

Radiation doses at the same receptor location (0, 0, 1) (m) but with a concrete cover of 5-cm thickness on each of the six area sources were then estimated. Table 2.80 shows the calculation of F_{CD} , the cover and depth factor, for C-14. The F_{AM-ref} for the reference source and F_{AM} for each of the six circular area sources were estimated with the same calculations as implemented in Tables 2.72 to 2.78 but for a cover thickness of 5 cm. The final values of F_{AM} for each area source are listed in Table 2.81, which shows the calculation of external radiation doses attenuated by the 5-cm concrete cover at the receptor location.

Comparisons of the dose results for C-14 between the spreadsheets and RESRAD-BUILD are presented in Table 2.82. In general, the differences are less than 7%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Results for Mn-54. To verify external dose modeling when radiation was attenuated by shielding materials in RESRAD-BUILD, the radiation doses at the receptor location (0, 0, 1) (m) from each of the six area sources with a concrete cover of 1-cm thickness were estimated with spreadsheets. Table 2.83 shows the calculation of F_{CD} , the cover and depth factor, for Mn-54. Table 2.84 shows the estimation of F_{AM-ref} for the reference area source, which is made of soil having an infinite extent. In the estimation, an area of about 3,000,000 m² was used for the reference source. Tables 2.85 to 2.90 show the estimation of F_{AM} 's for the six circular area sources considered in this comparison. After F_{CD} and F_{AM} 's were available, external radiation dose resulting from Mn-54 in each of the six circular area sources were estimated by adjusting the external radiation dose conversion factor for an infinite volume source from FGR 12, as shown in Table 2.91.

Table 2.71 Calculation of F_{CD} for C-14 in an Area Source with a Cover of 1 cm

Fitting param	neters Ai, Bi, k	(ai (cm2/g), Kbi	(cm2/g)		0.642	0.358	0.294	3.39			
Reference so	ource -	Cover materia	al =	none	Cover thickne	ess, cm =		1	Density of cove	er, g/cm3 =	2.4
		Source densit	y , g/cm3 =		1.6	Source thickn	ess, cm =		0.001		
Surface activ	ity conversio	n factor, (pCi/	g)/(pCi/m2)		0.0625						
F _{CD}	$= \frac{D(T_c=t_c)}{D(T_c=t_c)}$	$\sum_{\substack{c,T_S=t_S)\\0,T_S=\infty}}^{c,T_S=t_S)} = Ae$	$-K_A \rho_c t_c (1 -$	$-e^{-K_A \rho_S t_S})$	$+ Be^{-K_B\rho_c t_c}$	$(1-e^{-K_B\rho_S t_s})$	5),				
FCD-surf=	0.00000935		(Note: FCD-s	onversion facto	r)						

				Fluence to	Effective										
				Effective	Mass	Effective		Mass			(+ 11 ±+ 11	$(\pm tu)$			
				Dose	Attenuation	mass	Mass	Attenuation	Mass	μ=	$\frac{(i_a\mu_a + i_c\mu_a)}{(i_a\mu_a + i_c\mu_a)}$	$\frac{1}{c} + i\mu_s$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		$(t_a + t_c)$	+t			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.049	8.65E-04	0.1	0.220	1.02E-02	8.94E-03	8.68E-01	9.99E-01	2.59E-04						
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	4	5	Source-ref	area (m2) =	3.36E+06			
														Receptor	Receptor
exp(-ux)/x2 ·	dist. in -ref-	dist. in-ref-	mfp-dist. in -	mfp-dist. in-			Vol-source-		4π x dist-ref^2	distance-		ta + tc		location y	location z
ref	air (cm)	cover (cm)	ref-air	ref-cover	BF-ref-air	BF-ref-cover	ref	F _{AM} -ref	(cm2)	ref (cm)	r - ref (m)	(m)	ta (m)	(cm)	(cm)
3.25E-06	9.90E+01	1.00E+00	2.56E-02	8.68E-01	1.07E+00	1.96E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	0.99		
3.21E-06	9.95E+01	1.00E+00	2.57E-02	8.73E-01	1.07E+00	1.97E+00	3.14E-02	2.13E-07	1.27E+05	1.00E+02	1.00E-01	1	0.99		
3.20E-06	9.95E+01	1.01E+00	2.57E-02	8.73E-01	1.07E+00	1.97E+00	1.91E-03	1.30E-08	1.27E+05	1.01E+02	1.03E-01	1	0.99		
3.20E-06	9.96E+01	1.01E+00	2.58E-02	8.73E-01	1.07E+00	1.97E+00	2.03E-03	1.37E-08	1.27E+05	1.01E+02	1.06E-01	1	0.99		
3.20E-06	9.96E+01	1.01E+00	2.58E-02	8.73E-01	1.07E+00	1.97E+00	2.15E-03	1.46E-08	1.27E+05	1.01E+02	1.09E-01	1	0.99		
3.19E-06	9.96E+01	1.01E+00	2.58E-02	8.74E-01	1.07E+00	1.97E+00	2.29E-03	1.54E-08	1.27E+05	1.01E+02	1.13E-01	1	0.99		
3.19E-06	9.97E+01	1.01E+00	2.58E-02	8.74E-01	1.07E+00	1.97E+00	2.42E-03	1.64E-08	1.27E+05	1.01E+02	1.16E-01	1	0.99		
3.19E-06	9.97E+01	1.01E+00	2.58E-02	8.74E-01	1.07E+00	1.97E+00	2.57E-03	1.74E-08	1.28E+05	1.01E+02	1.19E-01	1	0.99	0	100
3.18E-06	9.97E+01	1.01E+00	2.58E-02	8.75E-01	1.07E+00	1.97E+00	2.73E-03	1.84E-08	1.28E+05	1.01E+02	1.23E-01	1	0.99		
3.23E-22	3.40E+03	3.43E+01	8.79E-01	2.98E+01	3.77E+00	1.42E+01	1.44E+02	2.49E-18	1.48E+08	3.43E+03	3.43E+01	1	0.99		
1.68E-22	3.46E+03	3.50E+01	8.96E-01	3.04E+01	3.83E+00	1.45E+01	1.49E+02	1.40E-18	1.54E+08	3.50E+03	3.50E+01	1	0.99		
8.66E-23	3.53E+03	3.57E+01	9.14E-01	3.10E+01	3.89E+00	1.47E+01	1.55E+02	7.72E-19	1.60E+08	3.57E+03	3.57E+01	1	0.99		
4.40E-23	3.60E+03	3.64E+01	9.32E-01	3.16E+01	3.96E+00	1.50E+01	1.62E+02	4.22E-19	1.67E+08	3.64E+03	3.64E+01	1	0.99		
2.21E-23	3.68E+03	3.71E+01	9.51E-01	3.22E+01	4.02E+00	1.52E+01	1.68E+02	2.27E-19	1.73E+08	3.71E+03	3.71E+01	1	0.99		
1.09E-23	3.75E+03	3.79E+01	9.70E-01	3.29E+01	4.09E+00	1.55E+01	1.75E+02	1.21E-19	1.80E+08	3.79E+03	3.79E+01	1	0.99		
0.00E+00	9.84E+04	9.94E+02	2.55E+01	8.63E+02	3.80E+02	1.84E+01	1.21E+05	0.00E+00	1.24E+11	9.94E+04	9.94E+02	1	0.99		
0.00E+00	1.00E+05	1.01E+03	2.60E+01	8.80E+02	3.97E+02	1.84E+01	1.25E+05	0.00E+00	1.29E+11	1.01E+05	1.01E+03	1	0.99		
0.00E+00	1.02E+05	1.03E+03	2.65E+01	8.98E+02	4.14E+02	1.84E+01	1.30E+05	0.00E+00	1.34E+11	1.03E+05	1.03E+03	1	0.99		
							∑ F _{AM} -ref =	3.50E-05							

Table 2.72 Calculation of F_{AM} for C-14 in a Reference Area Source with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass			(4)			
				Dose	Attenuation	mass	Mass	Attenuation	Mass	μ=	$\frac{(t_a \mu_a + t_c \mu_a)}{(t_a \mu_a + t_c \mu_a)}$	$+t\mu_s$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	· ·	$(t_a + t_c \cdot$	+ <i>t</i>)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.049	8.65E-04	0.1	0.220	1.02E-02	8.94E-03	8.68E-01	9.99E-01	2.59E-04						
							()	-			(2252252			
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	4		Source-ref a	area (m2) =	3359362			
				attan ta					Am undlast	distance of				Desertes	Decenter
	and a street to	and a dist in	dist in second	aist. In-		DE			4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2	- mtp-dist. in	- mtp-dist. In-	dist. In -source-	source-		BF-source-		-	source ²	source	r - source	ta + tc	ta (m)	location y	location z
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	voi-source	F _{AM} -source	(cmz)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
2.86E-06	2.56E-02	9.99E-01	9.90E+01	1.00E+00	1.07E+00	1.71E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	0.99		
2.81E-06	2.57E-02	1.00E+00	9.95E+01	1.00E+00	1.07E+00	1.71E+00	3.14E-02	1.63E-07	1.27E+05	1.00E+02	1.00E-01	1	0.99		
2.81E-06	2.57E-02	1.00E+00	9.95E+01	1.01E+00	1.07E+00	1.71E+00	1.91E-03	9.91E-09	1.27E+05	1.01E+02	1.03E-01	1	0.99		
2.81E-06	2.58E-02	1.00E+00	9.96E+01	1.01E+00	1.07E+00	1.71E+00	2.03E-03	1.05E-08	1.27E+05	1.01E+02	1.06E-01	1	0.99		
2.80E-06	2.58E-02	1.00E+00	9.96E+01	1.01E+00	1.07E+00	1.71E+00	2.15E-03	1.11E-08	1.27E+05	1.01E+02	1.09E-01	1	0.99		
2.80E-06	2.58E-02	1.01E+00	9.96E+01	1.01E+00	1.07E+00	1.71E+00	2.29E-03	1.18E-08	1.27E+05	1.01E+02	1.13E-01	1	0.99		
2.80E-06	2.58E-02	1.01E+00	9.97E+01	1.01E+00	1.07E+00	1.71E+00	2.42E-03	1.25E-08	1.27E+05	1.01E+02	1.16E-01	1	0.99		
2.80E-06	2.58E-02	1.01E+00	9.97E+01	1.01E+00	1.07E+00	1.71E+00	2.57E-03	1.33E-08	1.28E+05	1.01E+02	1.19E-01	1	0.99		
2.79E-06	2.58E-02	1.01E+00	9.97E+01	1.01E+00	1.07E+00	1.72E+00	2.73E-03	1.40E-08	1.28E+05	1.01E+02	1.23E-01	1	0.99		
2.79E-06	2.58E-02	1.01E+00	9.98E+01	1.01E+00	1.07E+00	1.72E+00	2.90E-03	1.49E-08	1.28E+05	1.01E+02	1.27E-01	1	0.99		
2.78E-06	2.58E-02	1.01E+00	9.98E+01	1.01E+00	1.08E+00	1.72E+00	3.07E-03	1.58E-08	1.28E+05	1.01E+02	1.30E-01	1	0.99		
2.78E-06	2.58E-02	1.01E+00	9.99E+01	1.01E+00	1.08E+00	1.72E+00	3.26E-03	1.67E-08	1.28E+05	1.01E+02	1.34E-01	1	0.99		
2.77E-06	2.59E-02	1.01E+00	9.99E+01	1.01E+00	1.08E+00	1.72E+00	3.46E-03	1.77E-08	1.28E+05	1.01E+02	1.38E-01	1	0.99		
2.77E-06	2.59E-02	1.01E+00	1.00E+02	1.01E+00	1.08E+00	1.72E+00	3.67E-03	1.87E-08	1.28E+05	1.01E+02	1.43E-01	1	0.99	0	100
9.29E-07	3.63E-02	1.41E+00	1.40E+02	1.42E+00	1.11E+00	1.92E+00	1.81E-01	3.57E-07	2.52E+05	1.42E+02	1.00E+00	1	0.99		
8.82E-07	3.68E-02	1.44E+00	1.42E+02	1.44E+00	1.11E+00	1.93E+00	1.93E-01	3.62E-07	2.60E+05	1.44E+02	1.03E+00	1	0.99		
8.36E-07	3.74E-02	1.46E+00	1.45E+02	1.46E+00	1.11E+00	1.94E+00	2.04E-01	3.67E-07	2.68E+05	1.46E+02	1.06E+00	1	0.99		
7.90E-07	3.80E-02	1.48E+00	1.47E+02	1.48E+00	1.11E+00	1.95E+00	2.17E-01	3.71E-07	2.77E+05	1.48E+02	1.10E+00	1	0.99		
7.46E-07	3.86E-02	1.51E+00	1.49E+02	1.51E+00	1.11E+00	1.96E+00	2.30E-01	3.74E-07	2.86E+05	1.51E+02	1.13E+00	1	0.99		
						Σ	F _{AM} -source =	1.14E-05							
							F _{AM} =	3.27E-01							

Table 2.73 Calculation of F_{AM} for C-14 in an Area Source of 4 m² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass			(4 4	(
				Dose	Attenuation	mass	Mass	Attenuation	Mass	μ=	$\frac{(l_a \mu_a + l_c \mu_a)}{(l_a \mu_a + l_c \mu_a)}$	(τ_{s}^{+})			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		$(t_a + t_c)$	+t)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.049	8.65E-04	0.1	0.220	1.02E-02	8.94E-03	8.68E-01	9.99E-01	2.59E-04						
ta <mark>(cm)</mark> =	99		tc (cm) =	1		Sourc	e area (m2) =	10	Source-ref	area (m2) =	3.36E+06				
				dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	- mfp-dist. in-	dist. in -source-	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
7.03E-07	3.93E-02	1.53E+00	1.52E+02	1.53E+00	1.11E+00	1.97E+00	2.44E-01	3.77E-07	2.96E+05	1.53E+02	1.16E+00	1	0.99		
6.61E-07	4.00E-02	1.56E+00	1.54E+02	1.56E+00	1.12E+00	1.99E+00	2.59E-01	3.79E-07	3.06E+05	1.56E+02	1.20E+00	1	0.99		
6.20E-07	4.07E-02	1.59E+00	1.57E+02	1.59E+00	1.12E+00	2.00E+00	2.75E-01	3.81E-07	3.17E+05	1.59E+02	1.23E+00	1	0.99		
5.81E-07	4.14E-02	1.62E+00	1.60E+02	1.62E+00	1.12E+00	2.01E+00	2.91E-01	3.82E-07	3.29E+05	1.62E+02	1.27E+00	1	0.99		
5.43E-07	4.22E-02	1.65E+00	1.63E+02	1.65E+00	1.12E+00	2.03E+00	3.09E-01	3.82E-07	3.41E+05	1.65E+02	1.31E+00	1	0.99		
5.06E-07	4.30E-02	1.68E+00	1.66E+02	1.68E+00	1.12E+00	2.04E+00	3.28E-01	3.81E-07	3.54E+05	1.68E+02	1.35E+00	1	0.99		
4.71E-07	4.38E-02	1.71E+00	1.69E+02	1.71E+00	1.13E+00	2.06E+00	3.48E-01	3.80E-07	3.68E+05	1.71E+02	1.39E+00	1	0.99		
4.37E-07	4.47E-02	1.74E+00	1.73E+02	1.75E+00	1.13E+00	2.08E+00	3.69E-01	3.78E-07	3.83E+05	1.75E+02	1.43E+00	1	0.99		
4.05E-07	4.56E-02	1.78E+00	1.76E+02	1.78E+00	1.13E+00	2.09E+00	3.91E-01	3.76E-07	3.98E+05	1.78E+02	1.47E+00	1	0.99	0	100
3.74E-07	4.65E-02	1.81E+00	1.80E+02	1.82E+00	1.14E+00	2.11E+00	4.15E-01	3.73E-07	4.15E+05	1.82E+02	1.52E+00	1	0.99		
3.45E-07	4.75E-02	1.85E+00	1.84E+02	1.86E+00	1.14E+00	2.13E+00	4.41E-01	3.69E-07	4.33E+05	1.86E+02	1.56E+00	1	0.99		
3.18E-07	4.85E-02	1.89E+00	1.88E+02	1.89E+00	1.14E+00	2.15E+00	4.67E-01	3.65E-07	4.51E+05	1.89E+02	1.61E+00	1	0.99		
2.92E-07	4.96E-02	1.93E+00	1.92E+02	1.94E+00	1.14E+00	2.17E+00	4.96E-01	3.60E-07	4.71E+05	1.94E+02	1.66E+00	1	0.99		
2.68E-07	5.07E-02	1.98E+00	1.96E+02	1.98E+00	1.15E+00	2.19E+00	5.26E-01	3.54E-07	4.92E+05	1.98E+02	1.71E+00	1	0.99		
2.45E-07	5.18E-02	2.02E+00	2.00E+02	2.02E+00	1.15E+00	2.21E+00	5.58E-01	3.47E-07	5.15E+05	2.02E+02	1.76E+00	1	0.99		
2.30E-07	5.26E-02	2.05E+00	2.03E+02	2.05E+00	1.15E+00	2.22E+00	3.93E-01	2.31E-07	5.30E+05	2.05E+02	1.79E+00	1	0.99		
						Σ	F _{AM} -source =	1.73E-05							
							F _{AM} =	4.93E-01							

Table 2.74 Calculation of F_{AM} for C-14 in an Area Source of 10 m² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass			(+ 11 ± + 11	$\pm t \mu$			
				Dose	Attenuation	mass	Mass	Attenuation	Mass	μ=	$\frac{(\iota_a \mu_a + \iota_c \mu_c)}{(\iota_a \mu_a + \iota_c \mu_c)}$	$(\pm i\mu_s)$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		$(t_a + t_c + t_c)$	+t)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.049	8.65E-04	0.1	0.220	1.02E-02	8.94E-03	8.68E-01	9.99E-01	2.59E-04						
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	36		Source-ref a	area (m2) =	3359362			
				dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	- mfp-dist. in-	dist. in -source-	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
2.03E-07	5.42E-02	2.11E+00	2.10E+02	2.12E+00	1.16E+00	2.24E+00	4.25E-01	2.24E-07	5.64E+05	2.12E+02	1.87E+00	1	0.99		
1.90E-07	5.51E-02	2.15E+00	2.13E+02	2.15E+00	1.16E+00	2.25E+00	4.42E-01	2.20E-07	5.81E+05	2.15E+02	1.90E+00	1	0.99		
1.78E-07	5.59E-02	2.18E+00	2.16E+02	2.18E+00	1.16E+00	2.27E+00	4.60E-01	2.16E-07	6.00E+05	2.18E+02	1.94E+00	1	0.99		
1.66E-07	5.68E-02	2.22E+00	2.20E+02	2.22E+00	1.17E+00	2.28E+00	4.79E-01	2.12E-07	6.19E+05	2.22E+02	1.98E+00	1	0.99		
1.55E-07	5.77E-02	2.25E+00	2.23E+02	2.25E+00	1.17E+00	2.29E+00	4.98E-01	2.07E-07	6.39E+05	2.25E+02	2.02E+00	1	0.99		
1.45E-07	5.87E-02	2.29E+00	2.27E+02	2.29E+00	1.17E+00	2.30E+00	5.18E-01	2.03E-07	6.60E+05	2.29E+02	2.06E+00	1	0.99		
1.35E-07	5.96E-02	2.32E+00	2.30E+02	2.33E+00	1.17E+00	2.32E+00	5.39E-01	1.98E-07	6.81E+05	2.33E+02	2.10E+00	1	0.99		
1.26E-07	6.06E-02	2.36E+00	2.34E+02	2.37E+00	1.18E+00	2.33E+00	5.61E-01	1.94E-07	7.04E+05	2.37E+02	2.14E+00	1	0.99		
1.17E-07	6.16E-02	2.40E+00	2.38E+02	2.40E+00	1.18E+00	2.34E+00	5.84E-01	1.89E-07	7.27E+05	2.40E+02	2.19E+00	1	0.99		
1.09E-07	6.26E-02	2.44E+00	2.42E+02	2.44E+00	1.18E+00	2.36E+00	6.07E-01	1.84E-07	7.51E+05	2.44E+02	2.23E+00	1	0.99	0	100
1.01E-07	6.37E-02	2.48E+00	2.46E+02	2.49E+00	1.18E+00	2.37E+00	6.32E-01	1.79E-07	7.76E+05	2.49E+02	2.28E+00	1	0.99		
9.36E-08	6.47E-02	2.52E+00	2.50E+02	2.53E+00	1.19E+00	2.39E+00	6.57E-01	1.74E-07	8.03E+05	2.53E+02	2.32E+00	1	0.99		
3.41E-08	7.96E-02	3.10E+00	3.08E+02	3.11E+00	1.23E+00	2.59E+00	1.06E+00	1.15E-07	1.21E+06	3.11E+02	2.94E+00	1	0.99		
3.11E-08	8.10E-02	3.16E+00	3.13E+02	3.16E+00	1.24E+00	2.60E+00	1.10E+00	1.10E-07	1.26E+06	3.16E+02	3.00E+00	1	0.99		
2.83E-08	8.25E-02	3.22E+00	3.19E+02	3.22E+00	1.24E+00	2.62E+00	1.14E+00	1.05E-07	1.30E+06	3.22E+02	3.06E+00	1	0.99		
2.57E-08	8.40E-02	3.28E+00	3.25E+02	3.28E+00	1.24E+00	2.64E+00	1.19E+00	1.00E-07	1.35E+06	3.28E+02	3.12E+00	1	0.99		
2.33E-08	8.55E-02	3.34E+00	3.31E+02	3.34E+00	1.25E+00	2.66E+00	1.24E+00	9.58E-08	1.40E+06	3.34E+02	3.19E+00	1	0.99		
2.11E-08	8.71E-02	3.40E+00	3.37E+02	3.40E+00	1.25E+00	2.67E+00	1.29E+00	9.12E-08	1.45E+06	3.40E+02	3.25E+00	1	0.99		
1.91E-08	8.87E-02	3.46E+00	3.43E+02	3.46E+00	1.26E+00	2.69E+00	1.34E+00	8.68E-08	1.51E+06	3.46E+02	3.31E+00	1	0.99		
-						Σ	F _{AM} -source =	2.23E-05							
							F _{AM} =	6.36E-01							

Table 2.75 Calculation of F_{AM} for C-14 in an Area Source of 36 m² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass			(
				Dose	Attenuation	mass	Mass	Attenuation	Mass	<i>u</i> =	$\frac{(t_a \mu_a + t_c \mu_a)}{(t_a \mu_a + t_c \mu_a)}$	$(\pm t\mu_s)$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		$(t_a + t_c \cdot$	+t)			
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.049	8.65E-04	0.1	0.220	1.02E-02	8.94E-03	8.68E-01	9.99E-01	2.59E-04						
ta (cm) =	99		tc (cm) =	1		Source	e area (m2) =	100		Source-ref	area (m2) =	3359362			
				dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	- mfp-dist. in-	dist. in -source-	source-		BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.56E-08	9.20E-02	3.59E+00	3.55E+02	3.59E+00	1.27E+00	2.73E+00	1.45E+00	7.83E-08	1.62E+06	3.59E+02	3.45E+00	1	0.99		
1.40E-08	9.37E-02	3.65E+00	3.62E+02	3.66E+00	1.27E+00	2.75E+00	1.51E+00	7.42E-08	1.68E+06	3.66E+02	3.52E+00	1	0.99		
1.26E-08	9.54E-02	3.72E+00	3.69E+02	3.72E+00	1.28E+00	2.77E+00	1.57E+00	7.02E-08	1.74E+06	3.72E+02	3.59E+00	1	0.99		
1.13E-08	9.72E-02	3.79E+00	3.76E+02	3.79E+00	1.28E+00	2.79E+00	1.63E+00	6.64E-08	1.81E+06	3.79E+02	3.66E+00	1	0.99		
1.02E-08	9.90E-02	3.86E+00	3.83E+02	3.86E+00	1.29E+00	2.81E+00	1.70E+00	6.26E-08	1.88E+06	3.86E+02	3.73E+00	1	0.99		
9.10E-09	1.01E-01	3.93E+00	3.90E+02	3.94E+00	1.29E+00	2.84E+00	1.77E+00	5.90E-08	1.95E+06	3.94E+02	3.81E+00	1	0.99		
8.13E-09	1.03E-01	4.01E+00	3.97E+02	4.01E+00	1.30E+00	2.86E+00	1.84E+00	5.55E-08	2.02E+06	4.01E+02	3.88E+00	1	0.99		
7.25E-09	1.05E-01	4.08E+00	4.04E+02	4.09E+00	1.30E+00	2.88E+00	1.91E+00	5.21E-08	2.10E+06	4.09E+02	3.96E+00	1	0.99		
6.46E-09	1.07E-01	4.16E+00	4.12E+02	4.16E+00	1.31E+00	2.90E+00	1.99E+00	4.89E-08	2.18E+06	4.16E+02	4.04E+00	1	0.99		
5.74E-09	1.09E-01	4.24E+00	4.20E+02	4.24E+00	1.32E+00	2.92E+00	2.07E+00	4.57E-08	2.26E+06	4.24E+02	4.12E+00	1	0.99		
5.09E-09	1.11E-01	4.32E+00	4.28E+02	4.32E+00	1.32E+00	2.95E+00	2.16E+00	4.28E-08	2.35E+06	4.32E+02	4.20E+00	1	0.99		
4.51E-09	1.13E-01	4.40E+00	4.36E+02	4.40E+00	1.33E+00	2.97E+00	2.24E+00	3.99E-08	2.44E+06	4.40E+02	4.29E+00	1	0.99		
3.99E-09	1.15E-01	4.48E+00	4.44E+02	4.49E+00	1.33E+00	2.99E+00	2.33E+00	3.72E-08	2.53E+06	4.49E+02	4.37E+00	1	0.99	0	100
3.52E-09	1.17E-01	4.57E+00	4.53E+02	4.57E+00	1.34E+00	3.02E+00	2.43E+00	3.46E-08	2.63E+06	4.57E+02	4.46E+00	1	0.99		
3.10E-09	1.19E-01	4.65E+00	4.61E+02	4.66E+00	1.35E+00	3.04E+00	2.53E+00	3.21E-08	2.73E+06	4.66E+02	4.55E+00	1	0.99		
2.73E-09	1.22E-01	4.74E+00	4.70E+02	4.75E+00	1.35E+00	3.07E+00	2.63E+00	2.97E-08	2.83E+06	4.75E+02	4.64E+00	1	0.99		
2.39E-09	1.24E-01	4.83E+00	4.79E+02	4.84E+00	1.36E+00	3.09E+00	2.73E+00	2.75E-08	2.94E+06	4.84E+02	4.73E+00	1	0.99		
2.09E-09	1.26E-01	4.93E+00	4.88E+02	4.93E+00	1.37E+00	3.12E+00	2.85E+00	2.54E-08	3.06E+06	4.93E+02	4.83E+00	1	0.99		
1.83E-09	1.29E-01	5.02E+00	4.98E+02	5.03E+00	1.37E+00	3.14E+00	2.96E+00	2.34E-08	3.18E+06	5.03E+02	4.93E+00	1	0.99		
1.60E-09	1.31E-01	5.12E+00	5.07E+02	5.12E+00	1.38E+00	3.17E+00	3.08E+00	2.15E-08	3.30E+06	5.12E+02	5.02E+00	1	0.99		
1.39E-09	1.34E-01	5.21E+00	5.17E+02	5.22E+00	1.39E+00	3.20E+00	3.20E+00	1.97E-08	3.43E+06	5.22E+02	5.12E+00	1	0.99		
1.21E-09	1.36E-01	5.32E+00	5.27E+02	5.32E+00	1.40E+00	3.22E+00	3.33E+00	1.81E-08	3.56E+06	5.32E+02	5.23E+00	1	0.99		
1.04E-09	1.39E-01	5.42E+00	5.37E+02	5.42E+00	1.40E+00	3.25E+00	3.47E+00	1.65E-08	3.70E+06	5.42E+02	5.33E+00	1	0.99		
9.02E-10	1.42E-01	5.52E+00	5.47E+02	5.53E+00	1.41E+00	3.28E+00	3.61E+00	1.51E-08	3.84E+06	5.53E+02	5.44E+00	1	0.99		
7.78E-10	1.44E-01	5.63E+00	5.58E+02	5.64E+00	1.42E+00	3.30E+00	3.75E+00	1.37E-08	3.99E+06	5.64E+02	5.55E+00	1	0.99		
6.70E-10	1.47E-01	5.74E+00	5.69E+02	5.75E+00	1.43E+00	3.33E+00	3.91E+00	1.24E-08	4.15E+06	5.75E+02	5.66E+00	1	0.99		
						Σ	F _{AM} -source =	2.33E-05							
							F _{AM} =	6.66E-01							

Table 2.76 Calculation of F_{AM} for C-14 in an Area Source of 100 m² with a Concrete Cover of 1 cm at the Recetpor Location (0, 0, 1) (m)

# photons	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.220	Effective Mass Attenuation Coefficient (source) (/cm) 1.02E-02	Effective mass Attenuation Coefficient (ref) (/cm) 8.94E-03	Mass Attenuation Coefficient (soil) (/cm) 8.68E-01	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ=	$\frac{1}{(t_a \mu_a + t_c \mu_a)} \frac{1}{(t_a + t_c $	$\left(\frac{t_{e}+t\mu_{s}}{t_{e}+t}\right)$			
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	1000		Source-ref	area (m2) =	3359362			
exp(-ux)/x2 source	- mfp-dist. in source-air	- mfp-dist. in- source-cover	dist. in -source air	dist. in- source- cover	BF-source-air	BF-source- cover	Vol-source	F₄M-source	4π x dist- source^2	distance- source	r - source, m	ta + tc, m	ta, m	Receptor location y, cm	Receptor location z, cm
5.75E-10	1.50E-01	5.85E+00	5.80E+02	5.86E+00	1.44E+00	3.36E+00	4.06E+00	1.13E-08	4.31E+06	5.86E+02	5.77E+00	1	0.99		
4.92E-10	1.53E-01	5.96E+00	5.91E+02	5.97E+00	1.44E+00	3.39E+00	4.23E+00	1.02E-08	4.48E+06	5.97E+02	5.89E+00	1	0.99		
4.21E-10	1.56E-01	6.08E+00	6.03E+02	6.09E+00	1.45E+00	3.42E+00	4.40E+00	9.20E-09	4.66E+06	6.09E+02	6.00E+00	1	0.99		
3.59E-10	1.59E-01	6.20E+00	6.14E+02	6.20E+00	1.46E+00	3.45E+00	4.58E+00	8.27E-09	4.84E+06	6.20E+02	6.12E+00	1	0.99		
3.05E-10	1.62E-01	6.32E+00	6.26E+02	6.33E+00	1.47E+00	3.48E+00	4.76E+00	7.43E-09	5.03E+06	6.33E+02	6.25E+00	1	0.99		
2.58E-10	1.65E-01	6.44E+00	6.38E+02	6.45E+00	1.48E+00	3.51E+00	4.95E+00	6.65E-09	5.23E+06	6.45E+02	6.37E+00	1	0.99		
2.19E-10	1.68E-01	6.57E+00	6.51E+02	6.58E+00	1.49E+00	3.54E+00	5.15E+00	5.94E-09	5.43E+06	6.58E+02	6.50E+00	1	0.99		
1.84E-10	1.72E-01	6.70E+00	6.64E+02	6.70E+00	1.50E+00	3.57E+00	5.36E+00	5.29E-09	5.65E+06	6.70E+02	6.63E+00	1	0.99		
1.55E-10	1.75E-01	6.83E+00	6.77E+02	6.83E+00	1.51E+00	3.60E+00	5.58E+00	4.70E-09	5.87E+06	6.83E+02	6.76E+00	1	0.99	0	100
1.30E-10	1.78E-01	6.96E+00	6.90E+02	6.97E+00	1.52E+00	3.64E+00	5.80E+00	4.17E-09	6.10E+06	6.97E+02	6.90E+00	1	0.99		
1.09E-10	1.82E-01	7.10E+00	7.03E+02	7.11E+00	1.53E+00	3.67E+00	6.04E+00	3.68E-09	6.35E+06	7.11E+02	7.03E+00	1	0.99		
1.90E-15	4.15E-01	1.62E+01	1.60E+03	1.62E+01	2.20E+00	5.52E+00	3.19E+01	7.37E-13	3.30E+07	1.62E+03	1.62E+01	1	0.99		
1.31E-15	4.23E-01	1.65E+01	1.63E+03	1.65E+01	2.23E+00	5.58E+00	3.32E+01	5.41E-13	3.43E+07	1.65E+03	1.65E+01	1	0.99		
9.01E-16	4.31E-01	1.68E+01	1.67E+03	1.68E+01	2.25E+00	5.63E+00	3.45E+01	3.94E-13	3.57E+07	1.68E+03	1.68E+01	1	0.99		
6.14E-16	4.40E-01	1.72E+01	1.70E+03	1.72E+01	2.28E+00	5.69E+00	3.59E+01	2.86E-13	3.71E+07	1.72E+03	1.71E+01	1	0.99		
4.16E-16	4.49E-01	1.75E+01	1.73E+03	1.75E+01	2.30E+00	5.75E+00	3.73E+01	2.06E-13	3.86E+07	1.75E+03	1.75E+01	1	0.99		
2.79E-16	4.58E-01	1.78E+01	1.77E+03	1.79E+01	2.33E+00	5.81E+00	3.88E+01	1.47E-13	4.01E+07	1.79E+03	1.78E+01	1	0.99		
						Σ	F _{AM} -source =	2.34E-05							
							F _{AM} =	6.69E-01							

Table 2.77 Calculation of F_{AM} for C-14 in an Area Source of 1,000 m² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.220	Effective Mass Attenuation Coefficient (source) (/cm) 1.02E-02	Effective mass Attenuation Coefficient (ref) (/cm) 8.94E-03	Mass Attenuation Coefficient (soil) (/cm) 8.68E-01	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\left(\frac{t}{c} + t\mu_s\right) + t$			
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	10000		Source-ref a	area (m2) =	3359362			
				dist. in-										Receptor	Receptor
exp(-ux)/x2	- mfp-dist. in	- mfp-dist. in-	dist. in -source-	source-		BF-source-			4π x dist-	distance-	r - source,			location	location
source	source-air	source-cover	air	cover	BF-source-air	cover	Vol-source	F _{AM} -source	source^2	source	m	ta + tc, m	ta, m	y, cm	z, cm
1.86E-16	4.67E-01	1.82E+01	1.80E+03	1.82E+01	2.36E+00	5.88E+00	4.04E+01	1.04E-13	4.18E+07	1.82E+03	1.82E+01	1	0.99		
1.23E-16	4.76E-01	1.86E+01	1.84E+03	1.86E+01	2.38E+00	5.94E+00	4.21E+01	7.35E-14	4.34E+07	1.86E+03	1.86E+01	1	0.99		
8.12E-17	4.86E-01	1.89E+01	1.88E+03	1.90E+01	2.41E+00	6.01E+00	4.37E+01	5.14E-14	4.52E+07	1.90E+03	1.89E+01	1	0.99		
5.30E-17	4.95E-01	1.93E+01	1.91E+03	1.93E+01	2.44E+00	6.07E+00	4.55E+01	3.57E-14	4.70E+07	1.93E+03	1.93E+01	1	0.99		
3.43E-17	5.05E-01	1.97E+01	1.95E+03	1.97E+01	2.47E+00	6.14E+00	4.74E+01	2.46E-14	4.89E+07	1.97E+03	1.97E+01	1	0.99		
2.20E-17	5.15E-01	2.01E+01	1.99E+03	2.01E+01	2.50E+00	6.21E+00	4.93E+01	1.69E-14	5.09E+07	2.01E+03	2.01E+01	1	0.99		
1.40E-17	5.26E-01	2.05E+01	2.03E+03	2.05E+01	2.54E+00	6.27E+00	5.13E+01	1.15E-14	5.29E+07	2.05E+03	2.05E+01	1	0.99		
8.87E-18	5.36E-01	2.09E+01	2.07E+03	2.09E+01	2.58E+00	6.34E+00	5.33E+01	7.73E-15	5.51E+07	2.09E+03	2.09E+01	1	0.99		
5.56E-18	5.47E-01	2.13E+01	2.11E+03	2.13E+01	2.61E+00	6.41E+00	5.55E+01	5.17E-15	5.73E+07	2.13E+03	2.13E+01	1	0.99		
3.45E-18	5.58E-01	2.17E+01	2.16E+03	2.18E+01	2.65E+00	6.47E+00	5.77E+01	3.42E-15	5.96E+07	2.18E+03	2.17E+01	1	0.99		
2.13E-18	5.69E-01	2.22E+01	2.20E+03	2.22E+01	2.69E+00	6.54E+00	6.01E+01	2.25E-15	6.20E+07	2.22E+03	2.22E+01	1	0.99	0	100
1.30E-18	5.80E-01	2.26E+01	2.24E+03	2.26E+01	2.73E+00	6.61E+00	6.25E+01	1.47E-15	6.45E+07	2.26E+03	2.26E+01	1	0.99		
7.86E-19	5.92E-01	2.31E+01	2.29E+03	2.31E+01	2.77E+00	6.69E+00	6.50E+01	9.46E-16	6.71E+07	2.31E+03	2.31E+01	1	0.99		
6.43E-32	1.31E+00	5.09E+01	5.05E+03	5.10E+01	5.49E+00	8.90E+00	3.17E+02	9.95E-28	3.27E+08	5.10E+03	5.10E+01	1	0.99		
2.18E-32	1.33E+00	5.19E+01	5.15E+03	5.20E+01	5.60E+00	8.90E+00	3.30E+02	3.58E-28	3.40E+08	5.20E+03	5.20E+01	1	0.99		
7.21E-33	1.36E+00	5.30E+01	5.25E+03	5.30E+01	5.71E+00	8.90E+00	3.43E+02	1.26E-28	3.54E+08	5.30E+03	5.30E+01	1	0.99		
2.34E-33	1.39E+00	5.40E+01	5.35E+03	5.41E+01	5.82E+00	8.90E+00	3.57E+02	4.33E-29	3.68E+08	5.41E+03	5.41E+01	1	0.99		
7.43E-34	1.41E+00	5.51E+01	5.46E+03	5.52E+01	5.94E+00	8.90E+00	3.71E+02	1.46E-29	3.83E+08	5.52E+03	5.52E+01	1	0.99		
2.31E-34	1.44E+00	5.62E+01	5.57E+03	5.63E+01	6.06E+00	8.90E+00	3.86E+02	4.81E-30	3.98E+08	5.63E+03	5.63E+01	1	0.99		
						Σ	F _{AM} -source =	2.34E-05							
							F _{AM} =	6.69E-01							

Table 2.78 Calculation of F_{AM} for C-14 in an Area Source of 10,000 m² with a Concrete Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

Table 2.79 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Area Sources with a Concrete Cover of 1 cm

DCF-inf (mrem/yr		Average Decay Factor		Area of		Estimated Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
				10,000	6.69E-01	8.41E-11
1.35E-05				1,000	6.69E-01	8.41E-11
	5 725 102	1.005+00	0.255.06	100	6.66E-01	8.37E-11
	3.73E+05	1.002+00	5.55E-00	36	6.36E-01	8.01E-11
				10	4.93E-01	6.21E-11
				4	3.27E-01	4.12E-11

Table 2.80 Calculation of F_{CD} for C-14 in an Area Source with a Cover of 5 cm

Fitting param	neters Ai, Bi, H	Kai (cm2/g), Kbi	(cm2/g)		0.642	0.358	0.294	3.39			
Reference so	ource -	Cover materi	al =	none	Cover thickne	ess, cm =		5	Density of co	over, g/cm3 =	1.6
		Source densit	y , g/cm3 =		1.6	Source thickn	ess, cm =		0.001		
Surface activ	ity conversio	n factor, (pCi/	g)/(pCi/m2)		0.0625						
F _{CD}	$= \frac{D(T_c=t)}{D(T_c=t)}$	$\frac{1}{0,T_S=t_S)}{=} Ae$	$e^{-K_A \rho_c t_c} (1 -$	$-e^{-K_A \rho_S t_S})$	$+ Be^{-K_B\rho_c t_c}$	$(1-e^{-K_B\rho_S t})$	s),				
FCD-surf=	0.00000055	i	(Note: FCD-s	urf = FCD × Su	face activity co	onversion facto	or)				

Table 2.81 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Area Sources with a Concrete Cover of 5 cm

DCF-inf		Average				Estimated
(mrem/yr		Decay Factor		Area of		Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
1.35E-05				10,000	3.53E-01	2.63E-12
				1,000	3.53E-01	2.63E-12
	E 72E 02	1.005.00		100	3.53E-01	2.63E-12
	3.73E+03	1.00E+00	5.54E-07	36	3.53E-01	2.63E-12
				10	3.52E-01	2.62E-12
				4	3.31E-01	2.47E-12

Table 2.82 Comparison of External Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from C-14 in Six Area Sources with Concrete Covers

		With 1-cm Cov	/er		With 5-cm Co	ver
	from	Dose Results	Ratio -	Results	Dose Results	Ratio -
Area of	RESRAD-	from	RESRAD-BUILD/	from	from	RESRAD-BUILD/
Source (m ²)	BUILD	Spreadsheets	Spreadsheets	RESRAD-	Spreadsheets	Spreadsheets
10,000	8.54E-11	8.41E-11	1.02	2.81E-12	2.63E-12	1.07
1,000	8.47E-11	8.41E-11	1.01	2.81E-12	2.63E-12	1.07
100	8.53E-11	8.37E-11	1.02	2.81E-12	2.63E-12	1.07
36	8.17E-11	8.01E-11	1.02	2.81E-12	2.63E-12	1.07
10	6.35E-11	6.21E-11	1.02	2.81E-12	2.62E-12	1.07
4	4.23E-11	4.12E-11	1.03	2.63E-12	2.47E-12	1.07

Table 2.83 Calculation of F_{CD} for Mn-54 in an Area Source with a Cover of 1 cm

Fitting paramete	rs Ai, Bi, Kai	(cm2/g), Kbi (cm2/g)		0.085	0.915	1.22	0.088			
Reference sourc	e –	Cover material =	none	Cover thickne	ess, cm =		1	Density of cove	er, g/cm3 =	2.4
		Source density , g/cm3 =		1.6	Source thicknes	s, cm =		0.001		
Surface activity	conversion fa	actor, (pCi/g)/(pCi/m2)		0.0625						
$F_{CD} =$	$\frac{D(T_c = t_c, T_S)}{D(T_c = 0, T_S)}$	$\stackrel{=t_s)}{=\infty} = Ae^{-K_A\rho_c t_c} (1 - e^{-K_b\rho_c t_c})$	$(A^{\rho_S t_S}) + Be$	$-\kappa_B \rho_c t_c (1-\epsilon)$	$e^{-K_B \rho_S t_s}),$					
FCD-surf=	0.00000707	(Note: FCD-sur	f = FCD × Surfa	ice activity conv	version factor)					

# photons	Energy 1 0.835	Yield 1 1.00E+00	FE 0.825	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 1.76E-03	Effective mass Attenuation Coefficient (ref) (/cm) 1.78E-03	Mass Attenuation Coefficient (soil) (/cm) 1.70E-01	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	$\mu = -$	$\frac{t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$	$(t+t\mu_s)$			
			,	-			01002.00								
exp(-ux)/x2 - ref	dist. in -ref-air (cm)	dist. in-ref- cover (cm)	mfp-dist. in -ref- air	mfp-dist. in- ref-cover	BF-ref-air	BF-ref-cover	Vol-source- ref	F _{AM} -ref	4π x dist-ref^2 (cm2)	distance-ref (cm)	r - ref (m)	ta + tc (m)	ta (m)	Receptor location y (cm)	Receptor location z (cm)
6.66E-06	9.90E+01	1.00E+00	8.39E-03	1.70E-01	1.01E+00	1.16E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	1.00E+00	0	0.99		
6.58E-06	9.95E+01	1.00E+00	8.43E-03	1.71E-01	1.01E+00	1.17E+00	3.14E-02	2.43E-07	1.27E+05	1.00E+02	1.00E+00	0	0.99		
6.58E-06	9.95E+01	1.01E+00	8.44E-03	1.71E-01	1.01E+00	1.17E+00	1.91E-03	1.48E-08	1.27E+05	1.01E+02	1.00E+00	0	0.99		
6.57E-06	9.96E+01	1.01E+00	8.44E-03	1.71E-01	1.01E+00	1.17E+00	2.03E-03	1.57E-08	1.27E+05	1.01E+02	1.00E+00	0	0.99		
6.57E-06	9.96E+01	1.01E+00	8.44E-03	1.71E-01	1.01E+00	1.17E+00	2.15E-03	1.66E-08	1.27E+05	1.01E+02	1.00E+00	0	0.99		
6.56E-06	9.96E+01	1.01E+00	8.45E-03	1.71E-01	1.01E+00	1.17E+00	2.29E-03	1.76E-08	1.27E+05	1.01E+02	1.00E+00	0	0.99		
6.56E-06	9.97E+01	1.01E+00	8.45E-03	1.71E-01	1.01E+00	1.17E+00	2.42E-03	1.87E-08	1.27E+05	1.01E+02	1.00E+00	0	0.99		
6.55E-06	9.97E+01	1.01E+00	8.45E-03	1.71E-01	1.01E+00	1.17E+00	2.57E-03	1.98E-08	1.28E+05	1.01E+02	1.00E+00	0	0.99	0	100
6.55E-06	9.97E+01	1.01E+00	8.46E-03	1.71E-01	1.01E+00	1.17E+00	2.73E-03	2.10E-08	1.28E+05	1.01E+02	1.00E+00	0	0.99		
1.49E-11	3.40E+03	3.43E+01	2.88E-01	5.83E+00	1.28E+00	1.18E+01	1.44E+02	3.25E-08	1.48E+08	3.43E+03	1.00E+00	34	0.99		
1.26E-11	3.46E+03	3.50E+01	2.94E-01	5.95E+00	1.29E+00	1.21E+01	1.49E+02	2.96E-08	1.54E+08	3.50E+03	1.00E+00	35	0.99		
1.07E-11	3.53E+03	3.57E+01	3.00E-01	6.07E+00	1.30E+00	1.25E+01	1.55E+02	2.70E-08	1.60E+08	3.57E+03	1.00E+00	36	0.99		
9.08E-12	3.60E+03	3.64E+01	3.06E-01	6.19E+00	1.30E+00	1.28E+01	1.62E+02	2.45E-08	1.67E+08	3.64E+03	1.00E+00	36	0.99		
7.66E-12	3.68E+03	3.71E+01	3.12E-01	6.31E+00	1.31E+00	1.32E+01	1.68E+02	2.22E-08	1.73E+08	3.71E+03	1.00E+00	37	0.99		
6.45E-12	3.75E+03	3.79E+01	3.18E-01	6.44E+00	1.31E+00	1.36E+01	1.75E+02	2.01E-08	1.80E+08	3.79E+03	1.00E+00	38	0.99		
8.48E-89	9.84E+04	9.94E+02	8.34E+00	1.69E+02	2.44E+01	2.43E+02	1.21E+05	6.07E-80	1.24E+11	9.94E+04	1.00E+00	994	0.99		
2.35E-90	1.00E+05	1.01E+03	8.51E+00	1.72E+02	2.52E+01	2.43E+02	1.25E+05	1.81E-81	1.29E+11	1.01E+05	1.00E+00	1014	0.99		
6.09E-92	1.02E+05	1.03E+03	8.68E+00	1.76E+02	2.60E+01	2.43E+02	1.30E+05	5.02E-83	1.34E+11	1.03E+05	1.00E+00	1034	0.99		
							∑FAM-ref=	1.12E-04							

Table 2.84 Calculation of F_{AM} for Mn-54 in a Reference Area Source with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.835	Yield 1 1.00E+00	FE 0.825	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 1.76E-03	Effective mass Attenuation Coefficient (ref) (/cm) 1.78E-03	Mass Attenuation Coefficient (soil) (/cm) 1.70E-01	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ = -	$\frac{t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$	$\left(\frac{t+t\mu_s}{t}\right)$			
ta (cm) =	99		tc (cm) =	1		Source	e area (m2) =	4		Source-re	f area (m2) =	3.36E+06			
	6 H . I			dist. in-					4π x dist-					Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in -	mfp-dist. in-	dist. in -source-	source-		BF-source-			source^2	distance-	r - source			location y	location z
source	source-air	source-cover	air (cm)	cover (cm)	BE-source-air	cover	Vol-source	F _{AM} -source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
6.67E-06	8.39E-03	1.67E-01	9.90E+01	1.00E+00	1.01E+00	1.16E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	0.99		
6.60E-06	8.43E-03	1.68E-01	9.95E+01	1.00E+00	1.01E+00	1.16E+00	3.14E-02	2.43E-07	1.2/E+05	1.00E+02	1.00E-01	1	0.99		
6.60E-06	8.44E-03	1.68E-01	9.95E+01	1.01E+00	1.01E+00	1.16E+00	1.91E-03	1.48E-08	1.2/E+05	1.01E+02	1.03E-01	1	0.99		
6.59E-06	8.44E-03	1.68E-01	9.96E+01	1.01E+00	1.01E+00	1.16E+00	2.03E-03	1.57E-08	1.27E+05	1.01E+02	1.06E-01	1	0.99		
6.59E-06	8.44E-03	1.68E-01	9.96E+01	1.01E+00	1.01E+00	1.16E+00	2.15E-03	1.66E-08	1.27E+05	1.01E+02	1.09E-01	1	0.99		
6.58E-06	8.45E-03	1.69E-01	9.96E+01	1.01E+00	1.01E+00	1.16E+00	2.29E-03	1.76E-08	1.27E+05	1.01E+02	1.13E-01	1	0.99		
6.58E-06	8.45E-03	1.69E-01	9.97E+01	1.01E+00	1.01E+00	1.16E+00	2.42E-03	1.86E-08	1.2/E+05	1.01E+02	1.16E-01	1	0.99		
6.57E-06	8.45E-03	1.69E-01	9.97E+01	1.01E+00	1.01E+00	1.16E+00	2.5/E-03	1.98E-08	1.28E+05	1.01E+02	1.19E-01	1	0.99		
6.56E-06	8.46E-03	1.69E-01	9.97E+01	1.01E+00	1.01E+00	1.16E+00	2.73E-03	2.10E-08	1.28E+05	1.01E+02	1.23E-01	1	0.99		
6.56E-06	8.46E-03	1.69E-01	9.98E+01	1.01E+00	1.01E+00	1.16E+00	2.90E-03	2.22E-08	1.28E+05	1.01E+02	1.2/E-01	1	0.99		
6.55E-06	8.46E-03	1.69E-01	9.98E+01	1.01E+00	1.01E+00	1.16E+00	3.07E-03	2.35E-08	1.28E+05	1.01E+02	1.30E-01	1	0.99		
6.54E-06	8.47E-03	1.69E-01	9.99E+01	1.01E+00	1.01E+00	1.16E+00	3.26E-03	2.49E-08	1.28E+05	1.01E+02	1.34E-01	1	0.99		
6.54E-06	8.47E-03	1.69E-01	9.99E+01	1.01E+00	1.01E+00	1.16E+00	3.46E-03	2.64E-08	1.28E+05	1.01E+02	1.38E-01	1	0.99		
6.53E-06	8.48E-03	1.69E-01	1.00E+02	1.01E+00	1.01E+00	1.16E+00	3.67E-03	2.80E-08	1.28E+05	1.01E+02	1.43E-01	1	0.99	0	100
													0.00		
3.09E-06	1.19E-02	2.37E-01	1.40E+02	1.42E+00	1.01E+00	1.23E+00	1.81E-01	6.95E-07	2.52E+05	1.42E+02	1.00E+00	1	0.99		
2.99E-06	1.21E-02	2.41E-01	1.42E+02	1.44E+00	1.01E+00	1.23E+00	1.93E-01	7.15E-07	2.60E+05	1.44E+02	1.03E+00	1	0.99		
2.89E-06	1.23E-02	2.45E-01	1.45E+02	1.46E+00	1.01E+00	1.23E+00	2.04E-01	7.35E-07	2.68E+05	1.46E+02	1.06E+00	1	0.99		
2.78E-06	1.25E-02	2.48E-01	1.47E+02	1.48E+00	1.01E+00	1.24E+00	2.17E-01	7.55E-07	2.77E+05	1.48E+02	1.10E+00	1	0.99		
2.68E-06	1.27E-02	2.53E-01	1.49E+02	1.51E+00	1.01E+00	1.24E+00	2.30E-01	7.74E-07	2.86E+05	1.51E+02	1.13E+00	1	0.99		
						∑FAM-source=		1.98E-05							
							FAM=	1.76E-01							

Table 2.85 Calculation of F_{AM} for Mn-54 in an Area Source of 4 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.835	Yield 1 1.00E+00	FE 0.825	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 1.76E-03	Effective mass Attenuation Coefficient (ref) (/cm) 1.78E-03	Mass Attenuation Coefficient (soil) (/cm) 1.70E-01	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ = ($\frac{t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$	$(+t\mu_s)$			
ta (cm) =	99		te (cm) =	1		Sourc	e area (mz) =	10		Source-re	i area (mz) =	3.30E+00			
exp(-ux)/x2 - source	mfp-dist. in - source-air	mfp-dist. in- source-cover	dist. in -source- air (cm)	dist. in- source- cover (cm)	BF-source-air	BF-source- cover	Vol-source	F _{AM} -source	4π x dist- source^2 (cm2)	distance- source (cm)	r - source (m)	ta + tc (m)	ta (m)	Receptor location y (cm)	Receptor location z (cm)
2.58E-06	1.29E-02	2.57E-01	1.52E+02	1.53E+00	1.01E+00	1.24E+00	2.44E-01	7.94E-07	2.96E+05	1.53E+02	1.16E+00	1	0.99		
2.48E-06	1.31E-02	2.61E-01	1.54E+02	1.56E+00	1.01E+00	1.25E+00	2.59E-01	8.13E-07	3.06E+05	1.56E+02	1.20E+00	1	0.99		
2.39E-06	1.33E-02	2.66E-01	1.57E+02	1.59E+00	1.01E+00	1.25E+00	2.75E-01	8.31E-07	3.17E+05	1.59E+02	1.23E+00	1	0.99		
2.29E-06	1.36E-02	2.71E-01	1.60E+02	1.62E+00	1.01E+00	1.26E+00	2.91E-01	8.50E-07	3.29E+05	1.62E+02	1.27E+00	1	0.99		
2.20E-06	1.38E-02	2.76E-01	1.63E+02	1.65E+00	1.01E+00	1.26E+00	3.09E-01	8.68E-07	3.41E+05	1.65E+02	1.31E+00	1	0.99		
2.10E-06	1.41E-02	2.81E-01	1.66E+02	1.68E+00	1.01E+00	1.27E+00	3.28E-01	8.85E-07	3.54E+05	1.68E+02	1.35E+00	1	0.99		
2.01E-06	1.44E-02	2.87E-01	1.69E+02	1.71E+00	1.01E+00	1.27E+00	3.48E-01	9.02E-07	3.68E+05	1.71E+02	1.39E+00	1	0.99		
1.92E-06	1.46E-02	2.92E-01	1.73E+02	1.75E+00	1.01E+00	1.28E+00	3.69E-01	9.19E-07	3.83E+05	1.75E+02	1.43E+00	1	0.99		
1.84E-06	1.49E-02	2.98E-01	1.76E+02	1.78E+00	1.01E+00	1.28E+00	3.91E-01	9.35E-07	3.98E+05	1.78E+02	1.47E+00	1	0.99	0	100
1.75E-06	1.52E-02	3.04E-01	1.80E+02	1.82E+00	1.02E+00	1.29E+00	4.15E-01	9.51E-07	4.15E+05	1.82E+02	1.52E+00	1	0.99		
1.67E-06	1.56E-02	3.11E-01	1.84E+02	1.86E+00	1.02E+00	1.29E+00	4.41E-01	9.66E-07	4.33E+05	1.86E+02	1.56E+00	1	0.99		
1.59E-06	1.59E-02	3.17E-01	1.88E+02	1.89E+00	1.02E+00	1.30E+00	4.67E-01	9.81E-07	4.51E+05	1.89E+02	1.61E+00	1	0.99		
1.51E-06	1.62E-02	3.24E-01	1.92E+02	1.94E+00	1.02E+00	1.31E+00	4.96E-01	9.95E-07	4.71E+05	1.94E+02	1.66E+00	1	0.99		
1.43E-06	1.66E-02	3.31E-01	1.96E+02	1.98E+00	1.02E+00	1.31E+00	5.26E-01	1.01E-06	4.92E+05	1.98E+02	1.71E+00	1	0.99		
1.36E-06	1.70E-02	3.39E-01	2.00E+02	2.02E+00	1.02E+00	1.32E+00	5.58E-01	1.02E-06	5.15E+05	2.02E+02	1.76E+00	1	0.99		
1.31E-06	1.72E-02	3.44E-01	2.03E+02	2.05E+00	1.02E+00	1.33E+00	3.93E-01	6.96E-07	5.30E+05	2.05E+02	1.79E+00	1	0.99		
						∑FAM-source=		3.42E-05							
							FAM=	3.05E-01							

Table 2.86 Calculation of F_{AM} for Mn-54 in an Area Source of 10 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.835	Yield 1 1.00E+00	FE 0.825	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 1.76E-03	Effective mass Attenuation Coefficient (ref) (/cm) 1.78E-03	Mass Attenuation Coefficient (soil) (/cm) 1.70E-01	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ = -	$\frac{t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$	$\left(\frac{t+t\mu_s}{t}\right)$			
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	36		Source-re	f area (m2) =	3.36E+06			
				dist. in-					4π x dist-					Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in -	mfp-dist. in-	dist. in -source-	source-		BF-source-			source^2	distance-	r - source			location y	location z
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	Vol-source	F _{AM} -source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
1.22E-06	1.78E-02	3.55E-01	2.10E+02	2.12E+00	1.02E+00	1.34E+00	4.25E-01	7.07E-07	5.64E+05	2.12E+02	1.87E+00	1	0.99		
1.18E-06	1.80E-02	3.60E-01	2.13E+02	2.15E+00	1.02E+00	1.34E+00	4.42E-01	7.12E-07	5.81E+05	2.15E+02	1.90E+00	1	0.99		
1.14E-06	1.83E-02	3.66E-01	2.16E+02	2.18E+00	1.02E+00	1.35E+00	4.60E-01	7.17E-07	6.00E+05	2.18E+02	1.94E+00	1	0.99		
1.09E-06	1.86E-02	3.72E-01	2.20E+02	2.22E+00	1.02E+00	1.35E+00	4.79E-01	7.21E-07	6.19E+05	2.22E+02	1.98E+00	1	0.99		
1.05E-06	1.89E-02	3.77E-01	2.23E+02	2.25E+00	1.02E+00	1.36E+00	4.98E-01	7.26E-07	6.39E+05	2.25E+02	2.02E+00	1	0.99		
1.01E-06	1.92E-02	3.84E-01	2.27E+02	2.29E+00	1.02E+00	1.36E+00	5.18E-01	7.30E-07	6.60E+05	2.29E+02	2.06E+00	1	0.99		
9.75E-07	1.95E-02	3.90E-01	2.30E+02	2.33E+00	1.02E+00	1.37E+00	5.39E-01	7.34E-07	6.81E+05	2.33E+02	2.10E+00	1	0.99		
9.38E-07	1.99E-02	3.96E-01	2.34E+02	2.37E+00	1.02E+00	1.38E+00	5.61E-01	7.38E-07	7.04E+05	2.37E+02	2.14E+00	1	0.99		
9.01E-07	2.02E-02	4.03E-01	2.38E+02	2.40E+00	1.02E+00	1.38E+00	5.84E-01	7.42E-07	7.27E+05	2.40E+02	2.19E+00	1	0.99		
8.66E-07	2.05E-02	4.09E-01	2.42E+02	2.44E+00	1.02E+00	1.39E+00	6.07E-01	7.45E-07	7.51E+05	2.44E+02	2.23E+00	1	0.99	0	100
8.32E-07	2.09E-02	4.16E-01	2.46E+02	2.49E+00	1.02E+00	1.40E+00	6.32E-01	7.48E-07	7.76E+05	2.49E+02	2.28E+00	1	0.99		
7.99E-07	2.12E-02	4.23E-01	2.50E+02	2.53E+00	1.02E+00	1.40E+00	6.57E-01	7.51E-07	8.03E+05	2.53E+02	2.32E+00	1	0.99		
4.77E-07	2.61E-02	5.20E-01	3.08E+02	3.11E+00	1.03E+00	1.50E+00	1.06E+00	7.74E-07	1.21E+06	3.11E+02	2.94E+00	1	0.99		
4.55E-07	2.66E-02	5.30E-01	3.13E+02	3.16E+00	1.03E+00	1.51E+00	1.10E+00	7.76E-07	1.26E+06	3.16E+02	3.00E+00	1	0.99		
4.35E-07	2.70E-02	5.39E-01	3.19E+02	3.22E+00	1.03E+00	1.52E+00	1.14E+00	7.77E-07	1.30E+06	3.22E+02	3.06E+00	1	0.99		
4.15E-07	2.75E-02	5.49E-01	3.25E+02	3.28E+00	1.03E+00	1.53E+00	1.19E+00	7.78E-07	1.35E+06	3.28E+02	3.12E+00	1	0.99		
3.97E-07	2.80E-02	5.59E-01	3.31E+02	3.34E+00	1.03E+00	1.54E+00	1.24E+00	7.79E-07	1.40E+06	3.34E+02	3.19E+00	1	0.99		
3.78E-07	2.85E-02	5.69E-01	3.37E+02	3.40E+00	1.03E+00	1.55E+00	1.29E+00	7.79E-07	1.45E+06	3.40E+02	3.25E+00	1	0.99		
3.61E-07	2.91E-02	5.80E-01	3.43E+02	3.46E+00	1.03E+00	1.57E+00	1.34E+00	7.80E-07	1.51E+06	3.46E+02	3.31E+00	1	0.99		
						Σ	F _{AM} -source =	5.83E-05							
							F _{AM} =	5.19E-01							

Table 2.87 Calculation of F_{AM} for Mn-54 in an Area Source of 36 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

				Fluence to Effective	Effective Mass			Mass			<i>t u ⊥t u</i>	+ <i>tu</i>)			
				Dose	Attenuation	Effective mass	Mass	Attenuation	Mass	$\mu = -$	$\frac{\iota_a \mu_a + \iota_c \mu_c}{(\iota_a \iota_a + \iota_c \mu_c)}$	$+i\mu_s$			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		$(t_a + t_c +$	(t)			
				Factor	(source)	Coefficient (ref)	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.835	1.00E+00	0.825	3.189	1.76E-03	1.78E-03	1.70E-01	1.67E-01	8.48E-05						
				-						-					
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	100		Source-re	f area (m2) =	3.36E+06			
				dist. in-					4π x dist-					Receptor	Receptor
exp(-ux)/x2	mfp-dist. in -	mfp-dist, in-	dist. in -source-	source-		BF-source-			source^2	distance-	r - source			location v	location z
source	source-air	source-cover	air (cm)	cover (cm)	BF-source-air	cover	Vol-source	Fana-source	(cm2)	source (cm)	(m)	ta + tc (m)	ta (m)	(cm)	(cm)
3.28E-07	3.01E-02	6.01E-01	3.55E+02	3.59E+00	1.03E+00	1.59E+00	1.45E+00	7.80E-07	1.62E+06	3.59E+02	3.45E+00	1	0.99		
3.13E-07	3.07E-02	6.12E-01	3.62E+02	3.66E+00	1.03E+00	1.60E+00	1.51E+00	7.80E-07	1.68E+06	3.66E+02	3.52E+00	1	0.99		
2.98E-07	3.13E-02	6.24E-01	3.69E+02	3.72E+00	1.03E+00	1.62E+00	1.57E+00	7.80E-07	1.74E+06	3.72E+02	3.59E+00	1	0.99		
2.84E-07	3.18E-02	6.35E-01	3.76E+02	3.79E+00	1.03E+00	1.63E+00	1.63E+00	7.79E-07	1.81E+06	3.79E+02	3.66E+00	1	0.99		
2.70E-07	3.24E-02	6.47E-01	3.83E+02	3.86E+00	1.03E+00	1.64E+00	1.70E+00	7.78E-07	1.88E+06	3.86E+02	3.73E+00	1	0.99		
2.57E-07	3.30E-02	6.59E-01	3.90E+02	3.94E+00	1.03E+00	1.66E+00	1.77E+00	7.78E-07	1.95E+06	3.94E+02	3.81E+00	1	0.99		
2.44E-07	3.37E-02	6.71E-01	3.97E+02	4.01E+00	1.03E+00	1.67E+00	1.84E+00	7.76E-07	2.02E+06	4.01E+02	3.88E+00	1	0.99		
2.32E-07	3.43E-02	6.84E-01	4.04E+02	4.09E+00	1.03E+00	1.69E+00	1.91E+00	7.75E-07	2.10E+06	4.09E+02	3.96E+00	1	0.99		
2.21E-07	3.49E-02	6.97E-01	4.12E+02	4.16E+00	1.03E+00	1.70E+00	1.99E+00	7.74E-07	2.18E+06	4.16E+02	4.04E+00	1	0.99		
2.10E-07	3.56E-02	7.10E-01	4.20E+02	4.24E+00	1.04E+00	1.71E+00	2.07E+00	7.72E-07	2.26E+06	4.24E+02	4.12E+00	1	0.99		
1.99E-07	3.63E-02	7.24E-01	4.28E+02	4.32E+00	1.04E+00	1.73E+00	2.16E+00	7.70E-07	2.35E+06	4.32E+02	4.20E+00	1	0.99		
1.89E-07	3.70E-02	7.37E-01	4.36E+02	4.40E+00	1.04E+00	1.75E+00	2.24E+00	7.68E-07	2.44E+06	4.40E+02	4.29E+00	1	0.99		
1.80E-07	3.77E-02	7.51E-01	4.44E+02	4.49E+00	1.04E+00	1.76E+00	2.33E+00	7.66E-07	2.53E+06	4.49E+02	4.37E+00	1	0.99	0	100
1.70E-07	3.84E-02	7.65E-01	4.53E+02	4.57E+00	1.04E+00	1.78E+00	2.43E+00	7.64E-07	2.63E+06	4.57E+02	4.46E+00	1	0.99		
1.62E-07	3.91E-02	7.80E-01	4.61E+02	4.66E+00	1.04E+00	1.79E+00	2.53E+00	7.61E-07	2.73E+06	4.66E+02	4.55E+00	1	0.99		
1.53E-07	3.98E-02	7.95E-01	4.70E+02	4.75E+00	1.04E+00	1.81E+00	2.63E+00	7.58E-07	2.83E+06	4.75E+02	4.64E+00	1	0.99		
1.45E-07	4.06E-02	8.10E-01	4.79E+02	4.84E+00	1.04E+00	1.83E+00	2.73E+00	7.55E-07	2.94E+06	4.84E+02	4.73E+00	1	0.99		
1.37E-07	4.14E-02	8.26E-01	4.88E+02	4.93E+00	1.04E+00	1.85E+00	2.85E+00	7.52E-07	3.06E+06	4.93E+02	4.83E+00	1	0.99		
1.30E-07	4.22E-02	8.42E-01	4.98E+02	5.03E+00	1.04E+00	1.86E+00	2.96E+00	7.49E-07	3.18E+06	5.03E+02	4.93E+00	1	0.99		
1.23E-07	4.30E-02	8.58E-01	5.07E+02	5.12E+00	1.04E+00	1.88E+00	3.08E+00	7.45E-07	3.30E+06	5.12E+02	5.02E+00	1	0.99		
1.17E-07	4.38E-02	8.74E-01	5.17E+02	5.22E+00	1.04E+00	1.90E+00	3.20E+00	7.41E-07	3.43E+06	5.22E+02	5.12E+00	1	0.99		
1.10E-07	4.47E-02	8.91E-01	5.27E+02	5.32E+00	1.04E+00	1.92E+00	3.33E+00	7.37E-07	3.56E+06	5.32E+02	5.23E+00	1	0.99		
1.04E-07	4.55E-02	9.08E-01	5.37E+02	5.42E+00	1.05E+00	1.94E+00	3.47E+00	7.33E-07	3.70E+06	5.42E+02	5.33E+00	1	0.99		
9.84E-08	4.64E-02	9.26E-01	5.47E+02	5.53E+00	1.05E+00	1.96E+00	3.61E+00	7.29E-07	3.84E+06	5.53E+02	5.44E+00	1	0.99		
9.30E-08	4.73E-02	9.44E-01	5.58E+02	5.64E+00	1.05E+00	1.98E+00	3.75E+00	7.24E-07	3.99E+06	5.64E+02	5.55E+00	1	0.99		
8.78E-08	4.82E-02	9.62E-01	5.69E+02	5.75E+00	1.05E+00	2.00E+00	3.91E+00	7.19E-07	4.15E+06	5.75E+02	5.66E+00	1	0.99		
						∑FAM-source=		7.80E-05							
							FAM=	6.95E-01							

Table 2.88 Calculation of F_{AM} for Mn-54 in an Area Source of 100 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 0.835 99	Yield 1 1.00E+00	FE 0.825 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189 1	Effective Mass Attenuation Coefficient (source) (/cm) 1.76E-03	Effective mass Attenuation Coefficient (ref) (/cm) 1.78E-03 Source	Mass Attenuation Coefficient (soil) (/cm) 1.70E-01 e area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01 1,000	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ = · Source-re	$\frac{\left(t_{a}\mu_{a}+t_{c}\mu_{c}\right)}{\left(t_{a}+t_{c}+t_{c}\right)}$	$\left(\frac{t+t\mu_{z}}{t}\right)$			
				dist. in-										Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in -	mfp-dist. in-	dist. in -source-	source-		BF-source-			4π x dist-	distance-	r - source,			location y,	location z,
source	source-air	source-cover	air	cover	BF-source-air	cover	Vol-source	F _{AM} -source	source^2	source	m	ta + tc, m	ta, m	cm	cm
8.28E-08	4.92E-02	9.81E-01	5.80E+02	5.86E+00	1.05E+00	2.02E+00	4.06E+00	7.14E-07	4.31E+06	5.86E+02	5.77E+00	1	0.99		
7.81E-08	5.01E-02	1.00E+00	5.91E+02	5.97E+00	1.05E+00	2.05E+00	4.23E+00	7.09E-07	4.48E+06	5.97E+02	5.89E+00	1	0.99		
7.36E-08	5.11E-02	1.02E+00	6.03E+02	6.09E+00	1.05E+00	2.07E+00	4.40E+00	7.05E-07	4.66E+06	6.09E+02	6.00E+00	1	0.99		
6.94E-08	5.21E-02	1.04E+00	6.14E+02	6.20E+00	1.05E+00	2.10E+00	4.58E+00	7.01E-07	4.84E+06	6.20E+02	6.12E+00	1	0.99		
6.54E-08	5.31E-02	1.06E+00	6.26E+02	6.33E+00	1.05E+00	2.13E+00	4.76E+00	6.97E-07	5.03E+06	6.33E+02	6.25E+00	1	0.99		
6.15E-08	5.41E-02	1.08E+00	6.38E+02	6.45E+00	1.05E+00	2.16E+00	4.95E+00	6.93E-07	5.23E+06	6.45E+02	6.37E+00	1	0.99		
5.79E-08	5.52E-02	1.10E+00	6.51E+02	6.58E+00	1.05E+00	2.19E+00	5.15E+00	6.88E-07	5.43E+06	6.58E+02	6.50E+00	1	0.99		
5.45E-08	5.63E-02	1.12E+00	6.64E+02	6.70E+00	1.06E+00	2.22E+00	5.36E+00	6.83E-07	5.65E+06	6.70E+02	6.63E+00	1	0.99		
5.12E-08	5.74E-02	1.14E+00	6.77E+02	6.83E+00	1.06E+00	2.25E+00	5.58E+00	6.78E-07	5.87E+06	6.83E+02	6.76E+00	1	0.99	0	100
4.81E-08	5.85E-02	1.17E+00	6.90E+02	6.97E+00	1.06E+00	2.28E+00	5.80E+00	6.73E-07	6.10E+06	6.97E+02	6.90E+00	1	0.99		
4.52E-08	5.96E-02	1.19E+00	7.03E+02	7.11E+00	1.06E+00	2.31E+00	6.04E+00	6.67E-07	6.35E+06	7.11E+02	7.03E+00	1	0.99		
1.76E-09	1.36E-01	2.71E+00	1.60E+03	1.62E+01	1.13E+00	4.62E+00	3.19E+01	2.94E-07	3.30E+07	1.62E+03	1.62E+01	1	0.99		
1.60E-09	1.39E-01	2.77E+00	1.63E+03	1.65E+01	1.14E+00	4.71E+00	3.32E+01	2.84E-07	3.43E+07	1.65E+03	1.65E+01	1	0.99		
1.45E-09	1.41E-01	2.82E+00	1.67E+03	1.68E+01	1.14E+00	4.80E+00	3.45E+01	2.74E-07	3.57E+07	1.68E+03	1.68E+01	1	0.99		
1.31E-09	1.44E-01	2.88E+00	1.70E+03	1.72E+01	1.14E+00	4.89E+00	3.59E+01	2.64E-07	3.71E+07	1.72E+03	1.71E+01	1	0.99		
1.19E-09	1.47E-01	2.93E+00	1.73E+03	1.75E+01	1.15E+00	4.99E+00	3.73E+01	2.54E-07	3.86E+07	1.75E+03	1.75E+01	1	0.99		
1.08E-09	1.50E-01	2.99E+00	1.77E+03	1.79E+01	1.15E+00	5.09E+00	3.88E+01	2.44E-07	4.01E+07	1.79E+03	1.78E+01	1	0.99		
						∑FAM-source=		1.08E-04							
							FAM=	9.58E-01							

Table 2.89 Calculation of F_{AM} for Mn-54 in an Area Source of 1,000 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.835	Yield 1 1.00E+00	FE 0.825	Fluence to Effective Dose Conversion Factor (pSv-cm2) 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 1.76E-03	Effective mass Attenuation Coefficient (ref) (/cm) 1.78E-03	Mass Attenuation Coefficient (soil) (/cm) 1.70E-01	Mass Attenuation Coefficient (concrete) (/cm) 1.67E-01	Mass Attenuation Coefficient (air) (/cm) 8.48E-05	μ = -	$\frac{(t_a\mu_a + t_c\mu_c)}{(t_a + t_c)}$	$\frac{t+t\mu_s}{t}$			
ta (cm) =	99		tc (cm) =	1		Source	e area (m2) =	10,000		Source-re	ef area (m2) =	3.36E+06			
				dist. in-										Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in -	mfp-dist. in-	dist. in -source-	source-		BF-source-			4π x dist-	distance-	r - source,			location y,	location z,
source	source-air	source-cover	air	cover	BF-source-air	cover	Vol-source	F _{AM} -source	source^2	source	m	ta + tc, m	ta, m	cm	cm
9.71E-10	1.53E-01	3.05E+00	1.80E+03	1.82E+01	1.15E+00	5.20E+00	4.04E+01	2.35E-07	4.18E+07	1.82E+03	1.82E+01	1	0.99		
8.76E-10	1.56E-01	3.11E+00	1.84E+03	1.86E+01	1.15E+00	5.32E+00	4.21E+01	2.26E-07	4.34E+07	1.86E+03	1.86E+01	1	0.99		
7.89E-10	1.59E-01	3.17E+00	1.88E+03	1.90E+01	1.16E+00	5.44E+00	4.37E+01	2.17E-07	4.52E+07	1.90E+03	1.89E+01	1	0.99		
7.10E-10	1.62E-01	3.24E+00	1.91E+03	1.93E+01	1.16E+00	5.56E+00	4.55E+01	2.09E-07	4.70E+07	1.93E+03	1.93E+01	1	0.99		
6.37E-10	1.66E-01	3.30E+00	1.95E+03	1.97E+01	1.16E+00	5.69E+00	4.74E+01	2.00E-07	4.89E+07	1.97E+03	1.97E+01	1	0.99		
5.72E-10	1.69E-01	3.37E+00	1.99E+03	2.01E+01	1.17E+00	5.82E+00	4.93E+01	1.91E-07	5.09E+07	2.01E+03	2.01E+01	1	0.99		
5.12E-10	1.72E-01	3.44E+00	2.03E+03	2.05E+01	1.17E+00	5.95E+00	5.13E+01	1.83E-07	5.29E+07	2.05E+03	2.05E+01	1	0.99		
4.58E-10	1.76E-01	3.50E+00	2.07E+03	2.09E+01	1.17E+00	6.08E+00	5.33E+01	1.74E-07	5.51E+07	2.09E+03	2.09E+01	1	0.99		
4.09E-10	1.79E-01	3.57E+00	2.11E+03	2.13E+01	1.18E+00	6.22E+00	5.55E+01	1.66E-07	5.73E+07	2.13E+03	2.13E+01	1	0.99		
3.65E-10	1.83E-01	3.65E+00	2.16E+03	2.18E+01	1.18E+00	6.36E+00	5.77E+01	1.58E-07	5.96E+07	2.18E+03	2.17E+01	1	0.99		
3.25E-10	1.86E-01	3.72E+00	2.20E+03	2.22E+01	1.18E+00	6.50E+00	6.01E+01	1.50E-07	6.20E+07	2.22E+03	2.22E+01	1	0.99	0	100
2.89E-10	1.90E-01	3.79E+00	2.24E+03	2.26E+01	1.19E+00	6.64E+00	6.25E+01	1.43E-07	6.45E+07	2.26E+03	2.26E+01	1	0.99		
2.57E-10	1.94E-01	3.87E+00	2.29E+03	2.31E+01	1.19E+00	6.79E+00	6.50E+01	1.35E-07	6.71E+07	2.31E+03	2.31E+01	1	0.99		
3.92E-13	4.28E-01	8.53E+00	5.05E+03	5.10E+01	1.42E+00	1.94E+01	3.17E+02	3.43E-09	3.27E+08	5.10E+03	5.10E+01	1	0.99		
3.15E-13	4.36E-01	8.71E+00	5.15E+03	5.20E+01	1.43E+00	2.00E+01	3.30E+02	2.97E-09	3.40E+08	5.20E+03	5.20E+01	1	0.99		
2.52E-13	4.45E-01	8.88E+00	5.25E+03	5.30E+01	1.44E+00	2.06E+01	3.43E+02	2.56E-09	3.54E+08	5.30E+03	5.30E+01	1	0.99		
2.01E-13	4.54E-01	9.06E+00	5.35E+03	5.41E+01	1.45E+00	2.12E+01	3.57E+02	2.20E-09	3.68E+08	5.41E+03	5.41E+01	1	0.99		
1.60E-13	4.63E-01	9.24E+00	5.46E+03	5.52E+01	1.46E+00	2.18E+01	3.71E+02	1.89E-09	3.83E+08	5.52E+03	5.52E+01	1	0.99		
1.27E-13	4.72E-01	9.42E+00	5.57E+03	5.63E+01	1.47E+00	2.24E+01	3.86E+02	1.61E-09	3.98E+08	5.63E+03	5.63E+01	1	0.99		
						∑FAM-source=		1.12E-04							
							FAM=	9.95E-01							

Table 2.90 Calculation of F_{AM} for Mn-54 in an Area Source of 10,000 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

Table 2.91 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six Area Sources with a Concrete Cover of 1 cm

DCF-inf		Average				
(mrem/yr		Decay Factor		Area of		Estimated Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
				1.00E+04	9.95E-01	2.49E-05
	8.56E-01			1.00E+03	9.58E-01	2.40E-05
5 165 00		6.85E-01	7.075.06	1.00E+02	6.95E-01	1.74E-05
3.102+00			7.072-00	3.60E+01	5.19E-01	1.30E-05
				1.00E+01	3.05E-01	7.62E-06
				4.00E+00	1.76E-01	4.41E-06

Radiation doses at the same receptor location (0, 0, 1) (m) but with a concrete cover of 5-cm thickness on each of the six area sources were then estimated. Table 2.92 shows the calculation of F_{CD} , the cover and depth factor, for Mn-54. The F_{AM-ref} for the reference source and F_{AM} for each of the six circular area sources were estimated with the same calculations as implemented in Tables 2.84 to 2.90 but for a cover thickness of 5-cm; the final values of F_{AM} for each area source are listed in Table 2.93, which shows the calculation of radiation doses at the receptor location.

Comparison of the dose results for Mn-54 between the spreadsheets and RESRAD-BUILD are presented in Table 2.94. In general, the differences are less than 2%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Results for Tc-99. To verify external dose modeling when radiation was attenuated by shielding materials in RESRAD-BUILD, the radiation doses at the receptor location (0, 0, 1) (m) from each of the six area sources with a concrete cover of 1-cm thickness were estimated with spreadsheets. Table 2.95 shows the calculation of F_{CD} , the cover and depth factor, for Tc-99. Table 2.96 shows the estimation of F_{AM-ref} for the reference area source, which is made up of soil having an infinite extent. In the estimation, an area of about 3,000,000 m² was used for the reference source. Tables 2.97 to 2.102 show the estimation of F_{AM} 's for the six circular area sources considered in this comparison. After F_{CD} and F_{AM} 's were available, external radiation doses resulting from Tc-99 in each of the six circular area sources were estimated by adjusting the external radiation dose conversion factor for an infinite volume source from FGR 12, as shown in Table 2.103.

Radiation doses at the same receptor location (0, 0, 1) (m) but with a concrete cover of 5-cm thickness on each of the six area sources were then estimated. Table 2.104 shows the calculation of F_{CD} , the cover and depth factor, for Tc-99. The F_{AM-ref} for the reference source and F_{AM} for each of the six circular area sources were estimated with the same calculations as implemented in Tables 2.96 to 2.102 but for a cover thickness of 5-cm; the final values of F_{AM} for each area source are listed in Table 2.105, which shows the calculation of radiation doses at the receptor location.

Comparison of the dose results for Tc-99 between the spreadsheets and RESRAD-BUILD are presented in Table 2.106. In general, the differences are less than 3%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Table 2.92 Calculation of F_{CD} for Mn-54 in an Area Source with a Cover of 5 cm

Fitting param	neters Ai, Bi, Kai	(cm2/g), Kbi (cm2/g)		0.085	0.915	1.22	0.088			
Reference so	ource –	Cover material =	none	Cover thickn	ess, cm =		5	Density of cover, g/cm3 =		2.4
		Source density , g/cm3 =		1.6	Source thickness	, cm =		0.001		
Surface activ	ity conversion f	actor, (pCi/g)/(pCi/m2)		0.0625						
F _{CD}	$= \frac{D(T_c = t_c, T_s)}{D(T_c = 0, T_s)}$	$\sum_{s=\infty}^{n} = Ae^{-K_A\rho_c t_c}(1-e^{-K_A\rho_c t_c})$	$-K_A \rho_S t_S) + B$	$e^{-K_B \rho_c t_c} (1 -$	$e^{-K_B \rho_S t_s})$,					
FCD-surf=	0.00000280	(Note: FCD-s	urf = FCD × Sur	version factor)						

Table 2.93 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six Area Sources with a Concrete Cover of 5 cm

DCF-inf		Average				
(mrem/yr		Decay Factor		Area of		Estimated Dose
per pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	Source (m2)	F _{AM}	(mrem/yr)
				10,000	9.94E-01	9.84E-06
	8.56E-01			1,000	9.94E-01	9.84E-06
5 165,00		6 955 01	2 805 06	100	9.75E-01	9.66E-06
5.102+00		0.832-01	2.80E-00	36	8.82E-01	8.74E-06
				10	6.15E-01	6.09E-06
				4	3.81E-01	3.78E-06

Table 2.94 Comparison of External Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in Six Area Sources with Concrete Covers

		With 1-cm Cover		With 5-cm Cover						
		Dose Results	Ratio -			Ratio -				
Area of	Dose Results from	from	RESRAD-BUILD/	Dose Results from	Dose Results from	RESRAD-BUILD/				
Source (m ²)	RESRAD-BUILD	Spreadsheets	Spreadsheets	RESRAD-BUILD	Spreadsheets	Spreadsheets				
10,000	2.49E-05	2.49E-05	1.00	9.87E-06	9.84E-06	1.00				
1,000	2.42E-05	2.40E-05	1.01	9.87E-06	9.84E-06	1.00				
100	1.76E-05	1.74E-05	1.01	9.75E-06	9.66E-06	1.01				
36	1.32E-05	1.30E-05	1.02	8.82E-06	8.74E-06	1.01				
10	7.65E-06	7.62E-06	1.00	6.11E-06	6.09E-06	1.00				
4	4.43E-06	4.41E-06	1.00	3.80E-06	3.78E-06	1.01				

Table 2.95 Calculation of F_{CD} for Tc-99 in an Area Source with a Cover of 1 cm

Fitting param	eters Ai, Bi, Ka	ai (cm2/g), Kbi (c	:m2/g)		0.787	0.213	0.211	2.63				
Reference so	urce –	Cover materia	=	none	Cover thickness, cm =			1	Density of cov	/er, g/cm3 =	1	2.4
		Source density	, g/cm3 =		1.6	Source thickne	ess, cm =		0.001			
Surface activi	ty conversion	factor, (pCi/g)/	(pCi/m2)		0.0625							
F _{CD}	$= \frac{D(T_c=t_c)}{D(T_c=0)}$	$\frac{T_S = t_s)}{T_S = \infty} = Ae^{-H}$	$K_{A}\rho_{c}t_{c}(1-e)$	$-K_A \rho_S t_S) +$	$Be^{-K_B\rho_c t_c}($	$1 - e^{-K_B \rho_S t_S}$),					
FCD-surf=	CD-surf= 0.00001011 (Note: FCD				rface activity	conversion fact	or)					

# photons 1 ta (cm) =	Energy 1 0.101	Yield 1 1.77E-03	FE 0.98 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 4.45E-03	Effective mass Attenuation Coefficient (ref) (/cm) 4.35E-03 Source	Mass Attenuation Coefficient (soil) (/cm) 4.16E-01 ee area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuation Coefficient (air) (/cm) 1.88E-04 Source-ref a	μ= area (m2) =	$\frac{(t_a\mu_a + t_e\mu_a)}{(t_a + t_e)}$	$(t+t\mu_s)$ (t+t)			
			6 P	6 . P					4					Receptor	Receptor
exp(-ux)/x2 -	dist. in -ref-	dist. in-ref-	mfp-dist. in -	mfp-dist. in-		DF (Vol-source-		4π x dist-ref^2	distance-		ta + tc		location y	location z
ret	air (cm)	cover (cm)	ref-air	ref-cover	B⊦-ref-air	BF-ref-cover	ref	F _{AM} -ref	(cm2)	ref (cm)	r - ref (m)	(m)	ta (m)	(cm)	(cm)
5.15E-06	9.90E+01	1.00E+00	1.86E-02	4.16E-01	1.05E+00	1.82E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	0.99		
5.09E-06	9.95E+01	1.00E+00	1.87E-02	4.18E-01	1.05E+00	1.83E+00	3.14E-02	3.07E-07	1.27E+05	1.00E+02	1.00E-01	1	0.99		
5.08E-06	9.95E+01	1.01E+00	1.87E-02	4.18E-01	1.05E+00	1.83E+00	1.91E-03	1.87E-08	1.27E+05	1.01E+02	1.03E-01	1	0.99		
5.08E-06	9.96E+01	1.01E+00	1.87E-02	4.18E-01	1.05E+00	1.83E+00	2.03E-03	1.98E-08	1.27E+05	1.01E+02	1.06E-01	1	0.99		
5.08E-06	9.96E+01	1.01E+00	1.87E-02	4.19E-01	1.05E+00	1.83E+00	2.15E-03	2.10E-08	1.27E+05	1.01E+02	1.09E-01	1	0.99		
5.07E-06	9.96E+01	1.01E+00	1.87E-02	4.19E-01	1.05E+00	1.83E+00	2.29E-03	2.23E-08	1.27E+05	1.01E+02	1.13E-01	1	0.99		
5.07E-06	9.97E+01	1.01E+00	1.87E-02	4.19E-01	1.05E+00	1.83E+00	2.42E-03	2.36E-08	1.27E+05	1.01E+02	1.16E-01	1	0.99		
5.06E-06	9.97E+01	1.01E+00	1.87E-02	4.19E-01	1.05E+00	1.83E+00	2.57E-03	2.50E-08	1.28E+05	1.01E+02	1.19E-01	1	0.99	0	100
5.06E-06	9.97E+01	1.01E+00	1.8/E-02	4.19E-01	1.05E+00	1.83E+00	2.73E-03	2.65E-08	1.28E+05	1.01E+02	1.23E-01	1	0.99		
2.25E-15	3.40E+03	3.43E+01	6.3/E-01	1.43E+01	2.92E+00	7.34E+01	1.44E+02	6.94E-11	1.48E+08	3.43E+03	3.43E+01	1	0.99		
1.61E-15	3.46E+03	3.50E+01	6.50E-01	1.46E+01	2.98E+00	7.56E+01	1.49E+02	5.40E-11	1.54E+08	3.50E+03	3.50E+01	1	0.99		
1.14E-15	3.53E+03	3.57E+01	6.63E-01	1.49E+01	3.03E+00	7.78E+01	1.55E+02	4.18E-11	1.60E+08	3.5/E+03	3.5/E+01	1	0.99		
8.04E-16	3.60E+03	3.64E+01	6.76E-01	1.51E+01	3.09E+00	8.05E+01	1.62E+02	3.23E-11	1.6/E+08	3.64E+03	3.64E+01	1	0.99		
5.63E-16	3.68E+03	3.71E+01	6.90E-01	1.55E+01	3.14E+00	8.3/E+01	1.68E+02	2.49E-11	1.73E+08	3.71E+03	3.71E+01	1	0.99		
3.92E-16	3.75E+03	3.79E+01	7.03E-01	1.58E+01	3.20E+00	8.69E+01	1.75E+02	1.91E-11	1.80E+08	3.79E+03	3.79E+01	1	0.99		
2.05E-199	9.84E+04	9.94E+02	1.85E+01	4.14E+02	1.50E+03	5.15E+02	1.21E+05	1.90E-188	1.24E+11	9.94E+04	9.94E+02	1	0.99		
3.49E-203	1.00E+05	1.01E+03	1.88E+01	4.22E+02	1.5/E+03	5.15E+02	1.25E+05	3.54E-192	1.29E+11	1.01E+05	1.01E+03	1	0.99		
5.00E-207	1.02E+05	1.03E+03	1.92E+01	4.30E+02	1.02F+03	5.15E+02	1.30E+05	5.52E-196	1.34E+11	1.03E+05	1.03E+03	1	0.99		
							≥ F _{AM} -ref =	1.13E-04							

Table 2.96 Calculation of F_{AM} for Tc-99 in a Reference Area Source with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

				Fluence to Effective Dose Conversion	Effective Mass Attenuation Coefficient	Effective mass Attenuation	Mass Attenuation	Mass Attenuation Coefficient	Mass Attenuation	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\left(\frac{1}{c}+t\mu_{s}\right)$ + t)			
# photons	Energy 1	Vield 1	FF	(nSv-cm2)	(source)	(ref) (/cm)	(soil) (/cm)	(concrete)	(air) (/cm)						
1	0.101	1 77E-03	0.98	0.361	4 45E-03	4 35E-03	4 16E-01	4 26E-01	1 88F-04						
	0.101	1.772 05	0.50	0.501	1.152 05	1.552 05	1.102 01	1.202 01	1.002 04						
ta (cm) =	= 99		tc (cm) =	= 1		Sourc	e area (m2) =	4	Source-ref	area (m2) =	3.36E+06				
	55		ce (em)	-		ooure				urea (m2)	51562.00				
			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	mfp-dist. in-	source-air	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
5.10E-06	1.86E-02	4.26E-01	9.90E+01	1.00E+00	1.05E+00	1.76E+00	0.00E+00	0.00E+00	1.26E+05	1.00E+02	0.00E+00	1	0.99		
5.04E-06	1.87E-02	4.28E-01	9.95E+01	1.00E+00	1.05E+00	1.76E+00	3.14E-02	2.93E-07	1.27E+05	1.00E+02	1.00E-01	1	0.99		
5.03E-06	1.87E-02	4.28E-01	9.95E+01	1.01E+00	1.05E+00	1.76E+00	1.91E-03	1.78E-08	1.27E+05	1.01E+02	1.03E-01	1	0.99		
5.03E-06	1.87E-02	4.29E-01	9.96E+01	1.01E+00	1.05E+00	1.76E+00	2.03E-03	1.89E-08	1.27E+05	1.01E+02	1.06E-01	1	0.99		
5.02E-06	1.87E-02	4.29E-01	9.96E+01	1.01E+00	1.05E+00	1.76E+00	2.15E-03	2.00E-08	1.27E+05	1.01E+02	1.09E-01	1	0.99		
5.02E-06	1.87E-02	4.29E-01	9.96E+01	1.01E+00	1.05E+00	1.76E+00	2.29E-03	2.12E-08	1.27E+05	1.01E+02	1.13E-01	1	0.99		
5.02E-06	1.87E-02	4.29E-01	9.97E+01	1.01E+00	1.05E+00	1.76E+00	2.42E-03	2.25E-08	1.27E+05	1.01E+02	1.16E-01	1	0.99		
5.01E-06	1.87E-02	4.29E-01	9.97E+01	1.01E+00	1.05E+00	1.76E+00	2.57E-03	2.39E-08	1.28E+05	1.01E+02	1.19E-01	1	0.99		
5.01E-06	1.87E-02	4.29E-01	9.97E+01	1.01E+00	1.05E+00	1.76E+00	2.73E-03	2.53E-08	1.28E+05	1.01E+02	1.23E-01	1	0.99		
5.00E-06	1.87E-02	4.30E-01	9.98E+01	1.01E+00	1.05E+00	1.76E+00	2.90E-03	2.68E-08	1.28E+05	1.01E+02	1.27E-01	1	0.99		
4.99E-06	1.87E-02	4.30E-01	9.98E+01	1.01E+00	1.05E+00	1.76E+00	3.07E-03	2.84E-08	1.28E+05	1.01E+02	1.30E-01	1	0.99		
4.99E-06	1.87E-02	4.30E-01	9.99E+01	1.01E+00	1.05E+00	1.76E+00	3.26E-03	3.01E-08	1.28E+05	1.01E+02	1.34E-01	1	0.99		
4.98E-06	1.87E-02	4.30E-01	9.99E+01	1.01E+00	1.05E+00	1.77E+00	3.46E-03	3.19E-08	1.28E+05	1.01E+02	1.38E-01	1	0.99		
4.97E-06	1.88E-02	4.31E-01	1.00E+02	1.01E+00	1.05E+00	1.77E+00	3.67E-03	3.38E-08	1.28E+05	1.01E+02	1.43E-01	1	0.99	0	100
2.11E-06	2.63E-02	6.04E-01	1.40E+02	1.42E+00	1.07E+00	2.07E+00	1.81E-01	8.51E-07	2.52E+05	1.42E+02	1.00E+00	1	0.99		
2.03E-06	2.67E-02	6.13E-01	1.42E+02	1.44E+00	1.07E+00	2.09E+00	1.93E-01	8.76E-07	2.60E+05	1.44E+02	1.03E+00	1	0.99		
1.95E-06	2.71E-02	6.22E-01	1.45E+02	1.46E+00	1.07E+00	2.11E+00	2.04E-01	9.00E-07	2.68E+05	1.46E+02	1.06E+00	1	0.99		
1.87E-06	2.75E-02	6.32E-01	1.47E+02	1.48E+00	1.07E+00	2.13E+00	2.17E-01	9.24E-07	2.77E+05	1.48E+02	1.10E+00	1	0.99		
1.79E-06	2.80E-02	6.43E-01	1.49E+02	1.51E+00	1.08E+00	2.14E+00	2.30E-01	9.48E-07	2.86E+05	1.51E+02	1.13E+00	1	0.99		
						Σ	F _{AM} -source =	2.41E-05							
							F _{AM} =	2.13E-01							

Table 2.97 Calculation of F_{AM} for Tc-99 in an Area Source of 4 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.101	Yield 1 1.77E-03	FE 0.98	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 4.45E-03	Effective mass Attenuation Coefficient (ref) (/cm) 4.35E-03	Mass Attenuation Coefficient (soil) (/cm) 4.16E-01	Mass Attenuation Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuation Coefficient (air) (/cm) 1.88E-04	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	(t,t) = t(t,t)			
ta (cm) =	- 99		tc (cm) =	= 1		Sourc	e area (m2) =	10	Source-ref a	area (m2) =	3.36E+06				
			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in -	mfp-dist. in-	source-air	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.71E-06	2.85E-02	6.54E-01	1.52E+02	1.53E+00	1.08E+00	2.16E+00	2.44E-01	9.71E-07	2.96E+05	1.53E+02	1.16E+00	1	0.99		
1.63E-06	2.90E-02	6.65E-01	1.54E+02	1.56E+00	1.08E+00	2.18E+00	2.59E-01	9.94E-07	3.06E+05	1.56E+02	1.20E+00	1	0.99		
1.56E-06	2.95E-02	6.77E-01	1.57E+02	1.59E+00	1.08E+00	2.20E+00	2.75E-01	1.02E-06	3.17E+05	1.59E+02	1.23E+00	1	0.99		
1.48E-06	3.00E-02	6.89E-01	1.60E+02	1.62E+00	1.08E+00	2.23E+00	2.91E-01	1.04E-06	3.29E+05	1.62E+02	1.27E+00	1	0.99		
1.41E-06	3.06E-02	7.02E-01	1.63E+02	1.65E+00	1.08E+00	2.25E+00	3.09E-01	1.06E-06	3.41E+05	1.65E+02	1.31E+00	1	0.99		
1.34E-06	3.12E-02	7.15E-01	1.66E+02	1.68E+00	1.08E+00	2.27E+00	3.28E-01	1.08E-06	3.54E+05	1.68E+02	1.35E+00	1	0.99		
1.27E-06	3.18E-02	7.29E-01	1.69E+02	1.71E+00	1.09E+00	2.30E+00	3.48E-01	1.10E-06	3.68E+05	1.71E+02	1.39E+00	1	0.99		
1.20E-06	3.24E-02	7.44E-01	1.73E+02	1.75E+00	1.09E+00	2.32E+00	3.69E-01	1.12E-06	3.83E+05	1.75E+02	1.43E+00	1	0.99		
1.14E-06	3.31E-02	7.59E-01	1.76E+02	1.78E+00	1.09E+00	2.35E+00	3.91E-01	1.14E-06	3.98E+05	1.78E+02	1.47E+00	1	0.99	0	100
1.07E-06	3.37E-02	7.75E-01	1.80E+02	1.82E+00	1.09E+00	2.38E+00	4.15E-01	1.16E-06	4.15E+05	1.82E+02	1.52E+00	1	0.99		
1.01E-06	3.44E-02	7.91E-01	1.84E+02	1.86E+00	1.09E+00	2.41E+00	4.41E-01	1.17E-06	4.33E+05	1.86E+02	1.56E+00	1	0.99		
9.54E-07	3.52E-02	8.08E-01	1.88E+02	1.89E+00	1.09E+00	2.44E+00	4.67E-01	1.19E-06	4.51E+05	1.89E+02	1.61E+00	1	0.99		
8.97E-07	3.59E-02	8.25E-01	1.92E+02	1.94E+00	1.10E+00	2.47E+00	4.96E-01	1.20E-06	4.71E+05	1.94E+02	1.66E+00	1	0.99		
8.42E-07	3.67E-02	8.43E-01	1.96E+02	1.98E+00	1.10E+00	2.50E+00	5.26E-01	1.22E-06	4.92E+05	1.98E+02	1.71E+00	1	0.99		
7.90E-07	3.76E-02	8.62E-01	2.00E+02	2.02E+00	1.10E+00	2.54E+00	5.58E-01	1.23E-06	5.15E+05	2.02E+02	1.76E+00	1	0.99		
7.56E-07	3.81E-02	8.75E-01	2.03E+02	2.05E+00	1.10E+00	2.56E+00	3.93E-01	8.38E-07	5.30E+05	2.05E+02	1.79E+00	1	0.99		
						Σ	F _{AM} -source =	4.16E-05							
							F _{AM} =	3.68E-01							

Table 2.98 Calculation of F_{AM} for Tc-99 in an Area Source of 10 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1	Yield 1	FE	Fluence to Effective Dose Conversion Factor (pSv-cm2)	Effective Mass Attenuation Coefficient (source) (/cm)	Effective mass Attenuation Coefficient (ref) (/cm)	Mass Attenuation Coefficient (soil) (/cm)	Mass Attenuation Coefficient (concrete) (/cm)	Mass Attenuation Coefficient (air) (/cm)	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\left(\frac{t}{c}+t\mu_{s}\right)$ + t)			
1	0.101	1.77E-03	0.98	0.361	4.45E-03	4.35E-03	4.16E-01	4.26E-01	1.88E-04						
ta (cm) =	= 99		tc (cm) =	1		Sourc	e area (m2) =	36	Source-ref	area (m2) =	3.36E+06				-
exp(-ux)/x2 -	mfp-dist. in	- mfp-dist. in-	dist. in - source-air (cm)	dist. in- source- cover (cm)	BF-source- air	BF-source-	Vol-source	Esource	4π x dist- source^2 (cm2)	distance- source (cm)	r - source (m)	ta + tc (m)	ta (m)	Receptor location y	Receptor location z
6.92F-07	3.93E-02	9.03F-01	2.10F+02	2.12F+00	1.11E+00	2.61F+00	4.25E-01	8.48F-07	5.64E+05	2.12F+02	1.87F+00	1	0.99	(111)	(/
6.61E-07	3.99E-02	9.17E-01	2.13E+02	2.15E+00	1.11E+00	2.63E+00	4.42E-01	8.52E-07	5.81E+05	2.15E+02	1.90E+00	1	0.99		
6.31E-07	4.06E-02	9.31E-01	2.16E+02	2.18E+00	1.11E+00	2.66E+00	4.60E-01	8.56E-07	6.00E+05	2.18E+02	1.94E+00	1	0.99		
6.02E-07	4.12E-02	9.46E-01	2.20E+02	2.22E+00	1.11E+00	2.68E+00	4.79E-01	8.60E-07	6.19E+05	2.22E+02	1.98E+00	1	0.99		
5.74E-07	4.19E-02	9.61E-01	2.23E+02	2.25E+00	1.11E+00	2.71E+00	4.98E-01	8.63E-07	6.39E+05	2.25E+02	2.02E+00	1	0.99		
5.47E-07	4.25E-02	9.76E-01	2.27E+02	2.29E+00	1.11E+00	2.74E+00	5.18E-01	8.66E-07	6.60E+05	2.29E+02	2.06E+00	1	0.99		
5.21E-07	4.32E-02	9.92E-01	2.30E+02	2.33E+00	1.12E+00	2.77E+00	5.39E-01	8.68E-07	6.81E+05	2.33E+02	2.10E+00	1	0.99		
4.96E-07	4.39E-02	1.01E+00	2.34E+02	2.37E+00	1.12E+00	2.80E+00	5.61E-01	8.70E-07	7.04E+05	2.37E+02	2.14E+00	1	0.99		
4.72E-07	4.46E-02	1.02E+00	2.38E+02	2.40E+00	1.12E+00	2.83E+00	5.84E-01	8.73E-07	7.27E+05	2.40E+02	2.19E+00	1	0.99		
4.49E-07	4.54E-02	1.04E+00	2.42E+02	2.44E+00	1.12E+00	2.86E+00	6.07E-01	8.74E-07	7.51E+05	2.44E+02	2.23E+00	1	0.99	0	100
4.26E-07	4.61E-02	1.06E+00	2.46E+02	2.49E+00	1.12E+00	2.89E+00	6.32E-01	8.75E-07	7.76E+05	2.49E+02	2.28E+00	1	0.99		
4.05E-07	4.69E-02	1.08E+00	2.50E+02	2.53E+00	1.13E+00	2.92E+00	6.57E-01	8.76E-07	8.03E+05	2.53E+02	2.32E+00	1	0.99		
			••												
2.07E-07	5.77E-02	1.32E+00	3.08E+02	3.11E+00	1.16E+00	3.38E+00	1.06E+00	8.54E-07	1.21E+06	3.11E+02	2.94E+00	1	0.99		
1.94E-07	5.88E-02	1.35E+00	3.13E+02	3.16E+00	1.16E+00	3.43E+00	1.10E+00	8.49E-07	1.26E+06	3.16E+02	3.00E+00	1	0.99		
1.83E-07	5.98E-02	1.37E+00	3.19E+02	3.22E+00	1.16E+00	3.47E+00	1.14E+00	8.44E-07	1.30E+06	3.22E+02	3.06E+00	1	0.99		
1.72E-07	6.09E-02	1.40E+00	3.25E+02	3.28E+00	1.16E+00	3.52E+00	1.19E+00	8.39E-07	1.35E+06	3.28E+02	3.12E+00	1	0.99		
1.62E-07	6.20E-02	1.42E+00	3.31E+02	3.34E+00	1.17E+00	3.57E+00	1.24E+00	8.33E-07	1.40E+06	3.34E+02	3.19E+00	1	0.99		
1.52E-07	6.31E-02	1.45E+00	3.37E+02	3.40E+00	1.17E+00	3.62E+00	1.29E+00	8.27E-07	1.45E+06	3.40E+02	3.25E+00	1	0.99		
1.42E-07	6.43E-02	1.48E+00	3.43E+02	3.46E+00	1.17E+00	3.67E+00	1.34E+00	8.20E-07	1.51E+06	3.46E+02	3.31E+00	1	0.99		
						Σ	F _{AM} -source =	6.91E-05							
							F _{AM} =	6.10E-01							

Table 2.99 Calculation of F_{AM} for Tc-99 in an Area Source of 36 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)
				Fluence to	Effective						(4 4	144			
				Effective	Mass	Effective		Mass		$\mu =$	$\frac{(l_a \mu_a + l_c \mu_a)}{(l_a \mu_a + l_c \mu_a)}$	$(\pm i\mu_s)$			
				Dose	Attenuation	mass	Mass	Attenuation	Mass		$(t_a + t_c + t_c)$	+t)			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation						
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient						
# photons	Energy 1	Yield 1	FE	(pSv-cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	0.101	1.77E-03	0.98	0.361	4.45E-03	4.35E-03	4.16E-01	4.26E-01	1.88E-04						
ta (cm) -	- 00		to (cm) -	1		Source		100	Source ref	aroa (m2) -	2 265106				
ta (ciii) -	- 99		te (ciii) -	- 1		Sourc	.e area (1112) –	100	Source-rei	area (mz) –	5.50E+00				
			dist. in -	dist. in-					4π x dist-	distance-				Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	- mfp-dist. in-	source-air	source-	BF-source-	BF-source-			source^2	source	r - source	ta + tc		location y	location z
source	source-air	source-cover	(cm)	cover (cm)	air	cover	Vol-source	F _{AM} -source	(cm2)	(cm)	(m)	(m)	ta (m)	(cm)	(cm)
1.25E-07	6.67E-02	1.53E+00	3.55E+02	3.59E+00	1.18E+00	3.77E+00	1.45E+00	8.06E-07	1.62E+06	3.59E+02	3.45E+00	1	0.99		
1.17E-07	6.79E-02	1.56E+00	3.62E+02	3.66E+00	1.18E+00	3.82E+00	1.51E+00	7.98E-07	1.68E+06	3.66E+02	3.52E+00	1	0.99		
1.09E-07	6.92E-02	1.59E+00	3.69E+02	3.72E+00	1.19E+00	3.87E+00	1.57E+00	7.90E-07	1.74E+06	3.72E+02	3.59E+00	1	0.99		
1.02E-07	7.04E-02	1.62E+00	3.76E+02	3.79E+00	1.19E+00	3.93E+00	1.63E+00	7.81E-07	1.81E+06	3.79E+02	3.66E+00	1	0.99		
9.55E-08	7.18E-02	1.65E+00	3.83E+02	3.86E+00	1.19E+00	3.98E+00	1.70E+00	7.72E-07	1.88E+06	3.86E+02	3.73E+00	1	0.99		
8.91E-08	7.31E-02	1.68E+00	3.90E+02	3.94E+00	1.20E+00	4.04E+00	1.77E+00	7.62E-07	1.95E+06	3.94E+02	3.81E+00	1	0.99		
8.31E-08	7.45E-02	1.71E+00	3.97E+02	4.01E+00	1.20E+00	4.10E+00	1.84E+00	7.53E-07	2.02E+06	4.01E+02	3.88E+00	1	0.99		
7.74E-08	7.59E-02	1.74E+00	4.04E+02	4.09E+00	1.20E+00	4.16E+00	1.91E+00	7.43E-07	2.10E+06	4.09E+02	3.96E+00	1	0.99		
7.21E-08	7.73E-02	1.77E+00	4.12E+02	4.16E+00	1.21E+00	4.22E+00	1.99E+00	7.32E-07	2.18E+06	4.16E+02	4.04E+00	1	0.99		
6.71E-08	7.87E-02	1.81E+00	4.20E+02	4.24E+00	1.21E+00	4.28E+00	2.07E+00	7.21E-07	2.26E+06	4.24E+02	4.12E+00	1	0.99		
6.23E-08	8.02E-02	1.84E+00	4.28E+02	4.32E+00	1.22E+00	4.35E+00	2.16E+00	7.10E-07	2.35E+06	4.32E+02	4.20E+00	1	0.99		
5.79E-08	8.17E-02	1.88E+00	4.36E+02	4.40E+00	1.22E+00	4.41E+00	2.24E+00	6.99E-07	2.44E+06	4.40E+02	4.29E+00	1	0.99		
5.37E-08	8.33E-02	1.91E+00	4.44E+02	4.49E+00	1.22E+00	4.48E+00	2.33E+00	6.87E-07	2.53E+06	4.49E+02	4.37E+00	1	0.99	0	100
4.98E-08	8.49E-02	1.95E+00	4.53E+02	4.57E+00	1.23E+00	4.54E+00	2.43E+00	6.75E-07	2.63E+06	4.57E+02	4.46E+00	1	0.99		
4.61E-08	8.65E-02	1.99E+00	4.61E+02	4.66E+00	1.23E+00	4.61E+00	2.53E+00	6.63E-07	2.73E+06	4.66E+02	4.55E+00	1	0.99		
4.27E-08	8.82E-02	2.02E+00	4.70E+02	4.75E+00	1.24E+00	4.69E+00	2.63E+00	6.51E-07	2.83E+06	4.75E+02	4.64E+00	1	0.99		
3.95E-08	8.98E-02	2.06E+00	4.79E+02	4.84E+00	1.24E+00	4.77E+00	2.73E+00	6.39E-07	2.94E+06	4.84E+02	4.73E+00	1	0.99		
3.65E-08	9.16E-02	2.10E+00	4.88E+02	4.93E+00	1.25E+00	4.85E+00	2.85E+00	6.27E-07	3.06E+06	4.93E+02	4.83E+00	1	0.99		
3.37E-08	9.33E-02	2.14E+00	4.98E+02	5.03E+00	1.25E+00	4.93E+00	2.96E+00	6.15E-07	3.18E+06	5.03E+02	4.93E+00	1	0.99		
3.11E-08	9.51E-02	2.18E+00	5.07E+02	5.12E+00	1.26E+00	5.01E+00	3.08E+00	6.02E-07	3.30E+06	5.12E+02	5.02E+00	1	0.99		
2.86E-08	9.69E-02	2.23E+00	5.17E+02	5.22E+00	1.26E+00	5.09E+00	3.20E+00	5.89E-07	3.43E+06	5.22E+02	5.12E+00	1	0.99		
2.63E-08	9.88E-02	2.27E+00	5.27E+02	5.32E+00	1.27E+00	5.18E+00	3.33E+00	5.76E-07	3.56E+06	5.32E+02	5.23E+00	1	0.99		
2.42E-08	1.01E-01	2.31E+00	5.37E+02	5.42E+00	1.27E+00	5.27E+00	3.47E+00	5.63E-07	3.70E+06	5.42E+02	5.33E+00	1	0.99		
2.22E-08	1.03E-01	2.36E+00	5.47E+02	5.53E+00	1.28E+00	5.36E+00	3.61E+00	5.49E-07	3.84E+06	5.53E+02	5.44E+00	1	0.99		
2.04E-08	1.05E-01	2.40E+00	5.58E+02	5.64E+00	1.28E+00	5.45E+00	3.75E+00	5.35E-07	3.99E+06	5.64E+02	5.55E+00	1	0.99		
1.87E-08	1.07E-01	2.45E+00	5.69E+02	5.75E+00	1.29E+00	5.54E+00	3.91E+00	5.22E-07	4.15E+06	5.75E+02	5.66E+00	1	0.99		
						Σ	F _{AM} -source =	8.67E-05							
							F _{AM} =	7.65E-01							

Table 2.100 Calculation of F_{AM} for Tc-99 in an Area Source of 100 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.101	Yield 1 1.77E-03	FE 0.98	Fluence to Effective Dose Conversion Factor (pSv-cm2) 0.361	Effective Mass Attenuation Coefficient (source) (/cm) 4.45E-03	Effective mass Attenuation Coefficient (ref) (/cm) 4.35E-03	Mass Attenuation Coefficient (soil) (/cm) 4.16E-01	Mass Attenuation Coefficient (concrete) (/cm) 4.26E-01	Mass Attenuation Coefficient (air) (/cm) 1.88E-04	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\left(\frac{t_{c}+t\mu_{s}}{t+t}\right)$			
ta (cm) -	- 00		to (cm) -	- 1		Source		1000	Source ref	aroa (m2) -	2 265 106				
ta (cm) –	- 99		te (cm) -	- 1		Sourc	e area (mz) –	1000	Source-rei	area (mz) –	5.50E+00				
exp(-ux)/x2 -	mfp-dist. in -	- mfp-dist. in-	dist. in -	dist. in- source-	BF-source-	BF-source-			4π x dist-	distance-	r - source,			Receptor location	Receptor location
source	source-air	source-cover	source-air	cover	air	cover	Vol-source	F _{AM} -source	source^2	source	m	ta + tc, m	ta, m	y, cm	z, cm
1.71E-08	1.09E-01	2.50E+00	5.80E+02	5.86E+00	1.29E+00	5.64E+00	4.06E+00	5.08E-07	4.31E+06	5.86E+02	5.77E+00	1	0.99		
1.57E-08	1.11E-01	2.54E+00	5.91E+02	5.97E+00	1.30E+00	5.74E+00	4.23E+00	4.94E-07	4.48E+06	5.97E+02	5.89E+00	1	0.99		
1.43E-08	1.13E-01	2.59E+00	6.03E+02	6.09E+00	1.30E+00	5.84E+00	4.40E+00	4.80E-07	4.66E+06	6.09E+02	6.00E+00	1	0.99		
1.31E-08	1.15E-01	2.64E+00	6.14E+02	6.20E+00	1.31E+00	5.94E+00	4.58E+00	4.66E-07	4.84E+06	6.20E+02	6.12E+00	1	0.99		
1.19E-08	1.17E-01	2.70E+00	6.26E+02	6.33E+00	1.32E+00	6.04E+00	4.76E+00	4.52E-07	5.03E+06	6.33E+02	6.25E+00	1	0.99		
1.09E-08	1.20E-01	2.75E+00	6.38E+02	6.45E+00	1.32E+00	6.15E+00	4.95E+00	4.37E-07	5.23E+06	6.45E+02	6.37E+00	1	0.99		
9.88E-09	1.22E-01	2.80E+00	6.51E+02	6.58E+00	1.33E+00	6.26E+00	5.15E+00	4.23E-07	5.43E+06	6.58E+02	6.50E+00	1	0.99		
8.97E-09	1.24E-01	2.86E+00	6.64E+02	6.70E+00	1.34E+00	6.37E+00	5.36E+00	4.09E-07	5.65E+06	6.70E+02	6.63E+00	1	0.99		
8.14E-09	1.27E-01	2.91E+00	6.77E+02	6.83E+00	1.34E+00	6.48E+00	5.58E+00	3.95E-07	5.87E+06	6.83E+02	6.76E+00	1	0.99	0	100
7.38E-09	1.29E-01	2.97E+00	6.90E+02	6.97E+00	1.35E+00	6.60E+00	5.80E+00	3.81E-07	6.10E+06	6.97E+02	6.90E+00	1	0.99		
6.68E-09	1.32E-01	3.03E+00	7.03E+02	7.11E+00	1.36E+00	6.72E+00	6.04E+00	3.67E-07	6.35E+06	7.11E+02	7.03E+00	1	0.99		
2.26E-11	3.01E-01	6.90E+00	1.60E+03	1.62E+01	1.81E+00	1.62E+01	3.19E+01	2.11E-08	3.30E+07	1.62E+03	1.62E+01	1	0.99		
1.88E-11	3.07E-01	7.04E+00	1.63E+03	1.65E+01	1.83E+00	1.66E+01	3.32E+01	1.89E-08	3.43E+07	1.65E+03	1.65E+01	1	0.99		
1.56E-11	3.13E-01	7.18E+00	1.67E+03	1.68E+01	1.84E+00	1.70E+01	3.45E+01	1.69E-08	3.57E+07	1.68E+03	1.68E+01	1	0.99		
1.30E-11	3.19E-01	7.32E+00	1.70E+03	1.72E+01	1.86E+00	1.74E+01	3.59E+01	1.50E-08	3.71E+07	1.72E+03	1.71E+01	1	0.99		
1.07E-11	3.25E-01	7.47E+00	1.73E+03	1.75E+01	1.88E+00	1.78E+01	3.73E+01	1.34E-08	3.86E+07	1.75E+03	1.75E+01	1	0.99		
8.80E-12	3.32E-01	7.62E+00	1.77E+03	1.79E+01	1.89E+00	1.83E+01	3.88E+01	1.18E-08	4.01E+07	1.79E+03	1.78E+01	1	0.99		
						Σ	F _{AM} -source =	9.78E-05							
							F _{AM} =	8.63E-01							

Table 2.101 Calculation of F_{AM} for Tc-99 in an Area Source of 1,000 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

ff shotoss	Enorm 1	Viold 1	55	Fluence to Effective Dose Conversion Factor	Effective Mass Attenuation Coefficient (source)	Effective mass Attenuation Coefficient	Mass Attenuation Coefficient	Mass Attenuation Coefficient (concrete)	Mass Attenuation Coefficient	μ=	$\frac{(t_a\mu_a + t_c\mu_a)}{(t_a + t_c)}$	$\left(\frac{t}{t}+t\mu_{s}\right)$ $\left(t+t\right)$			
# photons	0 101	1 77E-03	0.98	0.361	4 45E-03	4 35E-03	4 16E-01	4 26E-01	(air) (/ciii) 1 88E-04						
	0.101	1.772 05	0.50	0.501	1.152 05	1.552 05	4.102 01	4.202 01	1.002 04						
ta (cm) =	99		tc (cm) =	1		Sourc	e area (m2) =	10000	Source-ref	area (m2) =	3.36E+06				
			,												
				dist. in-										Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in	- mfp-dist. in-	dist. in -	source-	BF-source-	BF-source-			4π x dist-	distance-	r - source,			location	location
source	source-air	source-cover	source-air	cover	air	cover	Vol-source	F _{AM} -source	source^2	source	m	ta + tc, m	ta, m	y, cm	z, cm
7.22E-12	3.38E-01	7.77E+00	1.80E+03	1.82E+01	1.91E+00	1.87E+01	4.04E+01	1.04E-08	4.18E+07	1.82E+03	1.82E+01	1	0.99		
5.90E-12	3.45E-01	7.92E+00	1.84E+03	1.86E+01	1.93E+00	1.92E+01	4.21E+01	9.19E-09	4.34E+07	1.86E+03	1.86E+01	1	0.99		
4.81E-12	3.52E-01	8.08E+00	1.88E+03	1.90E+01	1.95E+00	1.97E+01	4.37E+01	8.07E-09	4.52E+07	1.90E+03	1.89E+01	1	0.99		
3.91E-12	3.59E-01	8.24E+00	1.91E+03	1.93E+01	1.97E+00	2.02E+01	4.55E+01	7.07E-09	4.70E+07	1.93E+03	1.93E+01	1	0.99		
3.17E-12	3.66E-01	8.41E+00	1.95E+03	1.97E+01	1.99E+00	2.07E+01	4.74E+01	6.17E-09	4.89E+07	1.97E+03	1.97E+01	1	0.99		
2.55E-12	3.74E-01	8.57E+00	1.99E+03	2.01E+01	2.01E+00	2.13E+01	4.93E+01	5.37E-09	5.09E+07	2.01E+03	2.01E+01	1	0.99		
2.05E-12	3.81E-01	8.75E+00	2.03E+03	2.05E+01	2.03E+00	2.18E+01	5.13E+01	4.66E-09	5.29E+07	2.05E+03	2.05E+01	1	0.99		
1.65E-12	3.89E-01	8.92E+00	2.07E+03	2.09E+01	2.05E+00	2.24E+01	5.33E+01	4.03E-09	5.51E+07	2.09E+03	2.09E+01	1	0.99		
1.31E-12	3.96E-01	9.10E+00	2.11E+03	2.13E+01	2.07E+00	2.30E+01	5.55E+01	3.46E-09	5.73E+07	2.13E+03	2.13E+01	1	0.99		
1.04E-12	4.04E-01	9.28E+00	2.16E+03	2.18E+01	2.09E+00	2.36E+01	5.77E+01	2.97E-09	5.96E+07	2.18E+03	2.17E+01	1	0.99		
8.28E-13	4.12E-01	9.47E+00	2.20E+03	2.22E+01	2.11E+00	2.42E+01	6.01E+01	2.54E-09	6.20E+07	2.22E+03	2.22E+01	1	0.99	0	100
6.53E-13	4.21E-01	9.65E+00	2.24E+03	2.26E+01	2.13E+00	2.48E+01	6.25E+01	2.16E-09	6.45E+07	2.26E+03	2.26E+01	1	0.99		
5.14E-13	4.29E-01	9.85E+00	2.29E+03	2.31E+01	2.15E+00	2.54E+01	6.50E+01	1.83E-09	6.71E+07	2.31E+03	2.31E+01	1	0.99		
4.36E-19	9.46E-01	2.17E+01	5.05E+03	5.10E+01	4.22E+00	7.77E+01	3.17E+02	4.53E-14	3.27E+08	5.10E+03	5.10E+01	1	0.99		
2.66E-19	9.65E-01	2.22E+01	5.15E+03	5.20E+01	4.30E+00	7.95E+01	3.30E+02	3.00E-14	3.40E+08	5.20E+03	5.20E+01	1	0.99		
1.61E-19	9.85E-01	2.26E+01	5.25E+03	5.30E+01	4.38E+00	8.13E+01	3.43E+02	1.97E-14	3.54E+08	5.30E+03	5.30E+01	1	0.99		
9.67E-20	1.00E+00	2.31E+01	5.35E+03	5.41E+01	4.48E+00	8.31E+01	3.57E+02	1.28E-14	3.68E+08	5.41E+03	5.41E+01	1	0.99		
5.74E-20	1.02E+00	2.35E+01	5.46E+03	5.52E+01	4.62E+00	8.50E+01	3.71E+02	8.37E-15	3.83E+08	5.52E+03	5.52E+01	1	0.99		
3.38E-20	1.04E+00	2.40E+01	5.57E+03	5.63E+01	4.76E+00	8.69E+01	3.86E+02	5.40E-15	3.98E+08	5.63E+03	5.63E+01	1	0.99		
						Σ	F _{AM} -source =	9.78E-05							
							F _{AM} =	8.63E-01							

Table 2.102 Calculation of F_{AM} for Tc-99 in an Area Source of 10,000 m² with a Cover of 1 cm at the Receptor Location (0, 0, 1) (m)

Table 2.103 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six Area Sources with a Concrete Cover of 1 cm

DCF-inf		Average		Area of		Estimated
(mrem/yr per		Decay Factor		Source		Dose
pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	(m2)	F _{AM}	(mrem/yr)
				10,000	8.63E-01	1.10E-09
				1,000	8.63E-01	1.09E-09
1 265 04	2 125 05	1.005.00	1.015.05	100	7.65E-01	9.70E-10
1.20E-04	2.13E+03	1.002+00	1.012-05	36	6.10E-01	7.74E-10
				10	3.68E-01	4.66E-10
				4	2.13E-01	2.70E-10

Table 2.104 Calculation of F_{CD} for Tc-99 in an Area Source with a Cover of 5 cm

Fitting parame	eters Ai, Bi, Ka	ai (cm2/g), Kbi (c	m2/g)		0.787	0.213	0.211	2.63			
Reference sou	urce –	Cover material	=	none	Cover thick	ness, cm =		5	Density of c	over, g/cm3 =	2.4
		Source density	, g/cm3 =		1.6	Source thickne	ess, cm =		0.001		
Surface activi	ty conversion	factor, (pCi/g)/	(pCi/m2)		0.0625						
F _{CD}	$= \frac{D(T_c = t_c)}{D(T_c = 0)}$	$\frac{T_S = t_S)}{T_S = \infty} = A e^{-B}$	$K_{A}\rho_{c}t_{c}(1-\epsilon)$	$e^{-K_A \rho_S t_S}$	$+ Be^{-K_B\rho_c t_c}$	$(1-e^{-K_B \rho_S t_s})$),				
FCD-surf=	0.00000132		(Note: FCD-si	urf = FCD × S	urface activity	conversion fact	tor)				

Table 2.105 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six Area Sources with a Concrete Cover of 5 cm

DCF-inf		Average		Area of		Estimated
(mrem/yr per		Decay Factor		Source		Dose
pCi/g)	Half-life, yr	in 1st year	F _{CD} -surf	(m2)	F _{AM}	(mrem/yr)
				10,000	7.39E-01	1.22E-10
				1,000	7.39E-01	1.22E-10
1 265 04	2 125 05	1.005+00	1 225 06	100	7.39E-01	1.22E-10
1.202-04	2.136+03	1.002+00	1.522-00	36	7.35E-01	1.22E-10
				10	6.60E-01	1.09E-10
				4	4.92E-01	8.15E-11

Table 2.106 Comparison of External Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Six Area Sources with Concrete Covers

		With 1-cm Cove	er		With 5-cm Cov	/er
	Dose Results	Dose Results	Ratio -	Dose Results	Dose Results	Ratio -
Area of	from RESRAD-	from	RESRAD-BUILD/	from RESRAD-	from	RESRAD-BUILD/
Source (m ²)	BUILD	Spreadsheets	Spreadsheets	BUILD	Spreadsheets	Spreadsheets
10,000	1.10E-09	1.10E-09	1.00	1.23E-10	1.22E-10	1.01
1,000	1.10E-09	1.09E-09	1.01	1.23E-10	1.22E-10	1.01
100	9.97E-10	9.70E-10	1.03	1.23E-10	1.22E-10	1.01
36	8.08E-10	7.74E-10	1.04	1.23E-10	1.22E-10	1.01
10	4.91E-10	4.66E-10	1.05	1.10E-10	1.09E-10	1.01
4	2.87E-10	2.70E-10	1.06	8.25E-11	8.15E-11	1.01

2.3.2 Rectangular Area Sources

The external radiation dose modeling for rectangular area sources by RESRAD-BUILD was verified by comparing the external dose results with those of spreadsheets for a receptor at (0, 0, 1) (m) from six rectangular area sources, which was centered at (0, 0, 0) (m) with a z-direction. These six area sources contained C-14 of a concentration of 1 pCi/m² and had dimensions of 2 m × 2 m, 4 m × 2 m, 4 m × 3 m, 4 m × 4 m, 6 m × 6 m, and 10 m × 10 m. There was no shielding material, and the indoor time fraction for the receptor was assumed to be 1.

Unlike a circular area source, which was subdivided into multiple annuli to estimate the effective F_{AM} in the spreadsheet calculations, as described in Section 2.3.1, a rectangular area source was subdivided into multiple squares. The sum of the F_{AM} of each square was the effective F_{AM} of the rectangular source. Tables 2.107 to 2.112 show the estimation of F_{AM} for each rectangular source considered. The final values of F_{AM} for each rectangular source are listed in Table 2.113, which shows the calculation of radiation doses at the receptor location.

Comparisons of the dose results for C-14 between the spreadsheets and RESRAD-BUILD are presented in Table 2.114. In general, the differences are less than 3%. Based on the comparison, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

# photons 1 ta (cm) =	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv- cm2) 0.22	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04 Sour	Mass Attenuation Coefficient (soil) (/cm) 5.79E-01 rce area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01 2 x 2 = 4	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ = Source-ref a	$\frac{(t_a\mu_a + t_c\mu_c)}{(t_a + t_c + t_c)}$ rea (m2) =	$(+t\mu_{s})$ (-t) (3.36E+06)				
exp(-ux)/x2 -	mfp-dist. in -	dist. in -source-	dist. in-source-				4π x dist- source^2	distance-						Receptor location x	Receptor location y	Receptor location z
source	source-air	air (cm)	cover (cm)	BF-source-air	Vol-source	F _{AM} -source	(cm2)	source (cm)	x-source (m)	y-source (m)	z-source (m)	ta + tc (m)	ta (m)	(m)	(m)	(m)
4.31E-06	3.45E-02	1.33E+02	0.00E+00	1.10E+00	2.50E-01	1.19E-06	2.24E+05	1.33E+02	0.125	0.125	0	1	1	0	0	1
5.49E-06	3.07E-02	1.19E+02	0.00E+00	1.09E+00	2.50E-01	1.49E-06	1.//E+05	1.19E+02	0.125	0.375	0	1	1	0	0	1
6.69E-06	2.78E-02	1.08E+02	0.00E+00	1.08E+00	2.50E-01	1.81E-06	1.45E+05	1.08E+02	0.125	0.625	0	1	1	0	0	1
7.51E-06	2.63E-02	1.02E+02	0.00E+00	1.08E+00	2.50E-01	2.02E-06	1.30E+05	1.02E+02	0.125	0.875	0	1	1	0	0	1
4.03E-06	3.57E-02	1.38E+02	0.00E+00	1.10E+00	2.50E-01	1.11E-06	2.40E+05	1.38E+02	0.375	0.125	0	1	1	0	0	1
5.032-06	3.20E-02	1.24E+02	0.00E+00	1.09E+00	2.50E-01	1.572-06	1.95E+05	1.24E+02	0.375	0.575	0	1	1	0	0	1
6.60E.06	2.93E-02	1.13E+02	0.00E+00	1.09E+00	2.50E-01	1.04E-00	1.012+03	1.13E+02	0.375	0.025	0	1	1	0	0	1
3.555-06	2.78E-02	1.082+02	0.00E+00	1.082+00	2.50E-01	9.865-07	2 71E+05	1.082+02	0.575	0.875	0	1	1	0	0	1
4.31E-06	3.45E-02	1.47E+02	0.00E+00	1.10E+00	2.50E-01	1.10E-06	2.71E+05	1.470+02	0.625	0.125	0	1	1	0	0	1
5.03E-06	3.20E-02	1.33E+02	0.00E+00	1.10E+00	2.50E 01	1.15E 00	1 93E+05	1.33E+02	0.625	0.625	0	1	1	0	0	1
5.05E 00	3.07E-02	1.19E+02	0.00E+00	1.09E+00	2.50E-01	1.37E 00	1.77E+05	1.24E+02	0.625	0.875	0	1	1	0	0	1
3.02E-06	4 12E-02	1.59E+02	0.00E+00	1.12E+00	2.50E-01	8.44F-07	3.18E+05	1.59E+02	0.875	0.125	0	1	1	0	0	1
3.55E-06	3.80E-02	1.47E+02	0.00E+00	1.11E+00	2.50E-01	9.86E-07	2.71E+05	1.47E+02	0.875	0.375	0	1	1	0	0	1
4.03E-06	3.57E-02	1.38E+02	0.00E+00	1.10E+00	2.50E-01	1.11E-06	2.40E+05	1.38E+02	0.875	0.625	0	1	1	0	0	1
4.31E-06	3.45E-02	1.33E+02	0.00E+00	1.10E+00	2.50E-01	1.19E-06	2.24E+05	1.33E+02	0.875	0.875	0	- 1	1	0	0	1
3.83E-06	3.66E-02	1.41E+02	0.00E+00	1.11E+00	0.00E+00	0.00E+00	2.51E+05	1.41E+02	1.000	1.000	0	1	1	0	0	1
				5	FAM-source =	2.16E-05										
					FAM=	7.02E-02										

Table 2.107 Calculation of F_{AM} for C-14 in a Rectangular Area Source of 2 m × 2 m without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv- cm2) 0.22	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04 Sour	Mass Attenuation Coefficient (soil) (/cm) 5.79E-01 ce area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01 4 x 2 = 8	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ = Source-ref ar	$\frac{(t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$ ea (m2) =	$(+t\mu_{s})$ (-t) (-t) (-t)				
exp(-ux)/x2 -	mfp-dist. in -	dist. in -source-	dist. in-source-				4π x dist- source^2	distance-				to 1 to (m)	to (m)	Receptor location x	Receptor location y	Receptor location z
2 2EF OF	3 01E 02			1 115 00	2 E0E 01	PAM-Source	2.875+05	source (cm)	x-source (III)	y-source (III)	2-source (III)	ta + tc (m)		(11)	(11)	(11)
3.352-00	3.91E-02	1.55E+02	0.00E+00	1.11E+00	2.50E-01	9.332-07	2.872+05	1.51E+02	1.125	0.125	0	1	0	0	0	1
3.162-00	4.01E-02	1.03E+02	0.00E+00	1.12E+00	2.50E-01	8.60E-07	2 24E+05	1.532+02	1.125	0.575	0	1	0	0	0	1
2.572-00	4.50E-02	1.74E+02	0.00E+00	1.12E+00	2.50E-01	7.09E-07	3.81E+05	1.03E+02	1.125	0.025	0	1	0	0	0	1
2.51E 00	4.50E 02	1.76E+02	0.00E+00	1.13E+00	2.50E-01	7 39E-07	3.65E+05	1.74E+02	1 375	0.125	0	1	0	0	0	1
2.51E-06	4.50E-02	1.81E+02	0.00E+00	1.13E+00	2.50E-01	7.09E-07	3.81E+05	1.74E+02	1.375	0.375	0	1	0	0	0	1
2.31E-06	4.69E-02	1.91E+02	0.00E+00	1.14E+00	2.50E-01	6.57E-07	4.13E+05	1.81E+02	1.375	0.625	0	1	0	0	0	1
2.07F-06	4.95E-02	1.91F+02	0.00F+00	1.14F+00	2.50F-01	5.92E-07	4.60F+05	1.91F+02	1.375	0.875	0	1	1	0	0	1
2.07E-06	4.95E-02	1.94E+02	0.00E+00	1.14E+00	2.50E-01	5.92E-07	4.60E+05	1.91E+02	1.625	0.125	0	1	1	0	0	1
2.00E-06	5.03E-02	2.01E+02	0.00E+00	1.15E+00	2.50E-01	5.73E-07	4.75E+05	1.94E+02	1.625	0.375	0	1	1	0	0	1
1.87E-06	5.19E-02	2.10E+02	0.00E+00	1.15E+00	2.50E-01	5.39E-07	5.07E+05	2.01E+02	1.625	0.625	0	1	1	0	0	1
1.71E-06	5.43E-02	2.13E+02	0.00E+00	1.16E+00	2.50E-01	4.95E-07	5.54E+05	2.10E+02	1.625	0.875	0	1	1	0	0	1
1.66E-06	5.51E-02	2.16E+02	0.00E+00	1.16E+00	2.50E-01	4.82E-07	5.70E+05	2.13E+02	1.875	0.125	0	1	1	0	0	1
1.62E-06	5.58E-02	2.22E+02	0.00E+00	1.16E+00	2.50E-01	4.69E-07	5.85E+05	2.16E+02	1.875	0.375	0	1	1	0	0	1
1.53E-06	5.73E-02	2.07E+02	0.00E+00	1.17E+00	2.50E-01	4.46E-07	6.17E+05	2.22E+02	1.875	0.625	0	1	1	0	0	1
1.76E-06	5.35E-02	2.24E+02	0.00E+00	1.16E+00	2.50E-01	5.09E-07	5.38E+05	2.07E+02	1.875	0.875	0	1	1	0	0	0
1.50E-06	5.78E-02	0.00E+00	0.00E+00	1.17E+00	0.00E+00	0.00E+00	6.29E+05	2.24E+02	2.000	1.000	0	1	1	0	0	0
					∑FAM-source	1.01E-05										
					FAM=	1.03E-01										

Table 2.108 Calculation of F_{AM} for C-14 in a Rectangular Area Source of 4 m × 2 m without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv- cm2) 0.22	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04 Sour	Mass Attenuation Coefficient (soil) (/cm) 5.79E-01 ce area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01 4 x 3 = 12	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ = Source-ref ar	$\frac{(t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$ ea (m2) =	$(+t\mu_s)$ (-t)				
exp(-ux)/x2 -	mfp-dist. in -	dist. in -source-	dist. in-source-				4π x dist- source^2	distance-						Receptor location x	Receptor location y	Receptor location z
source	source-air	air (cm)	cover (cm)	BF-source-air	Vol-source	F _{AM} -source	(cm2)	source (cm)	x-source (m)	y-source (m)	z-source (m)	ta + tc (m)	ta (m)	(m)	(m)	(m)
3.35E-06	3.91E-02	1.51E+02	0.00E+00	1.11E+00	2.50E-01	9.33E-07	2.87E+05	1.51E+02	0.125	1.125	0	1	0	0	0	1
3.18E-06	4.01E-02	1.55E+02	0.00E+00	1.12E+00	2.50E-01	8.86E-07	3.03E+05	1.55E+02	0.375	1.125	0	1	0	0	0	1
2.87E-06	4.22E-02	1.63E+02	0.00E+00	1.12E+00	2.50E-01	8.06E-07	3.34E+05	1.63E+02	0.625	1.125	0	1	0	0	0	1
2.51E-06	4.50E-02	1.74E+02	0.00E+00	1.13E+00	2.50E-01	7.09E-07	3.81E+05	1.74E+02	0.875	1.125	0	1	0	0	0	1
2.15E-06	4.86E-02	1.88E+02	0.00E+00	1.14E+00	2.50E-01	6.12E-07	4.44E+05	1.88E+02	1.125	1.125	0	1	0	0	0	1
1.82E-06	5.27E-02	2.04E+02	0.00E+00	1.15E+00	2.50E-01	5.23E-07	5.23E+05	2.04E+02	1.375	1.125	0	1	0	0	0	1
1.53E-06	5.73E-02	2.22E+02	0.00E+00	1.17E+00	2.50E-01	4.46E-07	6.17E+05	2.22E+02	1.625	1.125	0	1	0	0	0	1
1.29E-06	6.22E-02	2.40E+02	0.00E+00	1.18E+00	2.50E-01	3.82E-07	7.27E+05	2.40E+02	1.875	1.125	0	1	1	0	0	1
2.62E-06	4.41E-02	1.70E+02	0.00E+00	1.13E+00	2.50E-01	7.39E-07	3.65E+05	1.70E+02	0.125	1.375	0	1	1	0	0	1
2.51E-06	4.50E-02	1.74E+02	0.00E+00	1.13E+00	2.50E-01	7.09E-07	3.81E+05	1.74E+02	0.375	1.375	0	1	1	0	0	1
2.31E-06	4.69E-02	1.81E+02	0.00E+00	1.14E+00	2.50E-01	6.57E-07	4.13E+05	1.81E+02	0.625	1.375	0	1	1	0	0	1
2.07E-06	4.95E-02	1.91E+02	0.00E+00	1.14E+00	2.50E-01	5.92E-07	4.60E+05	1.91E+02	0.875	1.375	0	1	1	0	0	1
1.82E-06	5.27E-02	2.04E+02	0.00E+00	1.15E+00	2.50E-01	5.23E-07	5.23E+05	2.04E+02	1.125	1.375	0	1	1	0	0	1
1.57E-06	5.66E-02	2.19E+02	0.00E+00	1.16E+00	2.50E-01	4.58E-07	6.01E+05	2.19E+02	1.375	1.375	0	1	1	0	0	1
1.35E-06	6.08E-02	2.35E+02	0.00E+00	1.18E+00	2.50E-01	3.98E-07	6.95E+05	2.35E+02	1.625	1.375	0	1	1	0	0	1
1.16E-06	6.55E-02	2.53E+02	0.00E+00	1.19E+00	2.50E-01	3.46E-07	8.05E+05	2.53E+02	1.875	1.375	0	1	1	0	0	1
1.02E-06	6.97E-02	2.69E+02	0.00E+00	1.20E+00	0.00E+00	0.00E+00	9.11E+05	2.69E+02	2.000	1.500	0	1	1	0	0	1
					∑FAM-source	9.72E-06										
					FAM=	1.35E-01										

Table 2.109 Calculation of F_{AM} for C-14 in a Rectangular Area Source of 4 m × 3 m without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1 tc (cm) =	Fluence to Effective Dose Conversion Factor (pSv- cm2) 0.22	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04 Sour	Mass Attenuation Coefficient (soil) (/cm) 5.79E-01 ce area (m2) =	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01 4 x 4 = 16	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ = Source-ref ar	$\frac{(t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$ ea (m2) =	$(+t\mu_s)$ (-t) (-t) (-t)				
exp(-ux)/x2 -	mfp-dist. in -	dist. in -source-	dist. in-source-	PE source air	Vol source	[4π x dist- source^2	distance-	v source (m)	v cource (m)	7 cource (m)	ta Ltc (m)	ta (m)	Receptor location x	Receptor location y	Receptor location z
2 07E 06	4 055 02	1.015+02	0.005+00	1 14E+00	2 505 01	FAM-SOURCE	4 605 105	1.015+02	A-source (III)	1 625	2-source (III)		1	(11)	(11)	1
2.072-00	4.93E-02	1.912+02	0.00E+00	1.142+00	2.50E-01	5.73E-07	4.002+03	1.91E+02	0.125	1.025	0	1	1	0	0	1
1.87E-06	5.19E-02	2.01E+02	0.00E+00	1.15E+00	2.50E-01	5.39E-07	5.07E+05	2.01E+02	0.575	1.625	0	1	1	0	0	1
1.71E-06	5.43E-02	2.10E+02	0.00E+00	1.16E+00	2.50E-01	4.95E-07	5.54E+05	2.10E+02	0.875	1.625	0	1	1	0	0	1
1.53E-06	5.73E-02	2.22E+02	0.00E+00	1.17E+00	2.50E-01	4.46E-07	6.17E+05	2.22E+02	1.125	1.625	0	1	1	0	0	1
1.35E-06	6.08E-02	2.35E+02	0.00E+00	1.18E+00	2.50E-01	3.98E-07	6.95E+05	2.35E+02	1.375	1.625	0	1	1	0	0	1
1.19E-06	6.48E-02	2.51E+02	0.00E+00	1.19E+00	2.50E-01	3.53E-07	7.90E+05	2.51E+02	1.625	1.625	0	1	1	0	0	1
1.04E-06	6.92E-02	2.68E+02	0.00E+00	1.20E+00	2.50E-01	3.11E-07	9.00E+05	2.68E+02	1.875	1.625	0	1	1	0	0	1
1.66E-06	5.51E-02	2.13E+02	0.00E+00	1.16E+00	2.50E-01	4.82E-07	5.70E+05	2.13E+02	0.125	1.875	0	1	1	0	0	1
1.62E-06	5.58E-02	2.16E+02	0.00E+00	1.16E+00	2.50E-01	4.69E-07	5.85E+05	2.16E+02	0.375	1.875	0	1	1	0	0	1
1.53E-06	5.73E-02	2.22E+02	0.00E+00	1.17E+00	2.50E-01	4.46E-07	6.17E+05	2.22E+02	0.625	1.875	0	1	1	0	0	1
1.42E-06	5.95E-02	2.30E+02	0.00E+00	1.17E+00	2.50E-01	4.16E-07	6.64E+05	2.30E+02	0.875	1.875	0	1	1	0	0	1
1.29E-06	6.22E-02	2.40E+02	0.00E+00	1.18E+00	2.50E-01	3.82E-07	7.27E+05	2.40E+02	1.125	1.875	0	1	1	0	0	1
1.16E-06	6.55E-02	2.53E+02	0.00E+00	1.19E+00	2.50E-01	3.46E-07	8.05E+05	2.53E+02	1.375	1.875	0	1	1	0	0	1
1.04E-06	6.92E-02	2.68E+02	0.00E+00	1.20E+00	2.50E-01	3.11E-07	9.00E+05	2.68E+02	1.625	1.875	0	1	1	0	0	1
9.20E-07	7.33E-02	2.83E+02	0.00E+00	1.21E+00	2.50E-01	2.79E-07	1.01E+06	2.83E+02	1.875	1.875	0	1	1	0	0	1
8.18E-07	7.76E-02	3.00E+02	0.00E+00	1.23E+00	0.00E+00	0.00E+00	1.13E+06	3.00E+02	2.000	2.000	0	1	1	0	0	1
					∑FAM-source	6.84E-06										
					FAM =	1.57E-01										

Table 2.110 Calculation of F_{AM} for C-14 in a Rectangular Area Source of 4 m × 4 m without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.049	Yield 1 8.65E-04	FE 0.1	Fluence to Effective Dose Conversion Factor (pSv- cm2) 0.22	Effective Mass Attenuation Coefficient (source) (/cm) 2.59E-04	Effective mass Attenuation Coefficient (ref) (/cm) 2.59E-04	Mass Attenuation Coefficient (soil) (/cm) 5.79E-01	Mass Attenuation Coefficient (concrete) (/cm) 9.99E-01	Mass Attenuation Coefficient (air) (/cm) 2.59E-04	μ =	$\frac{(t_a\mu_a + t_c\mu_c}{(t_a + t_c + t_c)}$	$\left(\frac{t+t\mu_{s}}{t}\right)$				
ta (cm) =	= 100		tc (cm) =	= 0		Sour	ce area (m2) =	6 x 6 = 36		Source-ref ar	rea (m2) =	3.36E+06				
exp(-ux)/x2 -	mfp-dist. in -	dist. in -source-	dist. in-source-				4π x dist- source^2	distance-						Receptor location x	Receptor location y	Receptor location z
source	source-air	air (cm)	cover (cm)	BF-source-air	Vol-source	F _{AM} -source	(cm2)	source (cm)	x-source (m)	y-source (m)	z-source (m)	ta + tc (m)	ta (m)	(m)	(m)	(m)
1.22E-06	6.40E-02	2.47E+02	0.00E+00	1.19E+00	1.00E+00	1.44E-06	7.70E+05	2.47E+02	2.25	0.25	0	1	1	0	0	1
1.12E-06	6.66E-02	2.57E+02	0.00E+00	1.19E+00	1.00E+00	1.34E-06	8.33E+05	2.57E+02	2.25	0.75	0	1	1	0	0	1
9.71E-07	7.14E-02	2.76E+02	0.00E+00	1.21E+00	1.00E+00	1.17E-06	9.59E+05	2.76E+02	2.25	1.25	0	1	1	0	0	1
8.06E-07	7.81E-02	3.02E+02	0.00E+00	1.23E+00	1.00E+00	9.89E-07	1.15E+06	3.02E+02	2.25	1.75	0	1	1	0	0	1
6.56E-07	8.63E-02	3.34E+02	0.00E+00	1.25E+00	1.00E+00	8.20E-07	1.40E+06	3.34E+02	2.25	2.25	0	1	1	0	0	1
5.31E-07	9.55E-02	3.69E+02	0.00E+00	1.28E+00	1.00E+00	6.78E-07	1.71E+06	3.69E+02	2.25	2.75	0	1	1	0	0	1
8.55E-07	7.60E-02	2.94E+02	0.00E+00	1.22E+00	1.00E+00	1.04E-06	1.08E+06	2.94E+02	2.75	0.25	0	1	1	0	0	1
8.06E-07	7.81E-02	3.02E+02	0.00E+00	1.23E+00	1.00E+00	9.89E-07	1.15E+06	3.02E+02	2.75	0.75	0	1	1	0	0	1
7.24E-07	8.23E-02	3.18E+02	0.00E+00	1.24E+00	1.00E+00	8.97E-07	1.27E+06	3.18E+02	2.75	1.25	0	1	1	0	0	1
6.26E-07	8.82E-02	3.41E+02	0.00E+00	1.26E+00	1.00E+00	7.87E-07	1.46E+06	3.41E+02	2.75	1.75	0	1	1	0	0	1
5.31E-07	9.55E-02	3.69E+02	0.00E+00	1.28E+00	1.00E+00	6.78E-07	1.71E+06	3.69E+02	2.75	2.25	0	1	1	0	0	1
4.45E-07	1.04E-01	4.02E+02	0.00E+00	1.30E+00	1.00E+00	5.79E-07	2.03E+06	4.02E+02	2.75	2.75	0	1	1	0	0	1
1.22E-06	6.40E-02	2.4/E+02	0.00E+00	1.19E+00	1.00E+00	1.44E-06	7.70E+05	2.47E+02	0.25	2.25	0	1	1	0	0	1
1.12E-06	6.66E-02	2.5/E+02	0.00E+00	1.19E+00	1.00E+00	1.34E-06	8.33E+05	2.57E+02	0.75	2.25	0	1	1	0	0	1
9.71E-07	7.14E-02	2.76E+02	0.00E+00	1.21E+00	1.00E+00	1.1/E-06	9.59E+05	2.76E+02	1.25	2.25	0	1	1	0	0	1
8.06E-07	7.81E-02	3.02E+02	0.00E+00	1.23E+00	1.00E+00	9.89E-07	1.15E+06	3.02E+02	1.75	2.25	0	1	1	0	0	1
8.55E-07	7.60E-02	2.94E+02	0.00E+00	1.22E+00	1.00E+00	1.04E-06	1.08E+06	2.94E+02	0.25	2.75	0	1	1	0	0	1
8.06E-07	7.81E-02	3.02E+02	0.00E+00	1.23E+00	1.00E+00	9.89E-07	1.15E+06	3.02E+02	0.75	2.75	U	1	1	0	U	1
7.24E-07	8.23E-02	3.18E+02	0.00E+00	1.24E+00	1.00E+00	8.97E-07	1.2/E+06	3.18E+02	1.25	2.75	0	1	1	0	0	1
6.26E-07	8.82E-02	3.41E+02	0.00E+00	1.26E+00	1.00E+00	7.8/E-07	1.46E+06	3.41E+02	1.75	2.75	0	1	1	0	0	1
					∑FAM-source	2.01E-05										
					FAM=	2.22E-01										

Table 2.111 Calculation of F_{AM} for C-14 in a Rectangular Area Source of 6 m × 6 m without Cover at the Receptor Location (0, 0, 1) (m)

					Effective											
				Fluence to	Mass	Effective		Mass								
				Effective Dose	Attenuation	mass	Mass	Attenuation	Mass		$(t \mu + t \mu)$	$+t\mu$)				
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation	μ =	(+ + + +	(+)				
				Factor (pSv-	(source)	Coefficient	Coefficient	(concrete)	Coefficient		$(i_a + i_c + i_c)$	- 1)				
# photons	Energy 1	Yield 1	FE	cm2)	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)							
1	0.049	8.65E-04	0.1	0.22	2.59E-04	2.59E-04	5.79E-01	9.99E-01	2.59E-04							
ta (cm) =	= 100		tc (cm) =	0		Sour	ce area (m2) =	10 x 10 = 100		Source-ref a	ea (m2) =	3.36E+06				
							4π x dist-							Receptor	Receptor	Receptor
exp(-ux)/x2 -	mfp-dist. in -	dist. in -source-	dist. in-source-				source^2	distance-						location x	location y	location z
source	source-air	air (cm)	cover (cm)	BF-source-air	Vol-source	F _{AM} -source	(cm2)	source (cm)	x-source (m)	y-source (m)	z-source (m)	ta + tc (m)	ta (m)	(m)	(m)	(m)
5.36E-07	9.51E-02	3.67E+02	0.00E+00	1.28E+00	3.20E+00	2.19E-06	1.70E+06	3.67E+02	3.50	0.50	0	1	1	0	0	1
4.64E-07	1.02E-01	3.94E+02	0.00E+00	1.30E+00	3.20E+00	1.92E-06	1.95E+06	3.94E+02	3.50	1.50	0	1	1	0	0	1
3.64E-07	1.14E-01	4.42E+02	0.00E+00	1.33E+00	3.20E+00	1.55E-06	2.45E+06	4.42E+02	3.50	2.50	0	1	1	0	0	1
2.74E-07	1.31E-01	5.05E+02	0.00E+00	1.38E+00	3.20E+00	1.21E-06	3.21E+06	5.05E+02	3.50	3.50	0	1	1	0	0	1
2.04E-07	1.50E-01	5.79E+02	0.00E+00	1.43E+00	3.20E+00	9.39E-07	4.21E+06	5.79E+02	3.50	4.50	0	1	1	0	0	1
3.28E-07	1.20E-01	4.64E+02	0.00E+00	1.35E+00	3.20E+00	1.42E-06	2.70E+06	4.64E+02	4.50	0.50	0	1	1	0	0	1
2.99E-07	1.25E-01	4.85E+02	0.00E+00	1.36E+00	3.20E+00	1.30E-06	2.95E+06	4.85E+02	4.50	1.50	0	1	1	0	0	1
2.53E-07	1.36E-01	5.24E+02	0.00E+00	1.39E+00	3.20E+00	1.13E-06	3.46E+06	5.24E+02	4.50	2.50	0	1	1	0	0	1
2.04E-07	1.50E-01	5.79E+02	0.00E+00	1.43E+00	3.20E+00	9.39E-07	4.21E+06	5.79E+02	4.50	3.50	0	1	1	0	0	1
1.62E-07	1.67E-01	6.44E+02	0.00E+00	1.48E+00	3.20E+00	7.70E-07	5.22E+06	6.44E+02	4.50	4.50	0	1	1	0	0	1
5.36E-07	9.51E-02	3.67E+02	0.00E+00	1.28E+00	3.20E+00	2.19E-06	1.70E+06	3.67E+02	0.50	3.50	0	1	1	0	0	1
4.64E-07	1.02E-01	3.94E+02	0.00E+00	1.30E+00	3.20E+00	1.92E-06	1.95E+06	3.94E+02	1.50	3.50	0	1	1	0	0	1
3.64E-07	1.14E-01	4.42E+02	0.00E+00	1.33E+00	3.20E+00	1.55E-06	2.45E+06	4.42E+02	2.50	3.50	0	1	1	0	0	1
2.74E-07	1.31E-01	5.05E+02	0.00E+00	1.38E+00	3.20E+00	1.21E-06	3.21E+06	5.05E+02	3.50	3.50	0	1	1	0	0	1
2.04E-07	1.50E-01	5.79E+02	0.00E+00	1.43E+00	3.20E+00	9.39E-07	4.21E+06	5.79E+02	4.50	3.50	0	1	1	0	0	1
3.28E-07	1.20E-01	4.64E+02	0.00E+00	1.35E+00	3.20E+00	1.42E-06	2.70E+06	4.64E+02	0.50	4.50	0	1	1	0	0	1
2.99E-07	1.25E-01	4.85E+02	0.00E+00	1.36E+00	3.20E+00	1.30E-06	2.95E+06	4.85E+02	1.50	4.50	0	1	1	0	0	1
2.53E-07	1.36E-01	5.24E+02	0.00E+00	1.39E+00	3.20E+00	1.13E-06	3.46E+06	5.24E+02	2.50	4.50	0	1	1	0	0	1
2.04E-07	1.50E-01	5.79E+02	0.00E+00	1.43E+00	3.20E+00	9.39E-07	4.21E+06	5.79E+02	3.50	4.50	0	1	1	0	0	1
1.62E-07	1.67E-01	6.44E+02	0.00E+00	1.48E+00	3.20E+00	7.70E-07	5.22E+06	6.44E+02	4.50	4.50	0	1	1	0	0	1
					∑FAM-source	2.67E-05										
					FAM=	3.09E-01										

Table 2.112 Calculation of F_{AM} for C-14 in a Rectangular Area Source of 10 m × 10 m without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.113 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from C-14 in Six Rectangular Area Sources without Cover

DCF-inf		Average Decay				Estimated
(mrem/yr per		Factor in 1st		Area of Source		Dose
pCi/g)	Half-life, yr	year	F _{CD} -surf	(m2)	F _{AM}	(mrem/yr)
				100	3.09E-01	5.82E-10
				36	2.22E-01	4.19E-10
1 255 05	5 725+02	1.005.00	1 405 04	16	1.57E-01	2.96E-10
1.552-05	3.73E+03	1.002+00	1.402-04	12	1.35E-01	2.54E-10
				8	1.03E-01	1.94E-10
				4	7.02E-02	1.32E-10

Table 2.114 Comparison of Radiation Doses (mrem/yr) at the Receptor Location (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from C-14 in Six Rectangular Area Sources without Cover

		Recept	tor Location (0, 0,	1) (m)
	Dimensions of	Dose Results	Dose Results	Ratio -
Area of Source	Source	from RESRAD-	from	RESRAD-BUILD/
(m2)	(m x m)	BUILD	Spreadsheets	Spreadsheets
100	10 x 10	5.79E-10	5.82E-10	0.99
36	6 x 6	4.09E-10	4.19E-10	0.98
16	4 x 4	2.88E-10	2.96E-10	0.97
12	4 x 3	2.46E-10	2.54E-10	0.97
8	4 x 2	1.89E-10	1.94E-10	0.97
4	2 x 2	1.29E-10	1.32E-10	0.98

2.4 EXTERNAL RADIATION OF VOLUME SOURCES

The external radiation dose modeling for volume sources by RESRAD-BUILD was verified by comparing the no-shielding external dose results for Co-60, Mn-54, and Tc-99 and then the with-shielding external dose results for Mn-54 with those from spreadsheets for a receptor at (0, 0, 1) (m). To compare the no-shielding external dose results, 24 cylindrical volume sources, which were different combinations of six circular areas (4, 10, 36, 100, 1,000, 100,000) (m²) and four thicknesses, were assumed to contain Co-60, Mn-54, and then Tc-99. The volume sources containing Co-60 were assumed to have a thickness of 1, 5, 15, or 50 cm. Those containing Mn-54 or Tc-99 had a thickness of 1, 2, 5, or 10 cm. All the volume sources pointed to the z-direction. The receptor was placed at a distance of 1 m from the top surface of the source. Another six cylindrical volume sources, with a circular area of 4, 10, 36, 100, 1,000, and 100,000 m² and a thickness of 10 cm, that contained Mn-54 were assumed to have a concrete cover on the top. The thickness of the concrete cover was assumed to be 1 cm, 2 cm, and then 5 cm. These six volume sources also pointed in the z-direction.

The density of each volume source assumed in the verification was 1.6 g/cm^3 . The receptor considered was assumed to spend all his time in a building that housed the volume source. There was no erosion of the source material; therefore, there was no release of source particles to the air.

To evaluate the external dose emitted from a volume source, the volume source was subdivided along the axial direction into 10 smaller cylindrical volumes that have the same circular cross section but a smaller thickness. The F_{AM} of each sub-source was calculated, and their weighted average with F_{CD} was used as the effective F_{AM} of the volume source. When calculating the F_{AM} of a sub-source, the buildup effect from sub-sources above it was factored into account. As discussed previously, an area source was treated as a volume source with a thickness of 0.001 cm by RESRAD-BUILD to model the external radiation. Therefore, the calculation design used in the spreadsheets to estimate the F_{AM} of an area source, as presented in Section 2.3, was applied to estimate the F_{AM} of each sub-source.

Table 2.115 lists the buildup factors in soil (the reference source) calculated for Co-60, Mn-54, and Tc-99, based on literature data of magnesium (Trubey 1991). The buildup factors in air and concrete were previously calculated and listed in Table 2.3 and 2.5, respectively. Table 2.30 lists the mass attenuation coefficients in air, concrete, and soil and the fluence to effective dose equivalent conversion factor.

2.4.1 Dose Results without Shielding

Results for Co-60. Table 2.116 shows the spreadsheet calculation of F_{CD} for a 1-cmthick volume source containing Co-60 without a cover at the top. To estimate F_{AM} for the volume source, the volume source was divided into 10 sub-volumes each with a thickness of 0.1 cm. Table 2.117 shows the calculations of F_{AM-ref} , the F_{AM} of the reference source for the 10th subvolume. Tables 2.118 and 2.119 show the calculation of F_{AM} for the 10th sub-volume that has a circular surface area of 4 m² and 100 m², respectively. (Note: The sub-volumes were numbered from the top to the bottom as 1st, 2nd, ..., 10th sub-volume.) Table 2.120 shows the calculation of F_{AM-ref} for the 6th sub-volume, and Tables 2.121 and 2.122 show the calculation of F_{AM} for the 6th sub-volume that has a circular surface area of 36 m² and 1,000 m², respectively. Calculation of F_{AM-ref} for other sub-volumes and F_{AM} for sub-volumes of different surface areas were performed with the same calculation design in the spreadsheets. Table 2.123 summarizes the F_{AM} 's calculated for each sub-volume of six 1-cm thick volume sources. The external radiation dose estimated for these six volume sources are presented in Table 2.124.

Table 2.125 shows the spreadsheet calculation of F_{CD} for a 5-cm thick volume source containing Co-60 without a cover at the top. Table 2.126 summarizes the F_{AM} 's calculated for each sub-volume of six 5-cm-thick volume sources. The external radiation doses estimated for these six volume sources are presented in Table 2.127.

Thickness			Buildup F	actors for	Magnesiur	n from Tru	bey 1991			Tc-99	Mn-54	Co-60
in Mean										0.101	0.835	
Free Path	0.04 MeV	0.05 MeV	0.1 MeV	0.15 MeV	0.5 MeV	0.6 MeV	0.8 MeV	1 MeV	1.5 MeV	MeV	MeV	1.25 MeV
0.5	1.38	1.67	1.99	1.90	1.58	1.54	1.49	1.45	1.40	1.99	1.48	1.43
1	1.62	2.13	3.1	3.01	2.31	2.21	2.09	2.00	1.86	3.10	2.07	1.93
2	1.99	2.8	5.61	5.83	4.18	3.92	3.56	3.30	2.90	5.61	3.51	3.10
3	2.27	3.39	8.51	9.41	6.58	6.08	5.35	4.85	4.07	8.53	5.26	4.46
4	2.49	3.95	11.8	13.80	9.53	8.67	7.45	6.62	5.35	11.84	7.30	5.99
5	2.70	4.48	15.5	19.00	13.00	11.7	9.87	8.60	6.74	15.57	9.65	7.67
6	2.89	4.97	19.5	25.20	17.10	15.2	12.60	10.80	8.22	19.61	12.29	9.51
7	3.06	5.44	24.1	32.30	21.90	19.2	15.60	13.20	9.79	24.26	15.18	11.50
8	3.22	5.9	29	40.40	27.20	23.7	18.90	15.80	11.40	29.23	18.36	13.60
10	3.52	6.8	40.4	60.20	39.90	34.2	26.50	21.60	14.90	40.80	25.64	18.25
15	4.18	8.95	77.8	133.00	83.90	69	50.10	38.80	24.80	78.90	48.12	31.80
20	4.73	10.9	129	247.00	147.00	116	80.30	59.80	35.90	131.36	76.71	47.85
25	5.22	13	196	412.00	229.00	176	116.00	84.00	48.10	200.32	110.40	66.05
30	5.66	15.3	279	637.00	331.00	249	158.00	111.00	61.10	286.16	149.78	86.05
35	6.03	17.5	380	930.00	454.00	334	206.00	141.00	74.90	391.00	194.63	107.95
40	6.30	19.7	499	1300.00	598.00	430	258.00	173.00	89.30	515.02	243.13	131.15

Table 2.115 Estimates of Buildup Factors in Soil Based on Data of Magnesium

Table 2.116 Calculation of F_{CD} for Co-60 in a 1-cm-Thick Volume Source without a Cover

Fitting para	meters Ai, Bi,	Kai (cm2/g),	Kbi (cm2/g)		0.924	0.076	0.078	1.28			
Reference s	source –	Cover mater	ial =	none	Cover thickr	ness, cm =	0		Density of co	over, g/cm3 =	1.6
		Source dens	ity , g/cm3 =	1.6		Source thick	ness, cm =	1			
	D(T = t	$T_{-}-t$)									
F _C	$D = \frac{D(T_c=t)}{D(T_c=t)}$	$\frac{c^{I}S=l_{S}}{0.T_{S}=\infty} = Ac$	$e^{-K_A \rho_c t_c}(1$	$-e^{-K_A \rho_S t_S}$	$) + Be^{-K_{B}\rho}$	$p_{ct_{c}}(1-e^{-t_{c}})$	K _B ρ _S t _s),				
		3									
FCD=	0.17460632										

				Fluence to	Effective	Effective									
				Effective	iviass	Effective		iviass							
				Dose	Attenuation	Mass	Mass	Attenuation	Mass			$\left[\left(t_{a} \mu_{a} + t_{c} \mu \right) \right]$	$t_c + t\mu_s$)		
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		μ-	$(t_a + t_a)$	+t)		
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient			(<i>u c</i>	, í		
# photons	Energy 1	Yield 1	FE	pSv cm2	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	1.25	2	0.5	4.495	9.87E-04	1.00E-03	9.41E-02	9.26E-02	7.04E-05						
to (cm) -	100	to (om) -	0	c.	ourse referee (m)	2) _	2 265 106		to (cm) -	1					
	100	te (ciii) -	U	3	Surce-rei area (iii.	2) -	5.50E+00		ts (cm) –	1					
	dist. in -ref-	dist. in-ref-					Vol-sour-		4pi x dist-					Receptor	Receptor
exp(-ux)/x2 -	air	source-cover	mfp-dist. in -	mfp-dist. in-	BF-ref-air	BF-ret-	ref	FAM-ref	ref^2	distance-ref	ta + tc + ts	r - ret	ta (m)	location v	location z
ref	(cm)	(cm)	ref-air	ref-source-cover		cover	(m2)		(cm2)	(cm)	(m)	(m)		(cm)	(cm)
7.05E-06	1.00E+02	1.00E+00	7.04E-03	9.41E-02	1.01E+00	1.08E+00	0.00E+00	0.00E+00	1.28E+05	1.01E+02	1.01E+00	0.00E+00	1.00E+00		
6.98E-06	1.00E+02	1.00E+00	7.07E-03	9.45E-02	1.01E+00	1.08E+00	3.14E-02	2.38E-07	1.29E+05	1.01E+02	1.01E+00	1.00E-01	1.00E+00		
6.97E-06	1.01E+02	1.01E+00	7.07E-03	9.46E-02	1.01E+00	1.08E+00	1.91E-03	1.45E-08	1.30E+05	1.02E+02	1.01E+00	1.03E-01	1.00E+00		
6.97E-06	1.01E+02	1.01E+00	7.07E-03	9.46E-02	1.01E+00	1.08E+00	2.03E-03	1.54E-08	1.30E+05	1.02E+02	1.01E+00	1.06E-01	1.00E+00		
6.96E-06	1.01E+02	1.01E+00	7.08E-03	9.46E-02	1.01E+00	1.08E+00	2.15E-03	1.63E-08	1.30E+05	1.02E+02	1.01E+00	1.09E-01	1.00E+00		
6.96E-06	1.01E+02	1.01E+00	7.08E-03	9.47E-02	1.01E+00	1.08E+00	2.29E-03	1.73E-08	1.30E+05	1.02E+02	1.01E+00	1.13E-01	1.00E+00		
6.95E-06	1.01E+02	1.01E+00	7.08E-03	9.47E-02	1.01E+00	1.08E+00	2.42E-03	1.83E-08	1.30E+05	1.02E+02	1.01E+00	1.16E-01	1.00E+00		
6.95E-06	1.01E+02	1.01E+00	7.08E-03	9.47E-02	1.01E+00	1.08E+00	2.57E-03	1.94E-08	1.30E+05	1.02E+02	1.01E+00	1.19E-01	1.00E+00	0	100
6.94E-06	1.01E+02	1.01E+00	7.09E-03	9.48E-02	1.01E+00	1.08E+00	2.73E-03	2.06E-08	1.30E+05	1.02E+02	1.01E+00	1.23E-01	1.00E+00		
2.18E-10	3.40E+03	3.40E+01	2.39E-01	3.20E+00	1.21E+00	4.76E+00	1.44E+02	1.80E-07	1.48E+08	3.43E+03	1.01E+00	3.43E+01	1.00E+00		
1.95E-10	3.46E+03	3.46E+01	2.44E-01	3.26E+00	1.22E+00	4.86E+00	1.49E+02	1.72E-07	1.54E+08	3.50E+03	1.01E+00	3.50E+01	1.00E+00		
1.75E-10	3.53E+03	3.53E+01	2.49E-01	3.32E+00	1.22E+00	4.96E+00	1.55E+02	1.65E-07	1.60E+08	3.57E+03	1.01E+00	3.57E+01	1.00E+00		
1.57E-10	3.60E+03	3.60E+01	2.54E-01	3.39E+00	1.23E+00	5.06E+00	1.62E+02	1.57E-07	1.67E+08	3.64E+03	1.01E+00	3.64E+01	1.00E+00		
1.40E-10	3.68E+03	3.68E+01	2.59E-01	3.46E+00	1.23E+00	5.16E+00	1.68E+02	1.50E-07	1.73E+08	3.71E+03	1.01E+00	3.71E+01	1.00E+00		
1.25E-10	3.75E+03	3.75E+01	2.64E-01	3.53E+00	1.23E+00	5.27E+00	1.75E+02	1.42E-07	1.80E+08	3.79E+03	1.01E+00	3.79E+01	1.00E+00		
5.01E-55	9.84E+04	9.84E+02	6.92E+00	9.26E+01	1.30E+01	1.31E+02	1.21E+05	1.03E-46	1.24E+11	9.94E+04	1.01E+00	9.94E+02	1.00E+00		
6.59E-56	1.00E+05	1.00E+03	7.06E+00	9.44E+01	1.34E+01	1.31E+02	1.25E+05	1.45E-47	1.29E+11	1.01E+05	1.01E+00	1.01E+03	1.00E+00		
8.32E-57	1.02E+05	1.02E+03	7.20E+00	9.63E+01	1.37E+01	1.31E+02	1.30E+05	1.95E-48	1.34E+11	1.03E+05	1.01E+00	1.03E+03	1.00E+00		
							∑FAM-ref=	1.33E-04							

Table 2.117 Calculation of F_{AM} for Co-60 in a Reference Source for the 10th Sub-volume of a 1-cm-Thick Volume Source without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.118 Calculation of F_{AM} for Co-60 in the 10th Sub-volume of a 1-cm-Thick Volume Source with an Area of 4 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 0	Energy 1 1.25	Yield 1 2	FE 0.5	Fluence to Effective Dose Conversion Factor pSv cm2 4.495	Effective Mass Attenuation Coefficient (source) (/cm) 9.87E-04	Effective Mass Attenuation Coefficient (ref) (/cm) 1.00E-03	Mass Attenuation Coefficient (soil) (/cm) 9.41E-02	Mass Attenuation Coefficient (concrete) (/cm) 9.26E-02	Mass Attenuation Coefficient (air) (/cm) 7.04E-05		μ =	$=\frac{(t_a\mu_a+t_c\mu_a)}{(t_a+t_c)}$	$\left(\frac{t_{c}+t\mu_{s}}{t+t}\right)$				
ta (cm) =	100	tc (cm) =	0	0	Source area (m2)	=	4	0	ts (cm) =	1							
exp(-ux)/x2 source	mfp-dist. in -sour-air	mfp-dist. in- source-cover	dist. in - source-air (cm)	dist. in- source-cover (cm)	BF-source- air	BF-source- cover	Vol-source (m2)	FAM-source	4pi x dist- source^2 (cm2)	distance- source-air (cm)	dist-cover (cm)	dist-source (cm)	r - source (m)	ta + tc + ts (m)	ta (m)	Receptor location y (cm)	Receptor location z (cm)
7.06E-06	7.11E-03	9.26E-02	1.00E+02	1.00E+00	1.01E+00	1.08E+00	0.00E+00	0.00E+00	1.28E+05	1.01E+02	0.00E+00	3.00E-01	0.00E+00	1.01E+00	1.00E+00	(
6.98E-06	7.14E-03	9.31E-02	1.01E+02	1.00E+00	1.01E+00	1.08E+00	3.14E-02	2.38E-07	1.29E+05	1.01E+02	0.00E+00	1.00E+00	1.00E-01	1.01E+00	1.00E+00	(
6.97E-06	7.14E-03	9.31E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	1.91E-03	1.45E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.03E-01	1.01E+00	1.00E+00	1	
6.97E-06	7.14E-03	9.31E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.03E-03	1.54E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.06E-01	1.01E+00	1.00E+00	ļ	
6.97E-06	7.15E-03	9.32E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.15E-03	1.63E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.09E-01	1.01E+00	1.00E+00	1	
6.96E-06	7.15E-03	9.32E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.29E-03	1.73E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.13E-01	1.01E+00	1.00E+00		
6.95E-06	7.15E-03	9.32E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.42E-03	1.83E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.16E-01	1.01E+00	1.00E+00	·	
6.95E-06	7.15E-03	9.33E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.57E-03	1.94E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.19E-01	1.01E+00	1.00E+00		
6.94E-06	7.10E-03	9.33E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.73E-03	2.00E-08	1.30E+05	1.02E+02	0.00E+00	1.00E+00	1.23E-01	1.01E+00	1.00E+00		
6.94E-00	7.10E-03	9.54E-02 9.34E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	2.90E-03 3.07E-03	2.10E-00	1.30E+03	1.02E+02	0.00E+00	1.00E+00	1.2/E-01 1.30E-01	1.01E+00	1.00E+00		
6.92E-06	7.102-03	9.34E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	3.265-03	2.311-08	1.30E+05	1.02L+02	0.00E+00	1.00E+00	1.30E-01	1.01E+00	1.00E+00		
6.91F-06	7.17E-03	9.35E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	3.46E-03	2.59E-08	1.31E+05	1.02E+02	0.00E+00	1.00E+00	1.38E-01	1.01E+00	1.00E+00	1	
6.91E-06	7.18E-03	9.36E-02	1.02E+02	1.01E+00	1.01E+00	1.08E+00	3.67E-03	2.75E-08	1.31E+05	1.02E+02	0.00E+00	1.00E+00	1.43E-01	1.01E+00	1.00E+00	0	100
3.41E-06	1.00E-02	1.31E-01	1.42E+02	1.41E+00	1.01E+00	1.11E+00	1.81E-01	6.92E-07	2.55E+05	1.42E+02	0.00E+00	1.12E+00	1.00E+00	1.01E+00	1.00E+00	j	
3.30E-06	1.02E-02	1.33E-01	1.44E+02	1.43E+00	1.01E+00	1.11E+00	1.93E-01	7.12E-07	2.62E+05	1.44E+02	0.00E+00	1.12E+00	1.03E+00	1.01E+00	1.00E+00	i i	
3.19E-06	1.03E-02	1.35E-01	1.47E+02	1.45E+00	1.01E+00	1.11E+00	2.04E-01	7.33E-07	2.71E+05	1.47E+02	0.00E+00	1.13E+00	1.06E+00	1.01E+00	1.00E+00	i	
3.09E-06	1.05E-02	1.37E-01	1.49E+02	1.48E+00	1.01E+00	1.11E+00	2.17E-01	7.53E-07	2.79E+05	1.49E+02	0.00E+00	1.14E+00	1.10E+00	1.01E+00	1.00E+00	(
2.98E-06	1.07E-02	1.39E-01	1.51E+02	1.50E+00	1.01E+00	1.12E+00	2.30E-01	7.73E-07	2.88E+05	1.51E+02	0.00E+00	1.15E+00	1.13E+00	1.01E+00	1.00E+00	1	
						∑FAM-source=		1.96E-05									
							FAM=	1.47E-01									

Table 2.119 Calculation of F_{AM} for Co-60 in the 10th Sub-volume of a 1-cm-Thick Volume Source with an Area of 100 m² without Cover at the Receptor Location (0, 0, 1) (m)

$ \frac{1}{p \text{ hor or }} \frac{1}{p \text{ here} 1} \frac{1}{p $					Eluence to	Effective												
Image: Energy 1 Vield 1 FE Note: Tenergy 1 Name in tenergy 1 Mass in tenergy 1 Mass in tenergy 1 $\mu = \frac{(\mu, \mu_{1} + (\mu_{1} + (\mu_{1} + (\mu_{1} + \mu_{1} + $					Effective	Mass	Effortivo		Mass									
$\frac{1}{2 \text{ photom}} \frac{1}{1 \text{ total}} 1$					Dees	Attenuation	Mass	Mass	Attenuation	Mass								
$ \frac{1}{2} \text{plotons} \left[\begin{array}{c} \text{Lorderstand} \\ \text{sector} \\ \text{isourcel} \\ \text{control (rode)} \\ \text{logericel} \\ \text$					Conversion	Attenuation	IVIDSS	IVIdSS	Attenuation	IVIdSS			$(t \mu + t \mu)$	$(+t\mu)$				
# photoms Concerging 1 Vield 1 FE psound (boards) Lobrinoismi (control a) Control and (Long) Control and					Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		μ =	$=\frac{(e_ar_a)}{(t_a+t_a)}$	$\frac{1}{1+t}$				
Photoms Link Jac		-	N-1-1-4		Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient			$(\iota_a + \iota_c)$	<i>τι</i>)				
1 1.0 2 0.5 4.469 9.274-04 1.002-05 9.262-02 7.047-05 ts (cm) = 100 ts (cm) = 0 Source-airs	# photons	Energy 1	Yield 1	FE	psv cm2	(/cm)	(ret) (/cm)	(soli) (/cm)	(/cm)	(air) (/cm)	-							
ta (m)= 100 tc (m)= 0 Source ares (m2)= 100 ts (m)= 1 eq(ux)/2. mp-dist. in source-cover dist. in- source-cover dist. in- source-cover dist. in- source-cover figs (dist. source-cover dist. in- source-cover dist. in- source-cover dist. in- source-cover figs (dist. source-cover dist. in- source-cover dist. in- source-cover dist. in- source-cover figs (dist. source-cover dist. in- source-cover figs (dist. source-cover f	1	. 1.25	2	0.5	4.495	9.87E-04	1.00E-03	9.41E-02	9.26E-02	7.04E-05	2							
Ite (cm)= 100 Ite (cm)= 0 0. Source area (m2)= 100 Ite (cm)= 1 eq(-ux)/c2 mfp-dist. In- source-cver dist. In- source-c																		
exp(xx)/x2 mfp-dist. in source-cover dist. in- source-cover	ta (cm) =	100	tc (cm) =	0) ()	Source area (m2)	=	100		ts (cm) =	1							
eqc(ux)/x2 inff-dist. in- source-vir dist. in- source-vir dist. in- source-vir dist. in- source-vir dist. in- source-vir inff-dist. inff- source-vir inff-dist. inff- source																		
equ(x)//2 mbr/dist.in source-sire BF-source bF-source vol-source source-sire source-sire <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																		
enq(u)2/2 Imp-dist. in mp-dist. in mp				dist. in -	dist. in-					4pi x dist-	distance-						Receptor	Receptor
source -source (m) (m) (m) (m)	exp(-ux)/x2 -	mfp-dist. in	mfp-dist. in-	source-air	source-cover	BF-source-	BF-source-	Vol-source		source^2	source-air	dist-cover		r - source	ta + tc + ts		location y	location z
4.31E+07 2.53E+02 3.36E+01 3.59E+02 3.56E+02 3.56E+02 <td< td=""><td>source</td><td>-sour-air</td><td>source-cover</td><td>(cm)</td><td>(cm)</td><td>air</td><td>cover</td><td>(m2)</td><td>FAM-source</td><td>(cm2)</td><td>(cm)</td><td>(cm)</td><td>0</td><td>(m)</td><td>(m)</td><td>ta (m)</td><td>(cm)</td><td>(cm)</td></td<>	source	-sour-air	source-cover	(cm)	(cm)	air	cover	(m2)	FAM-source	(cm2)	(cm)	(cm)	0	(m)	(m)	ta (m)	(cm)	(cm)
4.12:67 2.57:62 3.366:402 3.66:402 0.000:400 2.010:400 3.52:400 1.01:400 1.000:400 3.55:570 2.67:62 3.42:61 3.80:402 3.75:402 3.80:400 1.02:400 1.22:400 1.55:400 8.17:67 1.55:400 3.75:402 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.07:400 3.66:40 0.000:400 2.00:400 3.66:40 0.000:400 2.00:400 3.66:40 0.00:400 2.00:400 3.66:40 0.00:400 2.00:400 3.66:40 0.00:400 2.00:400 3.66:40 0.00:400 2.00:400 3.66:40 0.00:400 2.00:400 3.66:40 0.00:400 2.00:400 3.66:40 0.00:400 2.00:40 3.66:400 0.00:400 2.00:40	4.31E-07	2.53E-02	3.30E-01	3.59E+02	3.56E+00	1.02E+00	1.28E+00	1.45E+00	8.16E-07	1.62E+0	5 3.59E+02	0.00E+00	1.98E+00	3.45E+00	1.01E+00	1.00E+00		
3.55E-07 2.67E-02 3.42E-01 3.75E+02 3.75E+02 3.75E+02 3.75E+02 3.75E+00 1.01E+00 1.00E+00 3.78E-07 2.77E+02 3.56E+01 3.87E+02 3.88E+02 3.88E+02 3.87E+02 3.87E+02 0.00E+00 2.10E+00 3.75E+00 1.01E+00 1.00E+00 1.00E+00 3.46E-07 2.77E+02 3.66E+01 4.94E+02 3.99E+00 1.02E+00 1.38E+00 1.88E+07 1.88E+06 3.87E+02 0.00E+00 2.17E+00 3.88E+00 1.01E+00 1.00E+00 3.31E-07 2.88E+02 3.66E+01 4.01E+02 0.09E+00 1.31E+00 1.88E+07 2.10E+06 4.09E+02 0.00E+00 2.27E+00 0.40E+00 1.01E+00 1.00E+00 3.03E+07 2.98E+02 3.88E+01 4.16E+02 4.16E+00 1.33E+00 1.33E+00 2.10E+06 4.09E+02 0.00E+00 2.27E+00 4.12E+00 1.00E+00	4.12E-07	2.57E-02	3.36E-01	3.66E+02	3.62E+00	1.02E+00	1.28E+00	1.51E+00	8.17E-07	1.68E+06	5 3.66E+02	0.00E+00	2.01E+00	3.52E+00	1.01E+00	1.00E+00		
3.88-07 2.87E-02 3.48E-01 3.86E+02 3.06E+02 0.00E+00 2.07E+00 3.66E+00 1.01E+00 1.00E+00 3.66E+07 2.77E+02 3.66E+01 3.87E+02 3.06E+00 2.10E+00 3.87E+00 0.10E+00 1.00E+00 3.61E+07 2.82E+02 3.66E+01 4.01E+02 3.97E+00 1.03E+00 1.31E+00 8.18E+07 2.18E+06 3.87E+02 0.00E+00 2.18T+00 3.81E+00 1.01E+00 1.00E+00 1.01E+00	3.95E-07	2.62E-02	3.42E-01	3.73E+02	3.69E+00	1.02E+00	1.29E+00	1.57E+00	8.17E-07	1.75E+00	5 3.73E+02	0.00E+00	2.04E+00	3.59E+00	1.01E+00	1.00E+00		
3.62E-07 2.72E-02 3.58E+00 3.89E+00 1.02E+00 1.30E+00 1.70E+00 8.18E-07 1.88E+00 2.00E+00 2.10E+00 3.87E+02 3.87E+02 3.87E+00 3.87E+00 3.87E+02 3.87E+00 3.87E+00 3.87E+02 3.87E+00 3.87E+02 3.87E+02 <t< td=""><td>3.78E-07</td><td>2.67E-02</td><td>3.48E-01</td><td>3.80E+02</td><td>3.76E+00</td><td>1.02E+00</td><td>1.29E+00</td><td>1.63E+00</td><td>8.18E-07</td><td>1.81E+0</td><td>5 3.80E+02</td><td>0.00E+00</td><td>2.07E+00</td><td>3.66E+00</td><td>1.01E+00</td><td>1.00E+00</td><td></td><td></td></t<>	3.78E-07	2.67E-02	3.48E-01	3.80E+02	3.76E+00	1.02E+00	1.29E+00	1.63E+00	8.18E-07	1.81E+0	5 3.80E+02	0.00E+00	2.07E+00	3.66E+00	1.01E+00	1.00E+00		
3.86:-07 2.77:-02 3.61:-01 3.90:+00 1.02:+00 1.02:+00 1.31:+00 3.81:+00 2.13:+00 3.81:+00 1.01:+00 1.00:+00 3.31:-07 2.88:-02 3.75:-01 4.09:+02 4.05:+00 1.31:+00 1.81:+00 8.18:-07 2.10:+06 4.09:+02 0.00:+00 2.20:+00 3.96:+00 1.01:+00 1.00:+00 1.00:+00 3.31:-07 2.98:-02 3.82:-01 4.16:+02 0.00:+00 2.20:+00 3.96:+00 1.01:+00 1.00:+00 1.00:+00 2.88:-07 2.99:-02 3.88:-01 4.24:+02 0.00:+00 2.38:+01 1.00:+00	3.62E-07	2.72E-02	3.55E-01	3.87E+02	3.83E+00	1.02E+00	1.30E+00	1.70E+00	8.18E-07	1.88E+06	5 3.87E+02	0.00E+00	2.10E+00	3.73E+00	1.01E+00	1.00E+00		
3.31:-07 2.82E-02 3.68E-01 4.01E+02 3.97E+00 1.31E+00 1.31E+00 1.84E+00 8.18E-07 2.02E+06 4.01E+02 0.00E+00 2.17E+00 3.88E+00 1.01E+00 1.00E+00 3.03E-07 2.93E+02 3.82E+01 4.16E+02 4.12E+00 1.03E+00 1.32E+00 1.99E+00 8.18E+07 2.18E+06 4.16E+02 0.00E+00 2.27E+00 4.02E+00 1.01E+00 1.00E+00 1.02E+00 2.89E-07 3.99E-01 4.32E+00 1.03E+00 1.33E+00 2.07E+00 8.17E-07 2.26E+06 4.24E+02 0.00E+00 2.27E+00 4.12E+00 1.00E+00 1.00E+00 2.64E-07 3.10E-02 4.04E+01 4.49E+02 1.03E+00 1.33E+00 2.24E+00 8.16E+07 2.44E+02 0.00E+00 2.33E+00 4.32E+00 1.00E+00	3.46E-07	2.77E-02	3.61E-01	3.94E+02	3.90E+00	1.02E+00	1.30E+00	1.77E+00	8.18E-07	1.95E+06	5 3.94E+02	0.00E+00	2.13E+00	3.81E+00	1.01E+00	1.00E+00		
3.17E-07 2.88E-02 3.75E-01 4.09E+02 4.05E+00 1.01E+00 1.31E+00 1.91E+00 8.18E-07 2.10E+06 4.00E+02 0.00E+00 2.20E+00 3.96E+01 1.01E+00 1.00E+00 1.00E+00 <t< td=""><td>3.31E-07</td><td>2.82E-02</td><td>3.68E-01</td><td>4.01E+02</td><td>3.97E+00</td><td>1.03E+00</td><td>1.31E+00</td><td>1.84E+00</td><td>8.18E-07</td><td>2.02E+06</td><td>5 4.01E+02</td><td>0.00E+00</td><td>2.17E+00</td><td>3.88E+00</td><td>1.01E+00</td><td>1.00E+00</td><td></td><td></td></t<>	3.31E-07	2.82E-02	3.68E-01	4.01E+02	3.97E+00	1.03E+00	1.31E+00	1.84E+00	8.18E-07	2.02E+06	5 4.01E+02	0.00E+00	2.17E+00	3.88E+00	1.01E+00	1.00E+00		
3.382-07 2.93E-02 3.82E-01 4.16E+02 4.16E+02 1.03E+00 1.32E+00 8.18E-07 2.18E+06 4.16E+02 0.00E+00 2.24E+00 4.01E+00 1.00E+00 1.00E+00 2.89E-07 2.99E+02 3.89E-01 4.24E+02 4.22E+00 1.03E+00 1.33E+00 2.16E+00 8.17E-07 2.35E+06 4.32E+02 0.00E+00 2.31E+00 4.01E+00 1.00E+00 1.00E+00 2.64E+07 3.10E-02 4.04E+01 4.40E+02 4.36E+00 1.03E+00 1.35E+00 2.35E+06 4.42E+02 0.00E+00 2.31E+00 4.37E+00 1.01E+00 1.00E+00 0 1.00E+00 0 1.00E+00 1.00E+00 0 1.00E+00 0 1.00E+00 0 1.00E+00 1.00E+00 0 1.00E+00 0 1.00E+00 0 1.00E+00 1.00E+00 0 1.00E+00 0 1.00E+00 1.00E+00 0 1.00E+00 0 1.00E+00 0 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0 1.00E+00 0 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00	3.17E-07	2.88E-02	3.75E-01	4.09E+02	4.05E+00	1.03E+00	1.31E+00	1.91E+00	8.18E-07	2.10E+00	5 4.09E+02	0.00E+00	2.20E+00	3.96E+00	1.01E+00	1.00E+00		
2.89E-07 2.99E-02 3.89E-01 4.24E+00 1.02E+00 1.33E+00 2.17E+00 8.17E+07 2.26E+06 4.24E+02 0.00E+00 2.27E+00 4.12E+00 1.01E+00 1.00E+00 1.00E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 1.02E+00 8.17E+07 2.23E+06 4.32E+02 0.00E+00 2.31E+00 4.20E+00 1.01E+00 1.00E+00 1.00E+00 <t< td=""><td>3.03E-07</td><td>2.93E-02</td><td>3.82E-01</td><td>4.16E+02</td><td>4.12E+00</td><td>1.03E+00</td><td>1.32E+00</td><td>1.99E+00</td><td>8.18E-07</td><td>2.18E+06</td><td>5 4.16E+02</td><td>0.00E+00</td><td>2.24E+00</td><td>4.04E+00</td><td>1.01E+00</td><td>1.00E+00</td><td></td><td></td></t<>	3.03E-07	2.93E-02	3.82E-01	4.16E+02	4.12E+00	1.03E+00	1.32E+00	1.99E+00	8.18E-07	2.18E+06	5 4.16E+02	0.00E+00	2.24E+00	4.04E+00	1.01E+00	1.00E+00		
2.77E-07 3.04E-02 3.97E-01 4.32E+02 4.28E+00 1.03E+00 1.33E+00 2.16E+00 8.17E+07 2.33E+00 4.32E+02 0.00E+00 2.33E+00 4.20E+00 1.00E+00 1.00E+00 <t< td=""><td>2.89E-07</td><td>2.99E-02</td><td>3.89E-01</td><td>4.24E+02</td><td>4.20E+00</td><td>1.03E+00</td><td>1.33E+00</td><td>2.07E+00</td><td>8.17E-07</td><td>2.26E+06</td><td>5 4.24E+02</td><td>0.00E+00</td><td>2.27E+00</td><td>4.12E+00</td><td>1.01E+00</td><td>1.00E+00</td><td></td><td></td></t<>	2.89E-07	2.99E-02	3.89E-01	4.24E+02	4.20E+00	1.03E+00	1.33E+00	2.07E+00	8.17E-07	2.26E+06	5 4.24E+02	0.00E+00	2.27E+00	4.12E+00	1.01E+00	1.00E+00		
2.64E-07 3.10E-02 4.04E+01 4.40E+02 4.40E+02 4.40E+02 4.40E+02 0.00E+00 2.35E+00 4.29E+00 1.01E+00 1.00E+00 1.00E+00 2.52E-07 3.10E-02 4.12E+01 4.49E+02 4.44E+00 1.03E+00 1.35E+00 2.33E+00 8.15E-07 2.53E+06 4.49E+02 0.00E+00 2.38E+00 1.01E+00 1.00E+00 0 1.00E+00 2.41E+07 3.22E-02 4.19E+01 4.55E+00 1.03E+00 1.35E+00 2.38E+00 8.14E-07 2.58E+06 4.66E+02 0.00E+00 2.42E+00 4.66E+00 1.00E+00	2.77E-07	3.04E-02	3.97E-01	4.32E+02	4.28E+00	1.03E+00	1.33E+00	2.16E+00	8.17E-07	2.35E+06	5 4.32E+02	0.00E+00	2.31E+00	4.20E+00	1.01E+00	1.00E+00		
2.52E-07 3.16E-02 4.12E-01 4.49E+02 4.49E+02 0.00E+00 2.38E+00 4.37E+00 1.00E+00 0 100E 2.41E-07 3.22E-02 4.19E-01 4.57E+02 4.53E+00 1.03E+00 1.33E+00 2.33E+00 8.13E-07 2.63E+06 4.49E+02 0.00E+00 2.42E+00 4.46E+00 1.00E+00	2.64E-07	3.10E-02	4.04E-01	4.40E+02	4.36E+00	1.03E+00	1.34E+00	2.24E+00	8.16E-07	2.44E+0	5 4.40E+02	0.00E+00	2.35E+00	4.29E+00	1.01E+00	1.00E+00		
2.41E-07 3.22E-02 4.19E-01 4.57E+02 4.65E+00 1.03E+00 1.35E+00 2.43E+00 8.14E-07 2.63E+06 4.57E+02 0.00E+00 2.42E+00 4.46E+00 1.01E+00 1.00E+00 2.30E-07 3.28E-02 4.27E-01 4.66E+02 4.66E+02 0.00E+00 2.46E+00 4.55E+00 1.01E+00 1.00E+00 1.00E+00 2.01E-07 3.34E-02 4.36E+01 4.75E+02 4.66E+02 0.00E+00 2.55E+00 4.64E+00 1.00E+00 1.00E+00 2.01E-07 3.41E-02 4.36E+01 4.75E+02 4.64E+02 0.00E+00 2.55E+00 4.64E+01 1.00E+00 1.00E+00 2.00E-07 3.47E-02 4.34E+01 4.98E+00 1.03E+00 1.38E+00 2.85E+00 8.08E-07 3.06E+06 4.94E+02 0.00E+00 2.55E+00 4.83E+00 1.00E+00 1.03E+00 1.03E+00 3.08E+00 3.08E+07	2.52E-07	3.16E-02	4.12E-01	4.49E+02	4.44E+00	1.03E+00	1.35E+00	2.33E+00	8.15E-07	2.53E+0	5 4.49E+02	0.00E+00	2.38E+00	4.37E+00	1.01E+00	1.00E+00	0) 100
2.30E-07 3.28E-02 4.27E-01 4.66E+02 4.66E+02 0.00E+00 2.46E+00 4.55E+00 1.01E+00 1.00E+00 2.20E-07 3.34E-02 4.36E+01 4.75E+02 4.70E+00 1.03E+00 1.37E+00 2.63E+00 8.12E-07 2.84E+06 4.75E+02 0.00E+00 2.51E+00 4.66E+00 1.01E+00 1.00E+00 2.00E-07 3.41E-02 4.44E+01 4.84E+02 4.79E+00 1.03E+00 1.37E+00 2.37E+00 8.11E-07 2.95E+06 4.84E+00 0.01E+00 1.00E+00 1.00E+00 2.00E-07 3.47E-02 4.52E-01 4.48E+02 4.79E+00 1.03E+00 1.37E+00 2.37E+00 8.11E-07 2.95E+06 4.84E+02 0.00E+00 2.55E+00 4.73E+00 1.01E+00 1.00E+00 1.91E-07 3.54E-02 4.61E+01 5.03E+02 4.93E+02 0.00E+00 2.64E+00 3.93E+00 1.01E+00 1.00E+00 1.00E+00 1.91E-07 3.54E-02 4.61E+01 5.03E+02 0.07E+00 1.03E+00 1.39E+00 3.08E+00 3.38E+00 5.03E+02 0.00E+00 2.78E+00 1.01E+00	2.41E-07	3.22E-02	4.19E-01	4.57E+02	4.53E+00	1.03E+00	1.35E+00	2.43E+00	8.14E-07	2.63E+06	5 4.57E+02	0.00E+00	2.42E+00	4.46E+00	1.01E+00	1.00E+00		
2.20E-07 3.34E-02 4.36E-01 4.75E+02 4.70E+00 1.03E+00 1.37E+00 2.63E+00 8.12E-07 2.84E+06 4.75E+02 0.00E+00 2.51E+00 4.64E+00 1.01E+00 1.00E+00 2.10E-07 3.41E-02 4.44E+01 4.84E+02 4.79E+00 1.03E+00 1.37E+00 2.73E+00 8.11E-07 2.55E+06 4.84E+02 0.00E+00 2.55E+00 4.73E+00 1.01E+00 1.00E+00 1.01E-07 3.47E-02 4.52E-01 4.93E+02 4.88E+00 1.03E+00 1.38E+00 2.85E+00 8.09E-07 3.06E+06 4.93E+00 0.00E+00 2.59E+00 4.83E+00 1.00E+00 1.91E-07 3.54E-02 4.70E-01 5.03E+02 4.98E+00 1.03E+00 1.39E+00 3.08E+07 3.30E+05 5.03E+02 0.00E+00 2.68E+00 4.93E+00 1.01E+00 1.00E+00 1.82E-07 3.60E-02 4.70E-01 5.12E+02 5.07E+00 1.03E+00 1.40E+00 3.20E+00 3.34E+06 5.22E+02 0.00E+00 2.78E+00 1.01E+00 1.00E+00 1.65E-07 3.75E-02 4.88E+01 5.32E+02	2.30E-07	3.28E-02	4.27E-01	4.66E+02	4.61E+00	1.03E+00	1.36E+00	2.53E+00	8.13E-07	2.73E+06	5 4.66E+02	0.00E+00	2.46E+00	4.55E+00	1.01E+00	1.00E+00		
2.10E-07 3.41E-02 4.44E-01 4.84E+02 4.79E+00 1.03E+00 1.37E+00 2.73E+00 8.11E-07 2.95E+06 4.84E+02 0.00E+00 2.55E+00 4.73E+00 1.01E+00 1.00E+00 2.00E-07 3.47E-02 4.52E-01 4.93E+02 4.88E+00 1.03E+00 1.38E+00 2.85E+00 8.09E+07 3.06E+06 4.93E+02 0.00E+00 4.83E+00 1.01E+00 1.00E+00 1.91E-07 3.54E-02 4.61E+01 5.03E+02 4.98E+00 1.03E+00 1.39E+00 2.96E+00 8.08E+07 3.38E+06 5.03E+02 0.00E+00 4.93E+00 1.01E+00 1.00E+00 1.82E+07 3.60E+02 4.70E+01 5.12E+02 5.07E+00 1.03E+00 1.40E+00 3.20E+00 3.38E+06 5.21E+02 0.00E+00 5.21E+00 1.01E+00 1.00E+00 1.55E+07 3.75E+02 4.79E+01 5.32E+02 5.77E+00 1.03E+00 1.41E+00 3.33E+00 8.04E+07 3.35E+06 5.22E+02 0.00E+00 5.23E+00 1.01E+00 1.00E+00 1.55E+07 3.75E+02 4.88E+01 5.32E+02 5.32E+02	2.20E-07	3.34E-02	4.36E-01	4.75E+02	4.70E+00	1.03E+00	1.37E+00	2.63E+00	8.12E-07	2.84E+06	5 4.75E+02	0.00E+00	2.51E+00	4.64E+00	1.01E+00	1.00E+00		
2.00E-07 3.47E-02 4.52E-01 4.93E+02 4.88E+00 1.03E+00 1.38E+00 2.85E+00 8.09E-07 3.06E+06 4.93E+02 0.00E+00 2.59E+00 4.83E+00 1.01E+00 1.00E+00 1.91E-07 3.54E-02 4.61E+01 5.03E+02 4.98E+00 1.03E+00 1.39E+00 2.96E+00 8.08E+07 3.18E+06 5.03E+02 0.00E+00 4.64E+00 4.93E+00 1.00E+00 1.82E+07 3.60E-02 4.70E+01 5.22E+02 5.07E+00 1.03E+00 1.49E+00 3.08E+00 3.38E+06 5.12E+02 0.00E+00 2.68E+00 5.02E+00 1.01E+00 1.00E+00 1.73E+07 3.67E+02 4.79E+01 5.22E+02 5.07E+00 1.03E+00 1.41E+00 3.32E+00 3.43E+06 5.22E+02 0.00E+00 2.73E+00 1.01E+00 1.00E+00 1.55E+07 3.75E+02 4.88E+01 5.32E+02 5.07E+01 5.32E+02 5.07E+00 5.23E+02 0.00E+00 2.78E+00 1.01E+00 1.00E+00 1.55E+07 3.82E+02 4.88E+01 5.32E+02 5.32E+02 0.00E+00 2.82E+00 5.38E+02	2.10E-07	3.41E-02	4.44E-01	4.84E+02	4.79E+00	1.03E+00	1.37E+00	2.73E+00	8.11E-07	2.95E+00	5 4.84E+02	0.00E+00	2.55E+00	4.73E+00	1.01E+00	1.00E+00		
1.91E-07 3.54E-02 4.61E-01 5.03E+02 4.98E+00 1.03E+00 1.39E+00 2.96E+00 8.08E-07 3.18E+06 5.03E+02 0.00E+00 2.64E+00 4.93E+00 1.00E+00 1.00E+00 1.82E-07 3.60E-02 4.70E-01 5.12E+02 5.07E+00 1.03E+00 1.39E+00 3.08E+07 3.30E+06 5.12E+02 0.00E+00 2.68E+00 5.02E+00 1.01E+00 1.00E+00 1.73E-07 3.67E-02 4.79E+01 5.22E+02 5.07E+00 1.03E+00 1.40E+00 3.20E+07 3.43E+06 5.22E+02 0.00E+00 2.73E+00 5.12E+00 1.01E+00 1.00E+00 1.65E+07 3.35E+02 4.88E+01 5.32E+02 5.27E+00 1.00E+00 1.04E+00 3.3E+00 3.56E+06 5.32E+02 0.00E+00 2.73E+00 5.28E+00 1.00E+00 1.00E+00 1.57E+07 3.82E+02 4.88E+01 5.32E+02 5.37E+00 1.03E+00 1.42E+00 3.47E+00 8.00E+07 3.43E+06 5.32E+02 0.00E+00 2.87E+00 5.34E+02 1.00E+00 1.00E+00 1.00E+00 1.05E+01 1.00E+00 1.01E+00	2.00E-07	3.47E-02	4.52E-01	4.93E+02	4.88E+00	1.03E+00	1.38E+00	2.85E+00	8.09E-07	3.06E+00	5 4.93E+02	0.00E+00	2.59E+00	4.83E+00	1.01E+00	1.00E+00		
1.82E-07 3.60E-02 4.70E-01 5.12E+02 5.07E+00 1.03E+00 1.39E+00 3.08E+00 8.06E-07 3.30E+06 5.12E+02 0.00E+00 2.68E+00 5.02E+00 1.01E+00 1.00E+00 1.73E-07 3.67E-02 4.79E-01 5.22E+02 5.17E+00 1.03E+00 1.40E+00 3.20E+00 8.44E+07 3.43E+06 5.22E+02 0.00E+00 2.78E+00 1.01E+00 1.00E+00 1.65E-07 3.75E-02 4.88E+01 5.32E+02 5.27E+00 1.03E+00 1.41E+00 3.32E+00 3.56E+06 5.32E+02 0.00E+00 2.77E+00 5.28E+00 1.00E+00 1.57E-07 3.82E+02 4.88E+01 5.32E+02 5.37E+00 1.03E+00 1.42E+00 3.47E+00 8.00E+07 3.56E+06 5.32E+02 0.00E+00 2.77E+00 5.28E+00 1.00E+00 1.57E-07 3.88E+02 5.07E+01 5.48E+02 5.37E+00 1.03E+00 1.44E+00 3.61E+07 3.85E+06 5.53E+02 0.00E+00 2.87E+00 5.48E+00 1.00E+00 1.48E+07 3.97E+02 5.07E+01 5.64E+02 5.53E+02 0.00E+00	1.91E-07	3.54E-02	4.61E-01	5.03E+02	4.98E+00	1.03E+00	1.39E+00	2.96E+00	8.08E-07	3.18E+06	5 5.03E+02	0.00E+00	2.64E+00	4.93E+00	1.01E+00	1.00E+00		
1.73E-07 3.67E-02 4.79E-01 5.22E+02 5.17E+00 1.03E+00 1.40E+00 3.20E+00 3.43E+06 5.22E+02 0.00E+00 2.73E+00 5.12E+00 1.00E+00 1.00E+00 1.65E-07 3.75E-02 4.88E-01 5.32E+02 5.27E+00 1.03E+00 1.41E+00 3.33E+00 8.02E-07 3.56E+06 5.32E+02 0.00E+00 2.77E+00 5.22E+00 1.01E+00 1.00E+00 1.57E-07 3.82E-02 4.98E-01 5.43E+02 5.37E+00 1.03E+00 1.41E+00 3.37E+00 8.00E-07 3.70E+06 5.43E+02 0.00E+00 2.77E+00 5.33E+00 1.01E+00 1.00E+00 1.50E-07 3.89E-02 5.07E+01 5.53E+02 5.48E+00 1.03E+00 1.43E+00 3.61E+00 7.99E+07 3.85E+06 5.58E+00 1.00E+00	1.82E-07	3.60E-02	4.70E-01	5.12E+02	5.07E+00	1.03E+00	1.39E+00	3.08E+00	8.06E-07	3.30E+06	5 5.12E+02	0.00E+00	2.68E+00	5.02E+00	1.01E+00	1.00E+00		
1.65E-07 3.75E-02 4.88E-01 5.32E+02 5.32E+02 5.32E+02 5.32E+02 5.32E+02 0.00E+00 2.77E+00 5.23E+00 1.01E+00 1.00E+00 1.57E-07 3.82E-02 4.98E-01 5.43E+02 5.37E+00 1.03E+00 1.41E+00 3.37E+00 8.00E-07 3.70E+06 5.43E+02 0.00E+00 2.82E+00 5.33E+00 1.01E+00 1.00E+00 1.50E-07 3.89E-02 5.07E+01 5.53E+02 5.43E+02 5.33E+00 1.01E+00 1.41E+00 3.47E+00 3.85E+06 5.53E+02 0.00E+00 2.82E+00 5.33E+00 1.00E+00 1.43E+07 3.89E-02 5.07E+01 5.53E+02 5.48E+00 1.03E+00 1.44E+00 3.75E+07 4.00E+06 5.64E+02 0.00E+00 5.55E+00 1.00E+00 1.00E+00 1.36E-07 3.97E-02 5.77E+01 5.67E+02 5.67E+02 0.00E+00 2.97E+00 5.66E+02 0.00E+00 2.97E+00 5.66E+00 1.00E+00 1.00E+00 1.36E-07 4.04E-02 5.27E+01 5.75E+02 5.67E+02 0.00E+00 2.97E+00 5.66E+00 1.00E+00	1.73E-07	3.67E-02	4.79E-01	5.22E+02	5.17E+00	1.03E+00	1.40E+00	3.20E+00	8.04E-07	3.43E+06	5 5.22E+02	0.00E+00	2.73E+00	5.12E+00	1.01E+00	1.00E+00		
1.57E-07 3.82E-02 4.98E-01 5.43E+02 5.37E+00 1.03E+00 1.42E+00 3.47E+00 8.00E-07 3.70E+06 5.43E+02 0.00E+00 2.82E+00 5.33E+00 1.01E+00 1.00E+00 1.50E-07 3.89E-02 5.07E-01 5.53E+02 5.48E+00 1.03E+00 1.43E+00 3.61E+00 7.99E+07 3.85E+06 5.53E+02 0.00E+00 2.82E+00 5.44E+00 1.00E+00 1.43E-07 3.97E-02 5.17E+01 5.64E+02 5.58E+00 1.04E+00 1.44E+00 3.75E+00 7.97E-07 4.00E+06 5.64E+02 0.00E+00 5.55E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 5.27E-01 5.64E+02 5.69E+00 1.04E+00 3.91E+00 7.95E-07 4.15E+06 5.75E+02 0.00E+00 2.97E+00 5.66E+00 1.00E+00 1.00E+00 1.36E-07 4.04E-02 5.27E-01 5.75E+02 5.67E+02 0.00E+00 1.00E+00	1.65E-07	3.75E-02	4.88E-01	5.32E+02	5.27E+00	1.03E+00	1.41E+00	3.33E+00	8.02E-07	3.56E+00	5 5.32E+02	0.00E+00	2.77E+00	5.23E+00	1.01E+00	1.00E+00		
1.50E-07 3.89E-02 5.07E-01 5.53E+02 5.48E+00 1.03E+00 1.43E+00 3.61E+00 7.99E-07 3.85E+06 5.53E+02 0.00E+00 2.87E+00 5.44E+00 1.00E+00 1.43E+00 3.75E+00 7.97E-07 4.00E+06 5.64E+02 0.00E+00 2.87E+00 5.55E+00 1.00E+00 1.00E+00 1.00E+00 1.04E+00 3.75E+00 7.97E-07 4.00E+06 5.64E+02 0.00E+00 2.92E+00 5.55E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 5.27E+01 5.75E+02 5.69E+00 1.01E+00 1.04E+00 1.45E+00 3.91E+00 7.95E-07 4.15E+06 5.75E+02 0.00E+00 2.97E+00 5.66E+00 1.00E+00 1.00E+00 1.66E-07 4.04E-02 5.27E+01 5.75E+02 5.69E+02 1.00E+00 1.00E+00<	1.57E-07	3.82E-02	4.98E-01	5.43E+02	5.37E+00	1.03E+00	1.42E+00	3.47E+00	8.00E-07	3.70E+0	5 5.43E+02	0.00E+00	2.82E+00	5.33E+00	1.01E+00	1.00E+00		
1.43E-07 3.97E-02 5.17E-01 5.64E+02 5.58E+00 1.04E+00 3.75E+00 4.00E+06 5.64E+02 0.00E+00 2.92E+00 5.55E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 5.27E-01 5.75E+02 5.69E+00 1.01E+00 1.44E+00 3.91E+00 7.95E-07 4.15E+06 5.75E+02 0.00E+00 2.92E+00 5.65E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 5.27E-01 5.75E+02 5.75E+02 0.00E+00 2.97E+00 5.66E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 5.27E-01 5.75E+02 5.75E+02 0.00E+00 2.97E+00 5.66E+00 1.01E+00 1.00E+00 1.36E-07 A.94E-02 5.27E-01 5.75E+02 0.00E+00 2.97E+00 5.66E+00 1.01E+00 1.00E+00 1.36E-07 A.94E-02 FAM-source= FAM= 6.02E-01 FAM= FAM= 6.02E-01 FAM=	1.50E-07	3.89E-02	5.07E-01	5.53E+02	5.48E+00	1.03E+00	1.43E+00	3.61E+00	7.99E-07	3.85E+06	5 5.53E+02	0.00E+00	2.87E+00	5.44E+00	1.01E+00	1.00E+00		
1.36E-07 4.04E-02 5.27E-01 5.75E+02 5.05E+02 0.00E+00 2.97E+00 5.66E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 5.75E+02 0.00E+00 2.97E+00 5.66E+00 1.01E+00 1.00E+00 1.36E-07 4.04E-02 6.00E-05 6.00E+00 6.00E+00 1.01E+00 1.00E+00 1.00E+00 1.36E-07 4.04E-02 6.02E-01 6.02E+01 6.02E+01 1.00E+00	1.43E-07	3.97E-02	5.17E-01	5.64E+02	5.58E+00	1.04E+00	1.44E+00	3.75E+00	7.97E-07	4.00E+06	5 5.64E+02	0.00E+00	2.92E+00	5.55E+00	1.01E+00	1.00E+00		
ΣFAM-source= 8.00E-05 FAM= 6.02E-01	1.36E-07	4.04E-02	5.27E-01	5.75E+02	5.69E+00	1.04E+00	1.45E+00	3.91E+00	7.95E-07	4.15E+00	5 5.75E+02	0.00E+00	2.97E+00	5.66E+00	1.01E+00	1.00E+00		
FAM= 6.02E-01							∑FAM-source=		8.00E-05									
								FAM=	6.02E-01									

Table 2.120 Calculation of F_{AM} for Co-60 in a Reference Source for the 6th Sub-volume of a 1-cm-Thick Volume Source without Cover at the Receptor Location (0, 0, 1) (m)

				Fluence to	Effective										
				Effective	Mass	Effective		Mass							
				Dose	Attenuation	Mass	Mass	Attenuation	Mass			6			
				Conversion	Coefficient	Attenuation	Attenuation	Coefficient	Attenuation		<i>u</i> =	$=\frac{(t_a\mu_a+t_c\mu)}{(t_a\mu_a+t_c\mu)}$	$(e_{c} + t\mu_{s})$		
				Factor	(source)	Coefficient	Coefficient	(concrete)	Coefficient			$(t_a + t_c)$	+t)		
# photons	Energy 1	Yield 1	FE	pSv cm2	(/cm)	(ref) (/cm)	(soil) (/cm)	(/cm)	(air) (/cm)						
1	1.25	2	0.5	4.495	6.22E-04	6.31E-04	9.41E-02	9.26E-02	7.04E-05						
ta (cm) =	100	tc (cm) =	0	So	ource-ref area (m	2) =	3.36E+06	C) ts (cm) =	0.6	5				
$exp(-ux)/x^2$ -	dist. in -ref-	dist. in-ref-	mfn-dist in -	mfn-dist in-		BE-ref-	Vol-sour-		4pi x dist-	distance-ref	ta + to + ts	r - ref		Receptor	Receptor
rof	air	source-cover	ref-air	ref-source-cover	BF-ref-air	cover	ref	FAM-ref	ref^2	(cm)	(m)	(m)	ta (m)	location y	location z
Ter	(cm)	(cm)	Tet-all	Tel-source-cover		cover	(m2)		(cm2)	(ciii)	(111)	(111)		(cm)	(cm)
7.38E-06	1.00E+02	6.00E-01	7.04E-03	5.64E-02	1.01E+00	1.05E+00	0.00E+00	0.00E+00	1.27E+05	1.01E+02	1.01E+00	0.00E+00	1.00E+00		
7.30E-06	1.00E+02	6.03E-01	7.07E-03	5.67E-02	1.01E+00	1.05E+00	3.14E-02	2.42E-07	1.28E+05	1.01E+02	1.01E+00	1.00E-01	1.00E+00		
7.30E-06	1.01E+02	6.03E-01	7.07E-03	5.67E-02	1.01E+00	1.05E+00	1.91E-03	1.47E-08	1.29E+05	1.01E+02	1.01E+00	1.03E-01	1.00E+00		
7.29E-06	1.01E+02	6.03E-01	7.07E-03	5.68E-02	1.01E+00	1.05E+00	2.03E-03	1.56E-08	1.29E+05	1.01E+02	1.01E+00	1.06E-01	1.00E+00		
7.29E-06	1.01E+02	6.04E-01	7.08E-03	5.68E-02	1.01E+00	1.05E+00	2.15E-03	1.66E-08	1.29E+05	1.01E+02	1.01E+00	1.09E-01	1.00E+00		
7.28E-06	1.01E+02	6.04E-01	7.08E-03	5.68E-02	1.01E+00	1.05E+00	2.29E-03	1.76E-08	1.29E+05	1.01E+02	1.01E+00	1.13E-01	1.00E+00		
7.28E-06	1.01E+02	6.04E-01	7.08E-03	5.68E-02	1.01E+00	1.05E+00	2.42E-03	1.86E-08	1.29E+05	1.01E+02	1.01E+00	1.16E-01	1.00E+00		
7.27E-06	1.01E+02	6.04E-01	7.08E-03	5.68E-02	1.01E+00	1.05E+00	2.57E-03	1.97E-08	1.29E+05	1.01E+02	1.01E+00	1.19E-01	1.00E+00	0	100
7.26E-06	1.01E+02	6.04E-01	7.09E-03	5.69E-02	1.01E+00	1.05E+00	2.73E-03	2.09E-08	1.29E+05	1.01E+02	1.01E+00	1.23E-01	1.00E+00		
7.75E-10	3.41E+03	2.05E+01	2.40E-01	1.93E+00	1.21E+00	3.01E+00	1.44E+02	4.07E-07	1.48E+08	3.43E+03	1.01E+00	3.43E+01	1.00E+00		
7.14E-10	3.48E+03	2.09E+01	2.45E-01	1.96E+00	1.22E+00	3.06E+00	1.49E+02	3.97E-07	1.54E+08	3.50E+03	1.01E+00	3.50E+01	1.00E+00		
6.56E-10	3.55E+03	2.13E+01	2.50E-01	2.00E+00	1.22E+00	3.10E+00	1.55E+02	3.87E-07	1.60E+08	3.57E+03	1.01E+00	3.57E+01	1.00E+00		
6.03E-10	3.62E+03	2.17E+01	2.55E-01	2.04E+00	1.23E+00	3.16E+00	1.62E+02	3.78E-07	1.67E+08	3.64E+03	1.01E+00	3.64E+01	1.00E+00		
5.54E-10	3.69E+03	2.21E+01	2.60E-01	2.08E+00	1.23E+00	3.21E+00	1.68E+02	3.68E-07	1.73E+08	3.71E+03	1.01E+00	3.71E+01	1.00E+00		
5.08E-10	3.77E+03	2.26E+01	2.65E-01	2.13E+00	1.24E+00	3.27E+00	1.75E+02	3.59E-07	1.80E+08	3.79E+03	1.01E+00	3.79E+01	1.00E+00		
4.70E-39	9.88E+04	5.93E+02	6.95E+00	5.58E+01	1.31E+01	1.31E+02	1.21E+05	9.72E-31	1.24E+11	9.94E+04	1.01E+00	9.94E+02	1.00E+00		
1.29E-39	1.01E+05	6.05E+02	7.09E+00	5.69E+01	1.34E+01	1.31E+02	1.25E+05	2.85E-31	1.29E+11	1.01E+05	1.01E+00	1.01E+03	1.00E+00		
3.45E-40	1.03E+05	6.17E+02	7.23E+00	5.80E+01	1.38E+01	1.31E+02	1.30E+05	8.13E-32	1.34E+11	1.03E+05	1.01E+00	1.03E+03	1.00E+00		
							∑FAM-ref=	1.57E-04							

Table 2.121 Calculation of F_{AM} for Co-60 in the 6th Sub-volume of 1-cm-Thick Volume Source with an Area of 36 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 1.25	Yield 1	FE 0.5	Fluence to Effective Dose Conversion Factor pSv cm2 4.495	Effective Mass Attenuation Coefficient (source) (/cm) 6.22E-04	Effective Mass Attenuation Coefficient (ref) (/cm) 6.31E-04	Mass Attenuation Coefficient (soil) (/cm) 9.41E-02	Mass Attenuation Coefficient (concrete) (/cm) 9.26E-02	Mass Attenuation Coefficient (air) (/cm) 7.04E-05		μ =	$=\frac{(t_a\mu_a+t_c\mu_a)}{(t_a+t_c)}$	$\left(\frac{t_{e}+t\mu_{s}}{t}\right)$				
ta (cm) =	100	tc (cm) =	0		Source area (m2)	=	36		Source-ref are	a (m2) =	3.36E+06		ts (cm) =	0.6			
exp(-ux)/x2 - source	mfp-dist. in -sour-air	mfp-dist. in- source-cover	dist. in - source-air (cm)	dist. in- source-cover (cm)	BF-source- air	BF-source- cover	Vol-source (m2)	FAM-source	4pi x dist- source^2 (cm2)	distance- source-air (cm)	dist-cover (cm)	dist-source (cm)	r - source (m)	ta + tc + ts (m)	ta (m)	Receptor location y (cm)	Receptor / location z (cm)
1.55E-06	1.49E-02	1.17E-01	2.12E+02	1.26E+00	1.01E+00	1.10E+00	4.25E-01	7.33E-07	5.65E+05	2.12E+02	0.00E+00	8.18E-01	1.87E+00	1.01E+00	1.00E+00)	
1.50E-06	1.51E-02	1.19E-01	2.15E+02	1.28E+00	1.01E+00	1.10E+00	4.42E-01	7.39E-07	5.83E+05	2.15E+02	0.00E+00	8.26E-01	1.90E+00	1.01E+00	1.00E+00	1	
1.45E-06	1.54E-02	1.21E-01	2.19E+02	1.30E+00	1.01E+00	1.10E+00	4.60E-01	7.45E-07	6.01E+05	2.19E+02	0.00E+00	8.34E-01	1.94E+00	1.01E+00	1.00E+00	(
1.40E-06	1.56E-02	1.23E-01	2.22E+02	1.32E+00	1.01E+00	1.10E+00	4.79E-01	7.51E-07	6.20E+05	2.22E+02	0.00E+00	8.42E-01	1.98E+00	1.01E+00	1.00E+00	1	
1.36E-06	1.59E-02	1.25E-01	2.26E+02	1.35E+00	1.01E+00	1.10E+00	4.98E-01	7.57E-07	6.40E+05	2.26E+02	0.00E+00	8.50E-01	2.02E+00	1.01E+00	1.00E+00	<u> </u>	
1.31E-06	1.61E-02	1.27E-01	2.29E+02	1.37E+00	1.01E+00	1.11E+00	5.18E-01	7.62E-07	6.61E+05	2.29E+02	0.00E+00	8.59E-01	2.06E+00	1.01E+00	1.00E+00	·	
1.2/E-06	1.64E-02	1.29E-01	2.33E+02	1.39E+00	1.01E+00	1.11E+00	5.39E-01	7.6/E-0/	6.83E+05	2.33E+02	0.00E+00	8.68E-01	2.10E+00	1.01E+00	1.00E+00		
1.22E-06	1.6/E-02	1.31E-01	2.37E+02	1.41E+00	1.01E+00	1.11E+00	5.61E-01	7.73E-07	7.05E+05	2.37E+02	0.00E+00	8.77E-01	2.14E+00	1.01E+00	1.00E+00		
1.18E-06	1.09E-02	1.33E-01	2.41E+02	1.44E+00	1.02E+00	1.11E+00	5.84E-01	7.78E-07	7.28E+05	2.41E+U2	0.00E+00	8.86E-01	2.19E+00	1.01E+00	1.00E+00		100
1.14E-06	1.72E-02	1.33E-01	2.43E+02	1.40E+00	1.02E+00	1.11E+00	6.07E-01	7.03E-07	7.33E+03	2.43E+02	0.00E+00	0.905-01	2.23E+00	1.01E+00	1.00E+00		, 100
1.100 00	1.75E 02	1.57E 01	2.450102	1.400100	1.02E+00	1.12E+00	6 57E-01	7.072 07	8 04E±05	2.4JE102	0.00E+00	9 165-01	2.20L100	1.01E+00	1.00E+00		
1.002.00			2.002.02				0.572 01			2.002.02							
6.77E-07	2.19E-02	1.72E-01	3.11E+02	1.86E+00	1.02E+00	1.14E+00	1.06E+00	8.35E-07	1.22E+06	3.11E+02	0.00E+00	1.06E+00	2.94E+00	1.01E+00	1.00E+00)	
6.51E-07	2.23E-02	1.75E-01	3.17E+02	1.89E+00	1.02E+00	1.15E+00	1.10E+00	8.37E-07	1.26E+06	3.17E+02	0.00E+00	1.08E+00	3.00E+00	1.01E+00	1.00E+00	J	
6.26E-07	2.27E-02	1.78E-01	3.22E+02	1.92E+00	1.02E+00	1.15E+00	1.14E+00	8.40E-07	1.31E+06	3.22E+02	0.00E+00	1.09E+00	3.06E+00	1.01E+00	1.00E+00	j	
6.02E-07	2.31E-02	1.81E-01	3.28E+02	1.96E+00	1.02E+00	1.15E+00	1.19E+00	8.42E-07	1.35E+06	3.28E+02	0.00E+00	1.11E+00	3.12E+00	1.01E+00	1.00E+00	1	
5.78E-07	2.35E-02	1.85E-01	3.34E+02	1.99E+00	1.02E+00	1.16E+00	1.24E+00	8.44E-07	1.40E+06	3.34E+02	0.00E+00	1.12E+00	3.19E+00	1.01E+00	1.00E+00	1	
5.56E-07	2.39E-02	1.88E-01	3.40E+02	2.03E+00	1.02E+00	1.16E+00	1.29E+00	8.47E-07	1.45E+06	3.40E+02	0.00E+00	1.14E+00	3.25E+00	1.01E+00	1.00E+00	1	
5.34E-07	2.44E-02	1.91E-01	3.46E+02	2.07E+00	1.02E+00	1.16E+00	1.34E+00	8.49E-07	1.51E+06	3.46E+02	0.00E+00	1.16E+00	3.31E+00	1.01E+00	1.00E+00	1	
						∑FAM-source=		6.03E-05									
							FAM=	3.85E-01									

Table 2.122 Calculation of F_{AM} for Co-60 in the 6th Sub-volume of a 1-cm-Thick Volume Source with an Area of 1,000 m² without Cover at the Receptor Location (0, 0, 1) (m)

# photons 1 ta (cm) =	Energy 1 1.25 100	Yield 1 2 tc (cm) =	FE 0.5	Fluence to Effective Dose Conversion Factor pSv cm2 4.495	Effective Mass Attenuation Coefficient (source) (/cm) 6.22E-04 Source area (m2)	Effective Mass Attenuation Coefficient (ref) (/cm) 6.31E-04 =	Mass Attenuation Coefficient (soil) (/cm) 9.41E-02 1,000	Mass Attenuation Coefficient (concrete) (/cm) 9.26E-02	Mass Attenuation Coefficient (air) (/cm) 7.04E-05 Source-ref area	a (m2) =	μ = 3.36E+06	$=\frac{(t_a\mu_a+t_c\mu_a)}{(t_a+t_c)}$	$(t_c + t\mu_s) + t$	0.6			
exp(-ux)/x2 -	mfp-dist. in	mfp-dist. in-	dist. in - source-air	dist. in- source-cover	BF-source-	BF-source-	Vol-source		4pi x dist- source^2	distance- source-air	dist-cover	dist-source	r - source			Receptor location y	Receptor location z
source	-sour-air	source-cover	(cm)	(cm)	air	cover	(m2)	FAM-source	(cm2)	(cm)	(cm)	(cm)	(m)	ta + tc + ts (n	ta (m)	(cm)	(cm)
1.61E-07	4.12E-02	3.24E-01	5.86E+02	3.49E+00	1.04E+00	1.27E+00	4.06E+00	8.61E-07	4.31E+06	5.86E+02	0.00E+00	1.82E+00	5.7/E+00	1.01E+00	1.00E+00		
1.53E-07	4.20E-02	3.30E-01	5.97E+02	3.56E+00	1.04E+00	1.28E+00	4.23E+00	8.60E-07	4.48E+06	5.97E+02	0.00E+00	1.85E+00	5.89E+00	1.01E+00	1.00E+00		
1.472-07	4.28E-02	3.30E-01	6 21E±02	3.70E±00	1.04E+00	1.28E+00	4.40E+00	8 585-07	4.002+00	6.21E±02	0.00E+00	1.09E+00	6 12E±00	1.01E+00	1.00E+00		
1.40E-07	4.37E-02	3.50E-01	6 33E+02	3.70E+00	1.04E+00	1.29E+00	4.36E+00	8 56F-07	5.03E+06	6 33E+02	0.00E+00	1.92E+00	6 25E+00	1.01E+00	1.00E+00		
1.28E-07	4.54E-02	3.56E-01	6.45E+02	3.85E+00	1.04F+00	1.30F+00	4.95E+00	8.55E-07	5.23E+06	6.45E+02	0.00E+00	1.99E+00	6.37E+00	1.01E+00	1.00E+00		
1.22E-07	4.63E-02	3.63E-01	6.58E+02	3.92E+00	1.04E+00	1.31E+00	5.15E+00	8.54E-07	5.44E+06	6.58E+02	0.00E+00	2.03E+00	6.50E+00	1.01E+00	1.00E+00		
1.16E-07	4.72E-02	3.70E-01	6.70E+02	4.00E+00	1.04E+00	1.31E+00	5.36E+00	8.52E-07	5.65E+06	6.70E+02	0.00E+00	2.07E+00	6.63E+00	1.01E+00	1.00E+00		
1.11E-07	4.81E-02	3.78E-01	6.84E+02	4.08E+00	1.04E+00	1.32E+00	5.58E+00	8.50E-07	5.87E+06	6.84E+02	0.00E+00	2.10E+00	6.76E+00	1.01E+00	1.00E+00	0	100
1.06E-07	4.90E-02	3.85E-01	6.97E+02	4.16E+00	1.04E+00	1.32E+00	5.80E+00	8.49E-07	6.11E+06	6.97E+02	0.00E+00	2.14E+00	6.90E+00	1.01E+00	1.00E+00		
1.01E-07	5.00E-02	3.93E-01	7.11E+02	4.24E+00	1.04E+00	1.33E+00	6.04E+00	8.47E-07	6.35E+06	7.11E+02	0.00E+00	2.18E+00	7.03E+00	1.01E+00	1.00E+00		
1.10E-08	1.14E-01	8.95E-01	1.62E+03	9.66E+00	1.10E+00	1.81E+00	3.19E+01	7.00E-07	3.30E+07	1.62E+03	0.00E+00	4.86E+00	1.62E+01	1.01E+00	1.00E+00		
1.04E-08	1.16E-01	9.12E-01	1.65E+03	9.85E+00	1.10E+00	1.83E+00	3.32E+01	6.94E-07	3.43E+07	1.65E+03	0.00E+00	4.95E+00	1.65E+01	1.01E+00	1.00E+00		
9.77E-09	1.18E-01	9.31E-01	1.68E+03	1.00E+01	1.11E+00	1.85E+00	3.45E+01	6.88E-07	3.57E+07	1.68E+03	0.00E+00	5.05E+00	1.68E+01	1.01E+00	1.00E+00		
9.20E-09	1.21E-01	9.49E-01	1.72E+03	1.02E+01	1.11E+00	1.86E+00	3.59E+01	6.81E-07	3.71E+07	1.72E+03	0.00E+00	5.15E+00	1.71E+01	1.01E+00	1.00E+00		
8.65E-09	1.23E-01	9.68E-01	1.75E+03	1.04E+01	1.11E+00	1.88E+00	3.73E+01	6.75E-07	3.86E+07	1.75E+03	0.00E+00	5.25E+00	1.75E+01	1.01E+00	1.00E+00		
8.14E-09	1.26E-01	9.87E-01	1.79E+03	1.07E+01	1.11E+00	1.90E+00	3.88E+01	6.69E-07	4.01E+07	1.79E+03	0.00E+00	5.35E+00	1.78E+01	1.01E+00	1.00E+00		
						∑FAM-source=		1.28E-04									
							FAM=	8.20E-01									

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub- source	3rd Sub-source	F _{CD} for 3rd Sub- source	4th Sub- source	F _{CD} for 4th Sub-source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.71E-01		9.92E-01		9.97E-01		9.97E-01		9.97E-01	
1,000	6.10E-01		6.73E-01		7.22E-01		7.61E-01		7.93E-01	
100	3.73E-01	2 555 02	4.15E-01	4 925 02	4.50E-01	6 995 00	4.79E-01	9 755 00	5.05E-01	1 055 01
36	2.69E-01	2.33E-02	3.00E-01	4.63E-02	3.26E-01	0.00E-02	3.47E-01	8.73E-02	3.67E-01	1.03E-01
10	1.54E-01		1.72E-01		1.86E-01		1.99E-01		2.11E-01	
4	8.79E-02		9.82E-02		1.07E-01		1.14E-01		1.21E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub- source	8th Sub-source	F _{CD} for 8th Sub- source	9th Sub- source	F _{CD} for 9th Sub-source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	9.96E-01		9.96E-01		9.95E-01		9.94E-01		9.93E-01	
1,000	8.20E-01		8.43E-01		8.62E-01		8.79E-01		8.93E-01	
100	5.28E-01	1 205 01	5.49E-01	1 255 01	5.68E-01	1 405 01	5.85E-01	1 625 01	6.02E-01	1 755 01
36	3.85E-01	1.206-01	4.01E-01	1.55E-01	4.16E-01	1.496-01	4.30E-01	1.022-01	4.43E-01	1.732-01
10	2.21E-01		2.31E-01		2.40E-01		2.48E-01		2.56E-01	
4	1.27E-01		1.33E-01		1.38E-01		1.43E-01		1.47E-01	

Table 2.123 Summary of F_{AM} 's for Co-60 in Six 1-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} - 1 cm (weighted - average)	Estimated Dose (mrem/yr)
				100,000	9.92E-01	2.63E+00
				1,000	7.65E-01	2.03E+00
1.625+01	5 275+00	0.275.01	1 755 01	100	4.88E-01	1.30E+00
1.022+01	3.272+00	9.372-01	1.752-01	36	3.55E-01	9.43E-01
				10	2.04E-01	5.42E-01
				4	1.17E-01	3.11E-01

Table 2.124 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 1-cm-Thick Volume Sources without Cover

Table 2.125 Calculation of *F*_{CD} for Co-60 in a 5-cm-Thick Volume Source without a Cover

Fittin	Fitting parameters Ai, Bi, Kai (cm2/g), Kbi (cm2/g)					0.924	0.076	0.078	1.28				
Refe	Reference source – Cover material =			rial =	none	Cover thick	ness, cm =	0		Density of a	cover, g/cm3	=	1.6
	Source density , g/cm3 = 1.6 Source thickness, cm = 5							5					
		D(T =	$t = T_{-} - t$										
	F_{Cl}	$D = \frac{D(T_c)}{D(T_c)}$	$\frac{\iota_c, \iota_s = \iota_s)}{0, \tau_s = \infty} = A$	$Ae^{-K_A \rho_c t_c}$	$1 - e^{-K_A \rho_s}$	$(s^{t_S}) + Be^{-H}$	$K_B \rho_c t_c (1 - $	$e^{-K_B \rho_S t_s})$					
		2002											
FCD=	FCD= 0.5049												

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub source	5th Sub-source	F _{CD} for 5th Sub-source
100,000	9.97E-01		9.93E-01		9.88E-01		9.83E-01		9.77E-01	
1,000	7.93E-01		8.93E-01		9.39E-01		9.58E-01		9.65E-01	
100	5.05E-01	1.055.01	6.02E-01	1 755 01	6.70E-01	2 205 01	7.23E-01	2 705 01	7.64E-01	2 225 01
36	3.67E-01	1.052-01	4.43E-01	1.752-01	5.00E-01	2.302-01	5.46E-01	2.792-01	5.85E-01	5.256-01
10	2.10E-01		2.56E-01		2.92E-01		3.23E-01		3.48E-01	
4	1.21E-01		1.47E-01		1.69E-01		1.87E-01		2.02E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub source	- 10th Sub- source	F _{CD} for 10th Sub-source
100,000	9.71E-01		9.64E-01		9.57E-01		9.49E-01		9.42E-01	
1,000	9.65E-01		9.61E-01		9.56E-01		9.49E-01		9.41E-01	
100	7.96E-01	2.645.01	8.21E-01	4 025 01	8.40E-01	4 205 01	8.53E-01	4 725 01	8.63E-01	5 055 01
36	6.19E-01	5.04E-01	6.48E-01	4.05E-01	6.73E-01	4.59E-01	6.94E-01	4.73E-01	7.13E-01	3.03E-01
10	3.71E-01		3.92E-01		4.12E-01		4.30E-01		4.47E-01	
4	2.16E-01		2.29E-01		2.41E-01		2.52E-01		2.63E-01	

Table 2.126 Summary of F_{AM} 's for Co-60 in Six 5-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.127 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 5-cm-Thick Volume Sources without Cover

DCF-inf		Average Decay		Area of	F _{AM} - 5 cm	Estimated
(mrem/yr per	Half-life, yr	Factor in	F _{CD}	Volume	(weighted -	Dose
pCi/g)		1st year		source (m2)	average)	(mrem/yr)
				100,000	9.78E-01	7.51E+00
				1,000	9.12E-01	7.00E+00
1.625+01	5 275+00	0.275.01	5 055 01	100	6.98E-01	5.36E+00
1.022+01	3.272+00	9.372-01	5.05E-01	36	5.36E-01	4.12E+00
				10	3.20E-01	2.45E+00
				4	1.86E-01	1.42E+00

Tables 2.128-2.130 present the calculations of F_{CD} , F_{AM} , and radiation doses for six 15-cm-thick volume sources containing Co-60. Tables 2.131-2.133 present the calculations of F_{CD} , F_{AM} , and radiation doses for six 50-cm-thick volume sources containing Co-60.

Comparisons of the dose estimates for 24 volume sources containing Co-60 between the verification spreadsheets and RESRAD-BUILD are presented in Table 2.134. For 19 volume sources, the difference is less than 5%. For only five volume sources, the difference is greater than 5% but less than 22%. Considering the approximate nature of the spreadsheet calculations, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Results for Mn-54. Tables 2.135-2.137 present the calculations of F_{CD} , F_{AM} , and radiation doses for six 1-cm-thick volume sources containing Mn-54. Tables 2.138-2.140 present the calculations of F_{CD} , F_{AM} , and radiation doses for six 2-cm thick volume sources containing Mn-54. Tables 2.141-2.143 present calculations of F_{CD} , F_{AM} , and radiation doses for six 5-cm-thick volume sources, and Table 2.144-2.146 present calculations of F_{CD} , F_{AM} , and radiation doses for six 10-cm-thick volume sources.

Comparisons of the dose estimates for 24 volume sources containing Mn-54 between the verification spreadsheets and RESRAD-BUILD are presented in Table 2.147. For 23 volume sources, the difference is less than 5%. Only for one volume source is the difference greater than 5% but less than 6%. Considering the approximate nature of the spreadsheet calculations, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Table 2.128 Calculation of F_{CD} for Co-60 in a 15-cm-Thick Volume Source without a Cover

Fitting	tting parameters Ai, Bi, Kai (cm2/g), Kbi (cm2/g) 0.924 0.076 0.078							0.078	1.28				
Referen	eference source – Cover material =				none	Cover thick	ness, cm =	0		Density of o	cover, g/cm3	=	1.6
			Source dens	sity , g/cm3 =	= 1.6		Source thic	kness, cm =	15				
	$F_{CD} = \frac{D(T_c = t_c \cdot T_s = t_s)}{D(T_c = 0 \cdot T_s = \infty)} = Ae^{-K_A \rho_c t_c} (1 - e^{-K_A \rho_s t_s}) + Be^{-K_B \rho_c t_c} (1 - e^{-K_B \rho_s t_s}),$												
FCD=	CD= 0.8579												

Table 2.129 Summary of F_{AM} 's for Co-60 in Six 15-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.88E-01		9.70E-01		9.48E-01		9.22E-01		8.98E-01	
1,000	9.39E-01		9.64E-01		9.47E-01		9.22E-01		8.98E-01	
100	6.70E-01	2 205-01	7.96E-01	2.645-01	8.53E-01	1 72E_01	8.71E-01	5 62E-01	8.70E-01	6 28E-01
36	5.00E-01	2.302-01	6.20E-01	5.042-01	6.96E-01	4.752-01	7.42E-01	J.03E-01	7.66E-01	0.382-01
10	2.92E-01		3.73E-01		4.35E-01		4.82E-01		5.11E-01	
4	1.69E-01		2.19E-01		2.57E-01		2.91E-01		3.08E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	8.70E-01		8.40E-01		8.09E-01		7.77E-01		7.45E-01	
1,000	8.70E-01		8.40E-01		8.09E-01		7.77E-01		7.45E-01	
100	8.54E-01	6 00E 01	8.32E-01	7 515 01	8.04E-01	7 025 01	7.75E-01	9 20E 01	7.43E-01	0 50E 01
36	7.74E-01	0.992-01	7.71E-01	7.512-01	7.60E-01	7.952-01	7.42E-01	0.292-01	7.19E-01	0.302-01
10	5.36E-01		5.53E-01		5.62E-01		5.65E-01		5.63E-01	
4	3.28E-01		3.45E-01		3.57E-01		3.64E-01		3.68E-01	

DCF-inf		Average Decay		Area of	F _{AM} - 15 cm	Estimated
(mrem/yr per	Half-life, yr	Factor in	F _{CD}	Volume	(weighted -	Dose
pCi/g)		1st year		source (m2)	average)	(mrem/yr)
				100,000	9.22E-01	1.20E+01
				1,000	9.08E-01	1.18E+01
1.625+01	5 27E+00	0.275-01	9 59E-01	100	7.88E-01	1.03E+01
1.021+01	3.272+00	9.372-01	0.561-01	36	6.58E-01	8.58E+00
				10	4.29E-01	5.59E+00
				4	2.59E-01	3.38E+00

Table 2.130 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Co-60 in Six 15-cm-Thick Volume Sources without Cover

Table 2.131 Calculation of *F*_{CD} for Co-60 in a 50-cm-Thick Volume Source without a Cover

Fitting pa	arameters Ai, E	Bi, Kai (cm2/g)	, Kbi (cm2/g)	0.924	0.076	0.078	1.28				
Reference	eference source – Cover material =				Cover thick	ness, cm =	0		Density of a	over, g/cm3	=	1.6
		Source den	sity , g/cm3 =	= 1.6		Source thic	kness, cm =	50				
	$D(T_{-}=t_{-}T_{c}=t_{-})$											
	$F_{CD} = \frac{D(T_c)}{D(T_c)}$	$\frac{1}{=0,T_S=\infty} = A$	$Ae^{-\kappa_A \rho_c t_c}$	$1 - e^{-\kappa_A}$	$(P_{S^{t}S}) + Be^{-\kappa}$	$B^{\rho_c t_c}(1 -$	$e^{-\kappa_B \rho_S t_s}$),					
FCD=	CD= 0.9982											

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub-source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.40E-01		8.43E-01		7.30E-01		6.15E-01		5.31E-01	
1,000	9.39E-01		8.43E-01		7.30E-01		6.15E-01		5.31E-01	
100	8.62E-01	5.055.01	8.33E-01	7 255 01	7.29E-01	9 595 01	6.15E-01	0.245.01	5.31E-01	0.505.01
36	7.14E-01	5.05E-01	7.71E-01	7.55E-01	7.09E-01	0.302-01	6.09E-01	9.246-01	5.28E-01	9.392-01
10	4.52E-01		5.58E-01		5.71E-01		5.29E-01		4.65E-01	
4	2.69E-01		3.53E-01		3.87E-01		3.81E-01		3.33E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub-source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	4.34E-01		3.49E-01		2.76E-01		2.15E-01		1.66E-01	
1,000	4.34E-01		3.49E-01		2.76E-01		2.15E-01		1.66E-01	
100	4.34E-01	0.795.01	3.49E-01	0.995.01	2.76E-01	0.045.01	2.15E-01	0.075.01	1.66E-01	0.095.01
36	4.33E-01	9.762-01	3.49E-01	9.002-01	2.76E-01	9.946-01	2.15E-01	9.976-01	1.66E-01	9.966-01
10	3.95E-01		3.25E-01		2.62E-01		2.06E-01		1.60E-01	
4	2.93E-01		2.49E-01		2.05E-01		1.65E-01		1.31E-01	

Table 2.132 Summary of F_{AM} 's for Co-60 in Six 50-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

DCF-inf		Average Decay		Area of	F _{AM} - 50 cm	Estimated
(mrem/yr	Half-life, yr	Factor in	F _{CD}	Volume	(weighted -	Dose
per pCi/g)		1st year		source (m2)	average)	(mrem/yr)
				100,000	8.33E-01	1.26E+01
				1,000	8.33E-01	1.26E+01
16.22	5 275+00	0.275-01	0.095-01	100	7.91E-01	1.20E+01
10.22	3.272+00	5.572-01	9.986-01	36	7.00E-01	1.06E+01
				10	4.92E-01	7.46E+00
				4	3.12E-01	4.73E+00

Table 2.133 Estimation of External Radiation Dose at the Receptor Location (0, 0,1) (m) from Co-60 in Six 50-cm-Thick Volume Sources without Cover

Table 2.134 Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Co-60 in Volume Sources of Different Thicknesses and Areas without Cover

	1 c	m - Thick Volume	e Source	5 ci	m - Thick Volume	Source	15 cm	- Thick Volume	Source	50 cm	- Thick Volume	Source
Area of Volume source (m2)	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets
100,000	2.64E+00	2.63E+00	1.00E+00	7.66E+00	7.51E+00	1.02E+00	1.30E+01	1.20E+01	1.08E+00	1.51E+01	1.26E+01	1.19E+00
1,000	2.04E+00	2.03E+00	1.01E+00	7.00E+00	7.00E+00	1.00E+00	1.23E+01	1.18E+01	1.04E+00	1.38E+01	1.26E+01	1.09E+00
100	1.30E+00	1.30E+00	1.00E+00	5.29E+00	5.36E+00	9.87E-01	1.05E+01	1.03E+01	1.02E+00	1.26E+01	1.20E+01	1.05E+00
36	9.48E-01	9.43E-01	1.00E+00	4.06E+00	4.12E+00	9.87E-01	8.79E+00	8.58E+00	1.02E+00	1.13E+01	1.06E+01	1.06E+00
10	5.42E-01	5.42E-01	1.00E+00	2.41E+00	2.45E+00	9.82E-01	5.74E+00	5.59E+00	1.03E+00	8.46E+00	7.46E+00	1.13E+00
4	3.12E-01	3.11E-01	1.00E+00	1.40E+00	1.42E+00	9.83E-01	3.51E+00	3.38E+00	1.04E+00	5.77E+00	4.73E+00	1.22E+00

Table 2.135 Calculation of F_{CD} for Mn-54 in a 1-cm-Thick Volume Source without a Cover

Fitting	para	meters Ai, Bi	, Kai (cm2/g)	, Kbi (cm2/g		0.085	0.915	1.22	0.088				
Refere	eference source – Cover material =				none	Cover thick	ness, cm =	0		Density of o	over, g/cm3	=	1.6
			Source dens	sity , g/cm3 =	= 1.6		Source thic	kness, cm =	1				
	$F_{CD} = \frac{D(T_c = t_c, T_S = t_s)}{D(T_c = 0, T_s = \infty)} = Ae^{-K_A \rho_c t_c} (1 - e^{-K_A \rho_S t_s}) + Be^{-K_B \rho_c t_c} (1 - e^{-K_B \rho_S t_s}),$												
FCD=	FCD= 0.1931												

Table 2.136 Summary of F_{AM} 's for Mn-54 in Six 1-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Area of Volume source (m2)	1st Sub-source	F _{CD} for 1st Sub- source	2nd Sub-source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.75E-01		9.92E-01		9.95E-01		9.94E-01		9.93E-01	
1,000	6.11E-01		6.79E-01		7.30E-01		7.71E-01		8.04E-01	
100	3.73E-01	2 705 02	4.17E-01	5 205 02	4.54E-01	7 555 02	4.85E-01	0.625.02	5.12E-01	1 155 01
36	2.69E-01	2.792-02	3.01E-01	J.29E-02	3.28E-01	7.552-02	3.51E-01	9.022-02	3.72E-01	1.136-01
10	1.53E-01		1.72E-01		1.87E-01		2.01E-01		2.13E-01	
4	8.77E-02		9.84E-02		1.07E-01		1.15E-01		1.22E-01	
Area of Volume source (m2)	6th Sub-source	F _{CD} for 6th Sub- source	7th Sub-source	F _{CD} for 7th Sub- source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	9.92E-01		9.91E-01		9.90E-01		9.89E-01		9.88E-01	
1,000	8.32E-01	1.33E-01	8.55E-01		8.75E-01		8.92E-01		9.05E-01	1.93E-01
100	5.36E-01		5.58E-01	1 405 01	5.78E-01	1 655 01	5.96E-01	1 705 01	6.14E-01	
36	3.90E-01		4.07E-01	1.49E-01	4.23E-01	1.052-01	4.38E-01	1.796-01	4.52E-01	
10	2.24E-01		2.34E-01		2.44E-01		2.53E-01		2.61E-01	
4	1.29E-01		1.34E-01		1.40E-01		1.45E-01		1.50E-01	

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} - 1 cm (weighted - average)	Estimated Dose (mrem/yr)
				100000	9.90E-01	6.75E-01
				1000	7.74E-01	5.28E-01
5 165+00	8 56E-01	6 955 01	1 025-01	100	4.95E-01	3.38E-01
5.102+00	8.502-01	0.852-01	1.552-01	36	3.60E-01	2.46E-01
				10	2.07E-01	1.41E-01
				4	1.18E-01	8.08E-02

Table 2.137 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 1-cm-Thick Volume Sources without Cover

Table 2.138 Calculation of F_{CD} for Mn-54 in a 2-cm-Thick Volume Source without a Cover

Fitting	parar	neters Ai, Bi	, Kai (cm2/g)	, Kbi (cm2/g)		0.085	0.915	1.22	0.088					
Referer	nce s	ource –	Cover mate	rial =	none	Cover thick	ness, cm =	0		Density of c	Density of cover, g/cm3 =			
			Source dens	sity , g/cm3 =	1.6		Source thick	kness, cm =	2					
		D(T = 1)	τ_{-} = t)											
	F_{CD}	$D = \frac{D(T_c-t)}{D(T_c-t)}$	$\frac{c_c T_S - c_s}{0.T_S = \infty} = A$	$4e^{-K_A \rho_c t_c}$	$1 - e^{-K_A \rho_S}$	$(s^{t_s}) + Be^{-k}$	$S_{B\rho_c t_c}(1-c)$	$e^{-K_B \rho_S t_s}$,						
			3											
FCD=		0.3078												

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.92E-01		9.94E-01		9.92E-01		9.90E-01		9.88E-01	
1,000	6.79E-01		7.71E-01		8.32E-01		8.75E-01		9.05E-01	
100	4.17E-01	5 205 02	4.85E-01	0.625.02	5.36E-01	1 225 01	5.78E-01	1 655 01	6.14E-01	1 025 01
36	3.01E-01	5.292-02	3.51E-01	9.022-02	3.90E-01	1.332-01	4.23E-01	1.052-01	4.52E-01	1.952-01
10	1.72E-01		2.01E-01		2.24E-01		2.44E-01		2.61E-01	
4	9.84E-02		1.15E-01		1.28E-01		1.40E-01		1.50E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	9.86E-01		9.84E-01		9.81E-01		9.79E-01		9.76E-01	
1,000	9.26E-01		9.41E-01		9.50E-01		9.57E-01		9.60E-01	
100	6.45E-01	2 105 01	6.73E-01	2 425 01	6.98E-01	2 665 01	7.20E-01	2 97E 01	7.41E-01	2 095 01
36	4.78E-01	2.196-01	5.01E-01	2.432-01	5.22E-01	2.002-01	5.42E-01	2.076-01	5.61E-01	5.082-01
10	2.77E-01		2.92E-01		3.06E-01		3.19E-01		3.31E-01	
4	1.59E-01		1.68E-01		1.76E-01		1.84E-01		1.91E-01	

Table 2.139 Summary of F_{AM} 's for Mn-54 in Six 2-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.140 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 2-cm-Thick Volume Sources without Cover

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} - 2 cm (weighted average)	Estimated Dose (mrem/yr)
				100000	9.88E-01	1.07E+00
	8.56E-01	C 055 04		1000	8.51E-01	9.26E-01
5 165 100			2.095.01	100	5.78E-01	6.29E-01
5.102+00		0.032-01	5.062-01	36	4.26E-01	4.64E-01
				10	2.47E-01	2.69E-01
				4	1.42E-01	1.54E-01

Table 2.141 Calculation of F_{CD} for Mn-54 in a 5-cm-Thick Volume Source without a Cover

Fitting pa	irameters Ai, E	i, Kai (cm2/g)	, Kbi (cm2/g)	0.085	0.915	1.22	0.088				
Referenc	e source –	Cover mate	rial =	none	Cover thick	ness, cm =	0		Density of o	cover, g/cm3	=	1.6
		Source den	sity , g/cm3 =	= 1.6		Source thic	kness, cm =	5				
Г	D(T -	$(t, T_{\alpha}-t)$										
	$F_{CD} = \frac{D(T_c)}{D(T_c)}$	$\frac{c_c r_s - c_s}{= 0.T_s = \infty} = 1$	$Ae^{-K_A \rho_c t_c}$	$1 - e^{-\kappa_A \rho_S}$	$(s^{t_s}) + Be^{-H}$	$K_{B\rho_c t_c}(1 -$	$e^{-K_B \rho_S t_s})$,					
L												
FCD=	D= 0.5474											

Area of	1st Sub-source	F _{CD} for 1st Sub-	and Sub-source	F _{CD} for 2nd Sub-	2rd Sub source	F _{CD} for 3rd Sub-	Ath Sub source	F _{CD} for 4th Sub-	5th Sub source	F _{CD} for 5th Sub-
source (m2)	Ist Sub-source	source	2110 Sub-source	source	Sid Sub-source	source	4th Sub-Source	source	Still Sub-source	source
100,000	9.93E-01		9.88E-01		9.82E-01		9.76E-01		9.69E-01	
1,000	8.05E-01		9.05E-01		9.46E-01		9.60E-01		9.62E-01	
100	5.12E-01	1 155 01	6.14E-01	1 025 01	6.86E-01	2 555 01	7.41E-01	2.095.01	7.82E-01	2 565 01
36	3.71E-01	1.132-01	4.52E-01	1.952-01	5.12E-01	2.332-01	5.62E-01	5.082-01	6.03E-01	5.502-01
10	2.13E-01		2.61E-01		3.00E-01		3.32E-01		3.59E-01	
4	1.22E-01		1.50E-01		1.73E-01		1.93E-01		2.08E-01	
Area of	Cth Cult a surray	F _{CD} for 6th Sub-	7th Cult same	F _{CD} for 7th Sub-	Oth Cult an unse	F _{CD} for 8th Sub-	Oth Cult another	F _{CD} for 9th Sub-	10th Cult annual	F _{CD} for 10th Sub-
source (m2)	oth Sub-source	source	7th Sub-source	source	8th Sub-source	source	9th Sub-source	source	10th Sub-source	source
100,000	9.62E-01		9.54E-01		9.45E-01		9.37E-01		9.28E-01	
1,000	9.59E-01		9.53E-01		9.45E-01		9.36E-01		9.28E-01	
100	8.14E-01	4 005 01	8.36E-01	4 415 01	8.53E-01	4 705 01	8.64E-01	E 14E 01	8.70E-01	E 47E 01
36	6.38E-01	4.00E-01	1 6.68E-01 4.07E-01	4.412-01	6.94E-01	4.792-01	7.15E-01	5.14E-01	7.33E-01	5.47E-01
10	3.84E-01				4.29E-01		4.48E-01		4.66E-01	
4	2.24E-01		2.38E-01		2.51E-01		2.64E-01		2.76E-01	

Table 2.142 Summary of F_{AM} 's for Mn-54 in Six 5-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} - 5 cm (weighted - average)	Estimated Dose (mrem/yr)
				100,000	9.71E-01	1.88E+00
				1,000	9.13E-01	1.77E+00
5 165+00		6.85E-01	5.47E-01	100	7.09E-01	1.37E+00
5.102+00	8.J0E-01			36	5.48E-01	1.06E+00
				10	3.28E-01	6.34E-01
				4	1.90E-01	3.68E-01

Table 2.143 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 5-cm-Thick Volume Sources without Cover

Table 2.144 Calculation of *F_{CD}* for Mn-54 in a 10-cm-Thick Volume Source without a Cover

Fitting p	parameters Ai, Bi, Kai (cm2/g), Kbi (cm2/			, Kbi (cm2/g		0.085	0.915	1.22	0.088				
Referen	nce source – Cover material =			none	Cover thick	ness, cm =	0		Density of c	over, g/cm3	=	1.6	
			Source dens	sity , g/cm3 =	= 1.6		Source thic	kness, cm =	10				
		$D(T_{-}=t)$	$T_c = t_c$										
	F_{CD}	$=\frac{D(T_c)}{D(T_c)}$	$\frac{c_{r}r_{s}-c_{s}}{0.T_{s}=\infty} = A$	$4e^{-\kappa_A \rho_c t_c}$	$1 - e^{-\kappa_A \rho_S}$	$(t_S) + Be^{-k}$	$(B^{\rho_c t_c}(1 - 0))$	$e^{-\kappa_B \rho_S t_s}$),					
		- (-)											
FCD=		0.7762											

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub-source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub- source
100,000	9.88E-01		9.76E-01		9.61E-01		9.44E-01		9.28E-01	
1,000	9.05E-01		9.60E-01		9.58E-01		9.43E-01		9.28E-01	
100	6.14E-01	1 025 01	7.41E-01	2 095 01	8.13E-01	4 005 01	8.52E-01	4 70E 01	8.70E-01	5 /7E 01
36	4.52E-01	1.932-01	5.62E-01	3.082-01	6.38E-01	4.002-01	6.95E-01	4.752-01	7.33E-01	5.472-01
10	2.61E-01		3.32E-01		3.86E-01		4.32E-01		4.66E-01	
4	1.50E-01		1.93E-01		2.26E-01		2.55E-01		2.76E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub-source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub- source
100,000	9.09E-01		8.89E-01		8.68E-01		8.46E-01		8.24E-01	
1,000	9.09E-01		8.89E-01		8.68E-01		8.46E-01		8.24E-01	
100	8.73E-01	6 07E 01	8.67E-01	6 505 01	8.55E-01	7 025 01	8.38E-01	7 425 01	8.19E-01	7 765 01
36	7.58E-01	6.07E-01 7	7.72E-01	6.59E-01	7.78E-01	7.032-01	7.77E-01	7.422-01	7.71E-01	7.702-01
10	4.97E-01		5.22E-01		5.42E-01		5.57E-01		5.67E-01	
4	2.97E-01		3.16E-01		3.32E-01		3.47E-01		3.58E-01	

Table 2.145 Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources without a Cover at the Receptor Location (0, 0, 1) (m)

DCF-inf		Average Decay		Area of	F _{AM} - 10 cm	Estimated
(mrem/yr per	Half-life, yr	Factor in	F _{CD}	Volume	(weighted -	Dose
pCi/g)		1st year		source (m2)	average)	(mrem/yr)
				100,000	9.39E-01	2.58E+00
				1,000	9.16E-01	2.51E+00
5 165+00	8 56E-01	6.855-01	7 765-01	100	7.74E-01	2.12E+00
3.102+00	8.302-01	0.832-01	7.702-01	36	6.34E-01	1.74E+00
				10	4.02E-01	1.10E+00
				4	2.39E-01	6.55E-01

Table 2.146 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources without a Cover

Table 2.147 Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets for Mn-54 in Volume Sources of Different Thicknesses and Areas without a Cover

	1 cm - Thick Volume Source				2 cm - Thick Volume Source			5 cm - Thick Volume Source			10 cm - Thick Volume Source		
Area of Volume source (m2)	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	
100,000	6.77E-01	6.75E-01	1.00	1.08E+00	1.07E+00	1.00	1.92E+00	1.88E+00	1.02	2.72E+00	2.58E+00	1.06	
1,000	5.32E-01	5.28E-01	1.01	9.26E-01	9.26E-01	1.00	1.77E+00	1.77E+00	1.00	2.56E+00	2.51E+00	1.02	
100	3.39E-01	3.38E-01	1.00	6.26E-01	6.29E-01	0.99	1.35E+00	1.37E+00	0.98	2.12E+00	2.12E+00	1.00	
36	2.47E-01	2.46E-01	1.01	4.61E-01	4.64E-01	0.99	1.04E+00	1.06E+00	0.98	1.71E+00	1.74E+00	0.98	
10	1.41E-01	1.41E-01	1.00	2.65E-01	2.69E-01	0.99	6.10E-01	6.34E-01	0.96	1.06E+00	1.10E+00	0.96	
4	8.10E-02	8.08E-02	1.00	1.52E-01	1.54E-01	0.99	3.54E-01	3.68E-01	0.96	6.24E-01	6.55E-01	0.95	
Results for Tc-99. Tables 2.148-2.150 present the calculations of F_{CD} , F_{AM} , and radiation doses for six 1-cm-thick volume sources containing Tc-99. Tables 2.151-2.153 present the calculations of F_{CD} , F_{AM} , and radiation doses for six 2-cm-thick volume sources containing Tc-99. Tables 2.154-2.156 present calculations of F_{CD} , F_{AM} , and radiation doses for six 5-cm-thick volume sources, and Table 2.157-2.159 present calculations of F_{CD} , F_{AM} , and radiation doses for six 10-cm-thick volume sources.

Comparisons of the dose estimates for 24 volume sources containing Tc-99 between the verification spreadsheets and RESRAD-BUILD are presented in Table 2.160. For 17 volume sources, the difference is less than 5%. For the remaining 7 volume sources, the difference is greater than 5% but less than 10%. Considering the approximate nature of the spreadsheet calculations, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

2.4.2 Dose Results with Shielding

To verify the RESRAD-BUILD external radiation dose modeling for volume sources with shielding, the external radiation doses incurred by a receptor at (0, 0, 1) (m) from six10-cm-thick volume sources containing Mn-54 that was covered by concrete material were estimated with spreadsheets. The thickness of the concrete cover was initially assumed to be 1 cm, which was then increased to 2 cm, and then to 5 cm.

Table 2.161 presents the calculations of F_{CD} for the 10-cm-thick Mn-54 volume sources covered by1-cm of concrete material. To estimate F_{AM} for the volume sources, each volume source was divided into 10 sub-volumes. Table 2.162 presents the calculations of F_{AM-ref} for the reference source of the 7th sub-volume. Calculations of F_{AM} for the 7th sub-volume that has a circular area of 100 m² were presented in Table 2.163. Table 2.164 summarizes the F_{AM} 's calculated for each sub-volume of the six 10-cm-thick volume sources. The external doses estimated for these six sources are presented in Table 2.165.

Table 2.166 presents the calculations of F_{CD} for the 10-cm thick volume sources covered by 2-cm of concrete material. Table 2.167 summarizes the F_{AM} 's for the six volume sources. The external doses estimated for these six sources with a 2-cm concrete cover are presented in Table 2.168.

Table 2.169 presents the calculations of F_{CD} for the 10-cm thick volume sources covered by 5-cm of concrete material. Table 2.170 summarizes the F_{AM} 's for the six volume sources. The external doses estimated for these six sources with a 5-cm concrete cover are presented in Table 2.171.

Comparisons of the dose estimates for the six 10-cm volume sources containing Mn-54 are presented in Table 2.172. For all cases, the difference between the RESRAD-BUILD result and the spreadsheet result is less than 10%. Considering the approximate nature of the spreadsheet calculations, it is judged that the external radiation dose modeling was correctly implemented in the RESRAD-BUILD code.

Table 2.148 Calculation of F_{CD} for Tc-99 in a 1-cm-Thick Volume Source without a Cover

Fittin	tting parameters Ai, Bi, Kai (cm2/g), Kbi (cm2/g) 0.7871 0.2129 0.2106												
Refe	Reference source -Cover material =noneCover thickness, cm =0						0		Density of o	over, g/cm3	=	1.6	
	Source density , g/cm3 = 1.6 Source thickness, cm =												
		D(T = 1)	$T_{-}=t$)										
	F_{CI}	$D = \frac{D(T_c-t)}{D(T_c-t)}$	$\frac{c(r_s - c_s)}{0.T_s = \infty} = A$	$Ae^{-K_A \rho_c t_c}$	$1 - e^{-K_A \rho_S}$	$(t_s) + Be^{-H}$	$K_{B}\rho_{c}t_{c}(1-t)$	e ^{-K} B ^ρ s ^t s),					
FCD=	FCD= 0.4349												

Table 2.149 Summary of F_{AM} 's for Tc-99 in Six 1-cm-Thick Volume Sources without a Cover at the Receptor Location (0, 0, 1) (m)

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.22E-01		9.12E-01		9.05E-01		8.99E-01		8.94E-01	
1,000	5.45E-01		6.71E-01		7.52E-01		8.02E-01		8.31E-01	
100	3.01E-01	0.025.02	3.79E-01	1 725 01	4.42E-01	2 29E 01	4.95E-01	2 725 01	5.40E-01	2 005 01
36	2.11E-01	9.926-02	2.64E-01	1.722-01	3.09E-01	2.202-01	3.48E-01	2.752-01	3.83E-01	3.09E-01
10	1.17E-01		1.46E-01		1.71E-01		1.92E-01		2.13E-01	
4	6.63E-02		8.25E-02		9.61E-02		1.08E-01		1.20E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	8.89E-01		8.84E-01		8.79E-01		8.75E-01		8.70E-01	
1,000	8.49E-01		8.59E-01		8.63E-01		8.64E-01		8.64E-01	
100	5.78E-01	1 005 01	6.11E-01	2 675 01	6.39E-01	2 025 01	6.64E-01	4 145 01	6.85E-01	4 255 01
36	4.14E-01	1.885-01	4.42E-01	3.67E-01	4.68E-01	3.922-01	4.92E-01	4.14E-01	5.13E-01	4.35E-01
10	2.31E-01		2.48E-01		2.64E-01	01	2.80E-01		2.95E-01	
4	1.30E-01		1.40E-01		1.49E-01		1.58E-01		1.67E-01	

Table 2.150	Estimation of	'External	Radiation	Dose at the	Receptor	Location
(0, 0, 1) (m)	from Tc-99 in	Six 1-cm	-Thick Vol	ume Source	es without	Cover

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} - 1 cm (Average)	Estimated Dose (mrem/yr)
				100,000	8.93E-01	4.89E-05
	2.13E+05	1.00E+00		1,000	7.90E-01	4.33E-05
1 265-04			4 355 01	100	5.33E-01	2.92E-05
1.200-04			4.332-01	36	3.84E-01	2.11E-05
				10	2.16E-01	1.18E-05
				4	1.22E-01	6.68E-06

Table 2.151 Calculation of F_{CD} for Tc-99 in a 2-cm-Thick Volume Source without a Cover

Fitting para	ameters Ai, Bi	, Kai (cm2/g)	, Kbi (cm2/g)	0.7871	0.2129	0.2106	2.63				
Reference	Reference source – Cover material =			none	Cover thick	ness, cm =	0		Density of cover, g/cm3 =		=	1.6
	Source density , g/cm3 = 1.6 Source thickness, cm =											
	D(T - t)	$T_{a}-t$										
F_{c}	$_{CD} = \frac{D(T_c-t)}{D(T_c-t)}$	$\frac{c_c T_S - c_s}{0.T_S = \infty} = A$	$4e^{-K_A \rho_c t_c}$	$1 - e^{-K_A \rho}$	s^{t_s}) + Be^{-k}	$(1 - c^{t_c})^{t_c}$	$e^{-K_B \rho_S t_s})$,					
FCD=	CD= 0.5988											

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.12E-01		8.99E-01		8.89E-01		8.79E-01		8.70E-01	
1,000	6.71E-01		8.02E-01		8.49E-01		8.63E-01		8.64E-01	
100	3.79E-01	1 725 01	4.95E-01	2 725 01	5.78E-01	2 405 01	6.39E-01	2 025 01	6.85E-01	1 255 01
36	2.64E-01	1.720-01	3.48E-01	2.732-01	4.14E-01	5.40E-01	4.68E-01	5.926-01	5.13E-01	4.552-01
10	1.46E-01		1.92E-01		2.31E-01		2.64E-01		2.95E-01	
4	8.25E-02		1.08E-01		1.30E-01		1.49E-01		1.67E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	8.61E-01		8.52E-01		8.43E-01		8.34E-01		8.25E-01	
1,000	8.58E-01		8.51E-01		8.43E-01		8.34E-01		8.25E-01	
100	7.18E-01	4 725 01	7.42E-01	5 09E 01	7.58E-01	5 /15 01	7.68E-01	5 715 01	7.74E-01	5 005 01
36	5.52E-01	4.752-01	5.84E-01	5.082-01	6.10E-01	J.41E-01	6.32E-01	J./1E-01	6.50E-01	5.99E-01
10	3.22E-01		3.47E-01		3.70E-01	1	3.90E-01		4.09E-01	
4	1.84E-01		1.99E-01		2.14E-01		2.28E-01		2.41E-01	

Table 2.152 Summary of F_{AM} 's for Tc-99 in Six 2-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.153 Estimation of External Radiation Dose at the Receptor Location(0, 0, 1) (m) from Tc-99 in Six 2-cm-Thick Volume Sources without Cover

DCF-inf (mrem/yr per	Half-life, yr	Average Decay Factor in	F _{CD}	Area of Volume	F _{AM} - 2 cm	Estimated Dose
pCi/g)		1st year		source (m2)	(Average)	(mrem/yr)
				100,000	8.66E-01	6.54E-05
				1,000	8.26E-01	6.23E-05
1 265 04	2.13E+05	1.005+00	E 00E 01	100	6.54E-01	4.93E-05
1.202-04		1.002+00	5.992-01	36	5.03E-01	3.80E-05
				10	2.97E-01	2.24E-05
				4	1.70E-01	1.28E-05

Table 2.154 Calculation of F_{CD} for Tc-99 in a 5-cm-Thick Volume Source without Cover

Fitting par	itting parameters Ai, Bi, Kai (cm2/g), Kbi (cm2/g) 0.7871 0.2129 0.2106											
Reference	Reference source – Cover material = none Cover thickness, cm =						0		Density of a	cover, g/cm3	=	1.6
	Source density , g/cm3 = 1.6 Source thickness, cm =											
F	$D(T_c = t)$	$t_c, T_S = t_s)$	$A_{\rho} - K_{A} \rho_{c} t_{c}$	$1 - e^{-K_A \rho_S}$	$(t_s) \perp B e^{-h}$	$K_{B}\rho_{c}t_{c}(1 -$	$e^{-K_B \rho_S t_S}$					
	$F_{CD} = \frac{1}{D(T_c = 0, T_S = \infty)} = Ae^{-T_A r \cdot r \cdot r} (1 - e^{-T_A r \cdot s \cdot s}) + Be^{-T_B r \cdot r \cdot r} (1 - e^{-T_B r \cdot s \cdot s}),$											
FCD=	FCD= 0.8540											

Table 2.155 Summary of F_{AM} 's for Tc-99 in Six 5-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Area of Volume	1st Sub source	F _{CD} for 1st Sub-	and Sub-source	F _{CD} for 2nd	3rd Sub-	F _{CD} for 3rd	4th Sub-	F _{CD} for 4th	5th Sub courco	F _{CD} for 5th
source (m2)	Ist Sub-source	source	2110 Sub-source	Sub-source	source	Sub-source	source	Sub-source	Still Sub-Source	Sub-source
100,000	8.94E-01		8.70E-01		8.47E-01		8.24E-01		8.03E-01	
1,000	8.32E-01		8.64E-01		8.47E-01		8.24E-01		8.03E-01	6.61E-01
100	5.40E-01	2.005.01	6.85E-01	4 255 01	7.50E-01	E 255 01	7.74E-01	E 00E 01	7.77E-01	
36	3.82E-01	3.09E-01	5.13E-01	4.33E-01	5.98E-01	5.25E-01	6.50E-01	2.99E-01	6.80E-01	
10	2.12E-01		2.95E-01		3.59E-01		4.10E-01		4.50E-01	
4	1.19E-01		1.67E-01		2.07E-01		2.42E-01		2.70E-01	
Area of Volume	6th Sub course	F _{CD} for 6th Sub-	7th Sub source	F _{CD} for 7th	8th Sub-	F _{CD} for 8th	9th Sub-	F _{CD} for 9th	10th Sub-	F _{CD} for 10th
source (m2)	oth Sub-source	source	7th Sub-source	Sub-source	source	Sub-source	source	Sub-source	source	Sub-source
100,000	7.82E-01		7.60E-01		7.39E-01		7.18E-01		6.98E-01	
1,000	7.82E-01		7.60E-01		7.39E-01		7.18E-01		6.98E-01	
100	7.68E-01	7 145 01	7.53E-01	7 595 01	7.35E-01	7.065.01	7.16E-01	0.075.01	6.97E-01	9 545 01
36	6.95E-01	7.14E-01	7.00E-01	7.58E-01	6.97E-01	7.902-01	6.89E-01	0.27E-01	6.77E-01	8.54E-01
10	4.81E-01		5.04E-01		5.21E-01	1	5.33E-01		5.40E-01	
4	2.95E-01		3.16E-01		3.34E-01		3.49E-01		3.61E-01	

DCF-inf		Average Decay		Area of	F _{AM} - 5 cm	Estimated
(mrem/yr per	Half-life, yr	Factor in	F _{CD}	Volume	Weighted	Dose
pCi/g)		1st year		source (m2)	Average	(mrem/yr)
				100,000	8.40E-01	9.03E-05
				1,000	8.16E-01	8.78E-05
1 265 04	2 125 .05	1.005.00	9 5/15 01	100	6.66E-01	7.17E-05
1.202-04	2.132+03	1.002+00	0.546-01	36	5.39E-01	5.80E-05
				10	3.42E-01	3.68E-05
				4	2.04E-01	2.19E-05

Table 2.156 Estimation of External Radiation Dose at the Receptor Location (0, 0,1) (m) from Tc-99 in Six 5-cm-Thick Volume Sources without Cover

Table 2.157 Calculation of *F*_{CD} for Tc-99 in a 10-cm-Thick Volume Source without a Cover

Fitting pa	-itting parameters Ai, Bi, Kai (cm2/g), Kbi (cm2/g))	0.7871	0.2129	0.2106	2.63				
Referenc	ce source –	Cover mate	Cover material =		Cover thickness, cm = C		0		Density of o	over, g/cm3	=	1.6
	Source density , g/cm3 = 1.6 Source thickness, cm						kness, cm =	10				
Г	$D(T_{-}=$	$(t, T_c = t_c)$										
	$F_{CD} = \frac{D(T_c)}{D(T_c)}$	$\frac{c_c r_s - c_s}{= 0.T_s = \infty} = A$	$Ae^{-K_A \rho_c t_c}$	$1 - e^{-\kappa_A \rho_S}$	$(s^{ts}) + Be^{-H}$	$K_{B}\rho_{c}t_{c}(1 -$	$e^{-\kappa_B \rho_S t_s})$,					
LL												
FCD=	CD= 0.9729											

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub- source	F _{CD} for 2nd Sub-source	3rd Sub- source	F _{CD} for 3rd Sub-source	4th Sub- source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	8.70E-01		8.24E-01		7.81E-01		7.38E-01		6.98E-01	
1,000	8.64E-01		8.24E-01		7.81E-01		7.38E-01		6.98E-01	
100	6.85E-01	4 255 01	7.74E-01	5 00E 01	7.67E-01	7 145 01	7.34E-01	7.065.01	6.97E-01	9 545 01
36	5.13E-01	4.55E-01	6.50E-01	3.995-01	6.96E-01	7.146-01	6.96E-01	7.902-01	6.77E-01	0.34E-01
10	2.95E-01		4.10E-01		4.83E-01		5.24E-01		5.40E-01	
4	1.67E-01		2.42E-01		2.98E-01		3.39E-01		3.61E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub-source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	6.57E-01		6.17E-01		5.77E-01		5.38E-01		5.00E-01	
1,000	6.57E-01		6.17E-01		5.77E-01		5.38E-01		5.00E-01	
100	6.57E-01	9 06E 01	6.17E-01	0.265.01	5.77E-01	0.475.01	5.38E-01	0.625.01	5.00E-01	0.725.01
36	6.47E-01	0.902-01	6.12E-01	9.26E-01	5.74E-01	9.472-01	5.37E-01	9.022-01	4.99E-01	9.752-01
10	5.43E-01		5.35E-01		5.18E-01)1	4.95E-01		4.69E-01	
4	3.77E-01		3.85E-01		3.85E-01		3.80E-01		3.70E-01	

Table 2.158 Summary of F_{AM} 's for Tc-99 in Six 10-cm-Thick Volume Sources without Cover at the Receptor Location (0, 0, 1) (m)

Table 2.159 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Tc-99 in Six 10-cm-Thick Volume Sources without Cover

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} - 10 cm (Weighted Average)	Estimated Dose (mrem/yr)
				100,000	7.98E-01	9.78E-05
	2.13E+05	1.005.00		1,000	7.95E-01	9.74E-05
1 265 04			0 725 01	100	7.04E-01	8.63E-05
1.202-04		1.002+00	9.752-01	36	5.93E-01	7.27E-05
				10	3.98E-01	4.88E-05
				4	2.47E-01	3.03E-05

Table 2.160 Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Tc-99 in Volume Sources of Different Thicknesses and Areas without Cover

	1 c	m - Thick Volume	e Source	2 ci	m - Thick Volume	Source	5 cm -	Thick Volume S	Source	10 cm - Thick Volume Source		
Area of Volume source (m2)	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets
100,000	4.97E-05	4.89E-05	1.02	6.72E-05	6.54E-05	1.03	9.28E-05	9.03E-05	1.03	1.03E-04	9.78E-05	1.05
1,000	4.44E-05	4.33E-05	1.03	6.26E-05	6.23E-05	1.00	8.86E-05	8.78E-05	1.01	9.83E-05	9.74E-05	1.01
100	3.05E-05	2.92E-05	1.04	4.81E-05	4.93E-05	0.98	7.53E-05	7.17E-05	1.05	8.63E-05	8.63E-05	1.00
36	2.23E-05	2.11E-05	1.06	3.68E-05	3.80E-05	0.97	6.25E-05	5.80E-05	1.08	7.42E-05	7.27E-05	1.02
10	1.26E-05	1.18E-05	1.07	2.14E-05	2.24E-05	0.96	4.01E-05	3.68E-05	1.09	5.10E-05	4.88E-05	1.04
4	7.15E-06	6.68E-06	1.07	1.23E-05	1.28E-05	0.96	2.41E-05	2.19E-05	1.10	3.20E-05	3.03E-05	1.06

Table 2.161 Calculation of *F*_{CD} for Mn-54 in a 10-cm-Thick Volume Source with 1-cm Concrete Cover

Fitting parameters Ai, B	itting parameters Ai, Bi, Kai (cm2/g), Kbi(cm2/g)			0.085	0.915	1.22	0.088		
Source material =	concrete	thickness, cm =	10	Cover material =	concrete	Cover thickness, cm =	1	density, g/cm3	1.6
Reference material =	soil								
	$F_{CD} = $	$\frac{D(T_c = t_c, T_S = t_s)}{D(T_c = 0, T_S = \infty)} =$	$Ae^{-K_A \rho_c t_c} (1 -$	$-e^{-K_A \rho_S t_S}) + B$	$e^{-K_B \rho_c t_c} (1-\epsilon)$	$e^{-K_B \rho_S t_s}$),			
FCD =	0.612								

Table 2.162 Calculation of F_{AM} for Mn-54 in a Reference Source for the 7th Sub-volume of a 10-cm-Thick Volume Source with 1-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)

# photons	Energy 1 0.835	Yield 1 1 tc (cm) =	FE 0.825	Fluence to Effective Dose Conversion Factor p\$v cm2 3.189	Effective Mass Attenuation Coefficient (source) (/cm) 8.42E-03	Effective Mass Attenuation Coefficient (ref) (/cm) 8.55E-03	Mass Attenuation Coefficient (soil) (/cm) 1.13E-01	Mass Attenuation Coefficient (concrete) (/cm) 1.12E-01 ts (cm) =	Mass Attenuation Coefficient (air) (/cm) 8.48E-05						
cu (chi) =	55	te (em) -	1	50	aree rei area (in		5.502100	(3)((11)) =	,						
exp(-ux)/x2 - ref	dist. in - ref- air (cm)	dist. in-ref- source-cover (cm)	mfp-dist. in - ref-air	mfp-dist. in- ref-source-cover	BF-ref-air	BF-ref- source-cover	Vol-sour- ref (m2)	FAM-ref	4pi x dist- ref^2 (cm2)	distance- ref (cm)	ta + tc + ts (m)	r - ref (m)	ta (m)	Receptor location y (cm)	Receptor location z (cm)
2.78E-06	9.90E+01	8.00E+00	8.39E-03	9.07E-01	1.01E+00	1.96E+00	0.00E+00	0.00E+00	1.44E+05	1.07E+02	1.07E+00	0.00E+00	9.90E-01		
2.75E-06	9.94E+01	8.03E+00	8.43E-03	9.10E-01	1.01E+00	1.97E+00	3.14E-02	1.71E-07	1.45E+05	1.07E+02	1.07E+00	1.00E-01	9.90E-01		
2.75E-06	9.95E+01	8.04E+00	8.43E-03	9.11E-01	1.01E+00	1.97E+00	1.91E-03	1.04E-08	1.45E+05	1.07E+02	1.07E+00	1.03E-01	9.90E-01		
2.74E-06	9.95E+01	8.04E+00	8.43E-03	9.11E-01	1.01E+00	1.97E+00	2.03E-03	1.11E-08	1.45E+05	1.08E+02	1.07E+00	1.06E-01	9.90E-01		
2.74E-06	9.95E+01	8.04E+00	8.44E-03	9.11E-01	1.01E+00	1.97E+00	2.15E-03	1.17E-08	1.45E+05	1.08E+02	1.07E+00	1.09E-01	9.90E-01		
2.74E-06	9.95E+01	8.04E+00	8.44E-03	9.12E-01	1.01E+00	1.97E+00	2.29E-03	1.24E-08	1.46E+05	1.08E+02	1.07E+00	1.13E-01	9.90E-01		
2.74E-06	9.96E+01	8.05E+00	8.44E-03	9.12E-01	1.01E+00	1.97E+00	2.42E-03	1.32E-08	1.46E+05	1.08E+02	1.07E+00	1.16E-01	9.90E-01		
2.73E-06	9.96E+01	8.05E+00	8.44E-03	9.12E-01	1.01E+00	1.97E+00	2.57E-03	1.40E-08	1.46E+05	1.08E+02	1.07E+00	1.19E-01	9.90E-01	0	100
2.73E-06	9.97E+01	8.05E+00	8.45E-03	9.12E-01	1.01E+00	1.97E+00	2.73E-03	1.48E-08	1.46E+05	1.08E+02	1.07E+00	1.23E-01	9.90E-01		
1.22E-21	3.17E+03	2.57E+02	2.69E-01	2.91E+01	1.27E+00	1.42E+02	1.44E+02	3.17E-17	1.48E+08	3.43E+03	1.07E+00	3.43E+01	9.90E-01		
6.55E-22	3.24E+03	2.62E+02	2.75E-01	2.97E+01	1.27E+00	1.47E+02	1.49E+02	1.83E-17	1.54E+08	3.50E+03	1.07E+00	3.50E+01	9.90E-01		
3.46E-22	3.30E+03	2.67E+02	2.80E-01	3.02E+01	1.28E+00	1.52E+02	1.55E+02	1.04E-17	1.60E+08	3.57E+03	1.07E+00	3.57E+01	9.90E-01		
1.81E-22	3.37E+03	2.72E+02	2.86E-01	3.08E+01	1.28E+00	1.57E+02	1.62E+02	5.90E-18	1.67E+08	3.64E+03	1.07E+00	3.64E+01	9.90E-01		
9.33E-23	3.44E+03	2.78E+02	2.91E-01	3.15E+01	1.29E+00	1.63E+02	1.68E+02	3.29E-18	1.73E+08	3.71E+03	1.07E+00	3.71E+01	9.90E-01		
4.75E-23	3.50E+03	2.83E+02	2.97E-01	3.21E+01	1.29E+00	1.69E+02	1.75E+02	1.81E-18	1.80E+08	3.79E+03	1.07E+00	3.79E+01	9.90E-01		
0.00E+00	9.19E+04	7.43E+03	7.79E+00	8.42E+02	2.20E+01	2.43E+02	1.21E+05	0.00E+00	1.24E+11	9.94E+04	1.07E+00	9.94E+02	9.90E-01		
0.00E+00	9.38E+04	7.58E+03	7.95E+00	8.59E+02	2.26E+01	2.43E+02	1.25E+05	0.00E+00	1.29E+11	1.01E+05	1.07E+00	1.01E+03	9.90E-01		
0.00E+00	9.57E+04	7.73E+03	8.11E+00	8.76E+02	2.34E+01	2.43E+02	1.30E+05	0.00E+00	1.34E+11	1.03E+05	1.07E+00	1.03E+03	9.90E-01		
							∑FAM-ref=	3.72E-05							

Table 2.163 Calculation of F_{AM} for Mn-54 in the 7th Sub-volume of a 10-cm-Thick Volume Source with an Area of 100 m² and 1-cm Concrete Cover at the Receptor location (0, 0, 1) (m)

				Fluence to	Effective												
				Effective	Mass	Effective											
				Dose	Attenuation	Mass		Mass	Mass	Mass							
				Conversion	Coefficient	Attenuation		Attenuation	Attenuation	Attenuation							
				Eactor	(source)	Coefficient		Coefficient	Coefficient	Coefficient							
# photons	Enorm 1	Viold 1	CC	nSu cm2	(Jom)	(rof) (/cm)		(soil) (/cm)	(concroto) ((cm)	(air) (/cm)							
# priotoris	0 925	1	0.925	2 190	(/ciii) 8 43E 02	(rer) (/ciii)	9 55E 02	1 125 01	1 125 01								
1	0.655	1	0.825	5.105	0.422-03		0.33E-03	1.132-01	1.122-01	0.462-03							
ta (cm) -	00	to (cm) -	1		Source area (m2)	\		100		Source-ref are	a (m2) -	2 265+06	ts (cm) -	7			
ta (ciii) -		te (em) -	-		Source area (mz)	-		100		Source ren area	2 (m2) -	3.302100	ts (em) =	,			
	mfp-dist.		dist. in -	dist. in-						4pi x dist-	distance-					Receptor	Receptor
exp(-ux)/x2 -	in	mfp-dist. in-	source-air	source-cover	BF-source-	BF-source-		Vol-source		source^2	source-air	dist-cover	r - source			location y	location z
source	-sour-air	source-cover	(cm)	(cm)	air	cover		(m2)	FAM-source	(cm2)	(cm)	(cm)	(m)	ta + tc + ts (ta (m)	(cm)	(cm)
2.39E-08	3.03E-02	3.01E+00	3.57E+02	2.70E+01	1.03E+00		5.13E+00	1.45E+00	1.83E-07	1.64E+06	3.61E+02	1.00E+00	3.45E+00	1.07E+00	9.90E-01		
2.18E-08	3.09E-02	3.07E+00	3.64E+02	2.75E+01	1.03E+00		5.23E+00	1.51E+00	1.77E-07	1.70E+06	3.68E+02	1.00E+00	3.52E+00	1.07E+00	9.90E-01		
1.97E-08	3.14E-02	3.12E+00	3.71E+02	2.80E+01	1.03E+00		5.34E+00	1.57E+00	1.71E-07	1.76E+06	3.74E+02	1.00E+00	3.59E+00	1.07E+00	9.90E-01		
1.79E-08	3.20E-02	3.18E+00	3.77E+02	2.85E+01	1.03E+00		5.45E+00	1.63E+00	1.65E-07	1.83E+06	3.81E+02	1.00E+00	3.66E+00	1.07E+00	9.90E-01		
1.62E-08	3.26E-02	3.24E+00	3.84E+02	2.90E+01	1.03E+00		5.57E+00	1.70E+00	1.58E-07	1.90E+06	3.88E+02	1.00E+00	3.73E+00	1.07E+00	9.90E-01		
1.46E-08	3.32E-02	3.30E+00	3.92E+02	2.96E+01	1.03E+00		5.69E+00	1.77E+00	1.52E-07	1.97E+06	3.95E+02	1.00E+00	3.81E+00	1.07E+00	9.90E-01		
1.32E-08	3.38E-02	3.36E+00	3.99E+02	3.01E+01	1.03E+00		5.80E+00	1.84E+00	1.46E-07	2.04E+06	4.03E+02	1.00E+00	3.88E+00	1.07E+00	9.90E-01		
1.19E-08	3.44E-02	3.42E+00	4.06E+02	3.07E+01	1.03E+00		5.93E+00	1.91E+00	1.40E-07	2.12E+06	4.10E+02	1.00E+00	3.96E+00	1.07E+00	9.90E-01		
1.07E-08	3.51E-02	3.49E+00	4.14E+02	3.12E+01	1.03E+00		6.05E+00	1.99E+00	1.34E-07	2.20E+06	4.18E+02	1.00E+00	4.04E+00	1.07E+00	9.90E-01		
9.63E-09	3.57E-02	3.55E+00	4.22E+02	3.18E+01	1.04E+00		6.18E+00	2.07E+00	1.28E-07	2.28E+06	4.26E+02	1.00E+00	4.12E+00	1.07E+00	9.90E-01		
8.64E-09	3.64E-02	3.62E+00	4.29E+02	3.24E+01	1.04E+00		6.31E+00	2.16E+00	1.22E-07	2.37E+06	4.34E+02	1.00E+00	4.20E+00	1.07E+00	9.90E-01		
7.73E-09	3.71E-02	3.69E+00	4.37E+02	3.30E+01	1.04E+00		6.44E+00	2.24E+00	1.16E-07	2.46E+06	4.42E+02	1.00E+00	4.29E+00	1.07E+00	9.90E-01		
6.91E-09	3.78E-02	3.76E+00	4.46E+02	3.37E+01	1.04E+00		6.58E+00	2.33E+00	1.10E-07	2.55E+06	4.50E+02	1.00E+00	4.37E+00	1.07E+00	9.90E-01	0) 100
6.17E-09	3.85E-02	3.83E+00	4.54E+02	3.43E+01	1.04E+00		6.71E+00	2.43E+00	1.04E-07	2.65E+06	4.59E+02	1.00E+00	4.46E+00	1.07E+00	9.90E-01		
5.50E-09	3.92E-02	3.90E+00	4.63E+02	3.49E+01	1.04E+00		6.85E+00	2.53E+00	9.89E-08	2.75E+06	4.67E+02	1.00E+00	4.55E+00	1.07E+00	9.90E-01		
4.89E-09	4.00E-02	3.98E+00	4.72E+02	3.56E+01	1.04E+00		7.00E+00	2.63E+00	9.35E-08	2.85E+06	4.76E+02	1.00E+00	4.64E+00	1.07E+00	9.90E-01		
4.34E-09	4.07E-02	4.05E+00	4.80E+02	3.63E+01	1.04E+00		7.16E+00	2.73E+00	8.85E-08	2.96E+06	4.85E+02	1.00E+00	4.73E+00	1.07E+00	9.90E-01		
3.85E-09	4.15E-02	4.13E+00	4.90E+02	3.70E+01	1.04E+00		7.33E+00	2.85E+00	8.36E-08	3.07E+06	4.95E+02	1.00E+00	4.83E+00	1.07E+00	9.90E-01		
3.41E-09	4.23E-02	4.21E+00	4.99E+02	3.77E+01	1.04E+00		7.51E+00	2.96E+00	7.89E-08	3.19E+06	5.04E+02	1.00E+00	4.93E+00	1.07E+00	9.90E-01		
3.01E-09	4.31E-02	4.29E+00	5.08E+02	3.84E+01	1.04E+00		7.68E+00	3.08E+00	7.42E-08	3.32E+06	5.14E+02	1.00E+00	5.02E+00	1.07E+00	9.90E-01		
2.65E-09	4.39E-02	4.37E+00	5.18E+02	3.91E+01	1.04E+00		7.87E+00	3.20E+00	6.98E-08	3.44E+06	5.23E+02	1.00E+00	5.12E+00	1.07E+00	9.90E-01		
2.33E-09	4.48E-02	4.45E+00	5.28E+02	3.99E+01	1.04E+00		8.05E+00	3.33E+00	6.54E-08	3.58E+06	5.34E+02	1.00E+00	5.23E+00	1.07E+00	9.90E-01		
2.05E-09	4.56E-02	4.54E+00	5.38E+02	4.07E+01	1.05E+00		8.24E+00	3.47E+00	6.12E-08	3.72E+06	5.44E+02	1.00E+00	5.33E+00	1.07E+00	9.90E-01		
1.80E-09	4.65E-02	4.63E+00	5.49E+02	4.14E+01	1.05E+00		8.44E+00	3.61E+00	5.72E-08	3.86E+06	5.54E+02	1.00E+00	5.44E+00	1.07E+00	9.90E-01		
1.57E-09	4.74E-02	4.71E+00	5.59E+02	4.22E+01	1.05E+00		8.64E+00	3.75E+00	5.33E-08	4.01E+06	5.65E+02	1.00E+00	5.55E+00	1.07E+00	9.90E-01		
1.37E-09	4.83E-02	4.81E+00	5.70E+02	4.30E+01	1.05E+00		8.84E+00	3.91E+00	4.96E-08	4.17E+06	5.76E+02	1.00E+00	5.66E+00	1.07E+00	9.90E-01		
						∑FAM-source)=		3.23E-05	i							
								FAM=	8.69E-01								

Area of Volume source (m2)	1st Sub- source	F _{CD} for 1st Sub- source	2nd Sub-source	F _{CD} for 2nd Sub- source	3rd Sub-source	F _{CD} for 3rd Sub-source	4th Sub-source	F _{CD} for 4th Sub- source	5th Sub- source	F _{CD} for 5th Sub-source
100,000	9.85E-01		9.72E-01		9.57E-01		9.40E-01		9.22E-01	
1,000	9.69E-01		9.69E-01		9.57E-01		9.40E-01		9.22E-01	
100	7.48E-01	1 155 01	8.23E-01	2.075.01	8.64E-01	2 965 01	8.82E-01	2 5/15 01	8.86E-01	A 14E 01
36	5.67E-01	1.152-01	6.45E-01	2.072-01	7.03E-01	2.002-01	7.43E-01	5.546-01	7.69E-01	4.140-01
10	3.35E-01		3.90E-01		4.35E-01		4.73E-01		5.05E-01	
4	1.94E-01		2.27E-01		2.56E-01		2.82E-01		3.03E-01	
Area of Volume source (m2)	6th Sub- source	F _{CD} for 6th Sub- source	7th Sub-source	F _{CD} for 7th Sub- source	8th Sub-source	F _{CD} for 8th Sub-source	9th Sub-source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	9.03E-01		8.83E-01		8.61E-01		8.40E-01		8.17E-01	
1,000	9.03E-01		8.83E-01		8.61E-01		8.40E-01		8.17E-01	
100	8.81E-01	4.655.01	8.69E-01	5 10E-01	8.53E-01	5 40E-01	8.35E-01	5 925-01	8.14E-01	6 125 01
36	7.85E-01	4.032-01	7.92E-01	3.102-01	7.91E-01	5.492-01	7.86E-01	J.03E-01	7.76E-01	0.122-01
10	5.32E-01		5.52E-01		5.68E-01		5.79E-01		5.85E-01	
4	3.22E-01		3.40E-01		3.54E-01		3.67E-01		3.76E-01	

Table 2.164 Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources with 1-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM}	Estimated Dose (mrem/yr)
				100,000	9.30E-01	2.01E+00
			6 135 01	1,000	9.27E-01	2.01E+00
5 165 00	9 56E 01	6 955 01		100	8.37E-01	1.81E+00
3.100+00	8.30E-01	6.85E-01	0.122-01	36	7.07E-01	1.53E+00
				10	4.61E-01	9.98E-01
				4	2.77E-01	6.01E-01

Table 2.165 Estimation External Radiation Dose at the Receptor Location (0, 10, 1)(m) from Mn-54 in Six 10-cm-Thick Volume Sources with 1-cm Concrete Cover

Table 2.166 Calculation of *F*_{CD} for Mn-54 in a 10-cm-Thick Volume Source with 2-cm Concrete Cover

Fitting parameters Ai, B	i, Kai (cm2/g), Kbi(cm2/g)		0.085	0.915	1.22	0.088			
Source material =	concrete	thickness, cm =	10	Cover material =	concrete	Cover thickness, cm =	2	density, g/cm3	1.6
Reference material =	soil								
Fc	$D = \frac{D(T_c = t_c, T_s = t_s)}{D(T_c = t_c, T_s = t_s)} =$	$Ae^{-K_A \rho_c t_c}(1 \cdot$	$-e^{-K_A \rho_S t_S}$) + $Be^{-K_B\rho_c t_c}$	$(1 - e^{-K})$	Bρsts)			
	$D(T_c=0,T_S=\infty)$	(-		,	(
FCD =	0.523								

Table 2.167 Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources with 2-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)

Area of Volume	1 at Sub course	F _{CD} for 1st Sub-	2nd Sub-	F _{CD} for 2nd Sub-	3rd Sub-	E for 2rd Sub course	4th Sub-	F _{CD} for 4th Sub-	5th Sub-	F _{CD} for 5th
source (m2)	Ist Sub-source	source	source	source	source	P _{CD} for srd sub-source	source	source	source	Sub-source
100,000	9.83E-01		9.69E-01		9.53E-01		9.36E-01		9.17E-01	
1,000	9.80E-01		9.69E-01		9.53E-01		9.36E-01		9.17E-01	
100	8.32E-01	0.325.02	8.75E-01	1 715 01	8.94E-01	2 405 01	9.00E-01	2.005.01	8.95E-01	2 515 01
36	6.53E-01	9.220-02	7.13E-01	1.712-01	7.54E-01	2.402-01	7.81E-01	2.992-01	7.98E-01	5.512-01
10	3.95E-01		4.42E-01		4.81E-01		5.15E-01		5.42E-01	
4	2.31E-01		2.61E-01		2.87E-01		3.10E-01		3.29E-01	
Area of Volume source (m2)	6th Sub-source	F _{CD} for 6th Sub- source	7th Sub- source	F _{CD} for 7th Sub- source	8th Sub- source	F _{CD} for 8th Sub-source	9th Sub- source	F _{CD} for 9th Sub- source	10th Sub- source	F _{CD} for 10th Sub-source
100,000	8.98E-01		8.77E-01		8.55E-01		8.33E-01		8.11E-01	
1,000	8.98E-01		8.77E-01		8.55E-01		8.33E-01		8.11E-01	
100	8.84E-01	2 065 01	8.68E-01	4 24E 01	8.50E-01	4 695 01	8.30E-01	4 09E 01	8.09E-01	5 225 01
36	8.05E-01	3.902-01	8.06E-01	4.546-01	8.01E-01	4.082-01	7.91E-01	4.962-01	7.78E-01	J.23E-01
10	5.63E-01		5.79E-01		5.91E-01		5.98E-01		6.02E-01	
4	3.47E-01		3.63E-01		3.76E-01		3.86E-01		3.93E-01	

Table 2.168 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources with 2-cm Concrete Cover

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM}	Estimated Dose (mrem/yr)
				100,000	9.25E-01	1.71E+00
		6.85E-01	5.23E-01	1,000	9.24E-01	1.71E+00
5 165 00				100	8.68E-01	1.60E+00
3.102+00	0.302-01			36	7.52E-01	1.39E+00
				10	5.04E-01	9.32E-01
				4	3.07E-01	5.68E-01

Table 2.169 Calculation of *F*_{CD} for Mn-54 in a 10-cm-Thick Volume Source with 5-cm Concrete Cover

Fitting parameters Ai, E	3i, Kai (cm2/g), Kb	i(cm2/g)	0.085	0.915	1.22	0.088			
Source material =	concrete	thickness, cm =	10	Cover material =	concrete	Cover thickness, cm =	5	density, g/cm3	1.6
Reference material =	soil								
Fe	$c_D = \frac{D(T_c = t_c)}{D(T_c = 0.7)}$	$\frac{F_S=t_S)}{F_S=\infty)} = Ae^{-K_A}$	$\rho_{c}t_{c}(1-e)$	$-K_A \rho_S t_S) + B e^{-K_B \rho}$	$c^{t_c}(1-e^{-k})$	(BPSts),			
FCD =	0.342								

Area of Volume F_{CD} for 1st Sub-2nd Sub-3rd Sub-4th Sub-F_{CD} for 4th Sub-5th Sub-F_{CD} for 5th 1st Sub-source F_{CD} for 2nd Sub-source F_{CD} for 3rd Sub-source source (m2) source source source source Sub-source source source 100,000 9.25E-01 9.79E-01 9.62E-01 9.44E-01 9.05E-01 1,000 9.79E-01 9.62E-01 9.44E-01 9.25E-01 9.05E-01 100 9.41E-01 9.39E-01 9.30E-01 9.16E-01 8.99E-01 5.94E-02 1.11E-01 1.56E-01 1.95E-01 2.29E-01 36 8.19E-01 8.39E-01 8.49E-01 8.52E-01 8.48E-01 10 5.43E-01 5.73E-01 5.97E-01 6.16E-01 6.30E-01 3.88E-01 4 3.29E-01 3.51E-01 3.71E-01 4.03E-01 F_{CD} for 6th Sub-Area of Volume 7th Sub-8th Sub-9th Sub-F_{CD} for 9th Sub-10th Sub-F_{CD} for 10th F_{CD} for 8th Sub-source 6th Sub-source F_{CD} for 7th Sub-source source (m2) source source source source Sub-source source source 100,000 8.84E-01 8.62E-01 8.39E-01 8.16E-01 7.93E-01 1,000 8.84E-01 8.62E-01 8.39E-01 8.16E-01 7.93E-01 100 8.80E-01 8.60E-01 8.38E-01 8.15E-01 7.92E-01 3.42E-01 2.58E-01 2.84E-01 3.06E-01 3.25E-01 36 8.40E-01 8.29E-01 8.14E-01 7.97E-01 7.78E-01 10 6.39E-01 6.45E-01 6.46E-01 6.45E-01 6.40E-01 4 4.23E-01 4.30E-01 4.34E-01 4.36E-01 4.15E-01

Table 2.170 Summary of F_{AM} 's for Mn-54 in Six 10-cm-Thick Volume Sources with 5-cm Concrete Cover at the Receptor Location (0, 0, 1) (m)

DCF-inf (mrem/yr per pCi/g)	Half-life, yr	Average Decay Factor in 1st year	F _{CD}	Area of Volume source (m2)	F _{AM} (weighted - average)	Estimated Dose (mrem/yr)
				100,000	9.14E-01	1.10E+00
				1,000	9.14E-01	1.10E+00
5 165 00	8.56E-01	6.85E-01	3.42E-01	100	9.00E-01	1.09E+00
5.102+00				36	8.31E-01	1.00E+00
				10	6.05E-01	7.30E-01
				4	3.84E-01	4.64E-01

Table 2.171 Estimation of External Radiation Dose at the Receptor Location (0, 0, 1) (m) from Mn-54 in Six 10-cm-Thick Volume Sources with 5-cm Concrete Cover

Table 2.172 Comparison of Radiation Doses (mrem/yr) at (0, 0, 1) (m) Estimated by RESRAD-BUILD and Spreadsheets from Mn-54 in 10-cm-Thick Volume Sources with Different Concrete Covers

	1	cm - Thick Conc	rete Cover	5 cr	n - Thick Concre	te Cover	Ę	5 cm - Thick Concrete Cover	
Area of Volume source (m2)	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets	Dose Results from RESRAD- BUILD	Dose Results from Spreadsheets	Ratio - RESRAD- BUILD/ Spreadsheets
100,000	2.16E+00	2.01E+00	1.07	1.85E+00	1.71E+00	1.08	1.21E+00	1.10E+00	1.10
1,000	2.14E+00	2.01E+00	1.07	1.85E+00	1.71E+00	1.08	1.21E+00	1.10E+00	1.10
100	1.89E+00	1.81E+00	1.04	1.71E+00	1.60E+00	1.07	1.19E+00	1.09E+00	1.09
36	1.57E+00	1.53E+00	1.03	1.46E+00	1.39E+00	1.05	1.09E+00	1.00E+00	1.09
10	9.96E-01	9.98E-01	1.00	9.50E-01	9.32E-01	1.02	7.72E-01	7.30E-01	1.06
4	5.94E-01	6.01E-01	0.99	5.73E-01	5.68E-01	1.01	4.85E-01	4.64E-01	1.05

2.5 EXTERNAL RADIATION OF FLOOR DEPOSITION

In RESRAD-BUILD, a floor with deposited radionuclides is treated as an area source; therefore, the modeling of external radiation dose for area sources is applied to estimate the external radiation dose from deposited radionuclides. In the modeling, the receptor is assumed to stay at 1 m above the center of the floor and there is no shielding between the floor and the receptor.

To verify the RESRAD-BUILD modeling results for floor deposition, the previous radiation dose estimates from verification spreadsheets for area sources (presented in Section 2.3.1.1) were utilized. These dose estimates concerned a receptor located at (0, 0, 1) (m) and four area sources of 10 m², 36 m², 100 m², and 1,000 m², each containing C-14, Mn-54, and Tc-99 with an initial concentration of 1 pCi/m². These dose estimates were normalized by the average decay factor in the 1st year to get the dose estimates for an average concentration of 1 pCi/m². Table 2.173 lists the normalized dose estimates. To obtain dose estimates for floor deposition, these normalized dose estimates need to be multiplied by the deposition concentrations of radionuclides. A RESRAD-BUILD analysis was conducted to provide the deposition concentrations needed. After dose estimates for the floor deposition were obtained, they were used to verify the dose results from the RESRAD-BUILD analysis.

In the RESRAD-BUILD analysis, a building containing four rooms of different floor areas (Room $1 - 10 \text{ m}^2$, Room $2 - 36 \text{ m}^2$, Room $3 - 100 \text{ m}^2$, and Room $4 - 1,000 \text{ m}^2$) was assumed contaminated. There were four radiation sources in the building, one in each room contaminated with different radionuclides (Source 1 with C-14, Source 2 with Mn-54, Source 3 with Mn-54, and Source 4 with Tc-99). Source 1 was a volume source located at (0, 0, 0) (m) with z-direction; it had an area of 10 m², a thickness of 15 cm, and a density of 2.4 g/cm³. Source 1 had an erosion rate of 2.4E-8 cm/d, and 10% of the eroded materials were assumed to get into the indoor air. Source 1 was in Room 1. Source 2 was an area source with z-direction and located at (6, 6, 0) (m). It had an area of 10 m² and a removable fraction of 0.5; 10% of the source removed would be released into the indoor air. Source 2 was in Room 2. Source 3 was a line source with x-direction and was located at (10, 10, 0) (m). It had a length of 10 m and a removable fraction of 0.5; 10% of the source removed would be released into the indoor air. Source 3 was in Room 3. Source 4 was a point source located at (25, 40, 0) (m). It also had a removable fraction of 0.5, and 10% of the source removed would be released into the indoor air. Source 4 was in Room 4. There were four receptors considered in the analysis, Receptor 1 in Room 1 at (0, 0, 1) m, Receptor 2 in Room 2 at (6, 6, 1) (m), Receptor 3 in Room 3 at (10, 10, 1) (m), and Receptor 4 in Room 4 at (25, 40, 1) (m). Each receptor was located at the center of the room, 1 m above the floor. Table 2.174 lists the average floor concentrations of each radionuclide for the 1st year, projected by the RESRAD-BUILD code.

Table 2.175 compares the external radiation dose estimates for the floor deposition from the spreadsheets and the RESRAD-BUILD analysis. The differences are the same as those seen with the dose estimates for the area sources. This confirms that the external radiation dose modeling for floor deposition is accurately implemented in RESRAD-BUILD.

Table 2.173 Estimated External Radiation Doses to a Receptor at (0, 0, 1) (m) from Different Radionuclides in Four Area Sources without Cover

Area of Source (m ²)	C-14	Mn-54	Tc-99				
1,000	1.05E-09	5.09E-05	4.20E-09				
100	5.90E-10	3.09E-05	2.40E-09				
36	36 4.15E-10 2.23E-05 1.70E-09						
10 2.32E-10 1.28E-05 9.58E-1							
Note: The listed values are from Tables 2.43 and 2.67 for C-14 and Tc-99,							

respectively. The listed values for Mn-54 are those in Table 55 divided by 0.685, the average decay factor in 1st year.

Table 2.174 Average Floor Deposition Concentrations (pCi/m²)
for the 1st Year Projected by the RESRAD-BUILD Code

	Contribution from Each Source									
	Source 1 -	Source 2 -	Source 3 -	Source 4 -						
Room – Floor Area	C-14	Mn-54	Mn-54	Tc-99						
Room 4 - 1,000 m ²	3.47E-05	4.77E-05	4.77E-05	8.26E-06						
Room 3 - 100 m ²	2.27E-04	3.19E-04	3.19E-04	5.41E-05						
Room 2 - 36 m ²	3.61E-04	5.19E-04	5.19E-04	8.60E-05						
Room 1 - 10 m ²	1.87E-03	2.85E-03	2.85E-03	4.45E-04						

Table 2.175 Comparison of Estimated External Radiation Doses (mrem/yr) for
Floor Depositions by RESRAD-BUILD and Spreadsheets

		Source 1 - C-1	L4	So	Source 2 - Mn-54			
			Ratio			Ratio		
			RESRAD-			RESRAD-		
	RESRAD-		BUILD/Spread-	RESRAD-	Spread-	BUILD/Spread-		
Room – Floor Area	BUILD	Spread-sheet	sheet	BUILD	sheet	sheet		
Room 4 – 1,000 m ²	3.63E-14	3.64E-14	1.00	2.41E-09	2.43E-09	0.99		
Room 3 – 100 m ²	1.33E-13	1.34E-13	0.99	9.80E-09	9.87E-09	0.99		
Room 2 – 36 m ²	1.485E-13	1.50E-13	0.99	1.15E-08	1.16E-08	0.99		
Room 1 – 10 m ²	4.28E-13	4.34E-13	0.99	3.60E-08	3.65E-08	0.99		
		Source 3 – Mn-	-54	S	ource 4 – Tc-	99		
		Source 3 – Mn	-54 Ratio	S	ource 4 – Tc-	99 Ratio		
 		Source 3 - Mn	54 Ratio RESRAD-	S	ource 4 – Tc-	99 Ratio RESRAD-		
	RESRAD-	Source 3 – Mn-	54 Ratio RESRAD- BUILD/Spread-	S RESRAD-	ource 4 – Tc- Spread-	99 Ratio RESRAD- BUILD/Spread-		
Room – Floor Area	RESRAD- BUILD	Source 3 - Mn- Spread-sheet	54 Ratio RESRAD- BUILD/Spread- sheet	S RESRAD- BUILD	ource 4 – Tc- Spread- sheet	99 Ratio RESRAD- BUILD/Spread- sheet		
Room – Floor Area Room 4 – 1,000 m2	RESRAD- BUILD 2.41E-09	Source 3 - Mn- Spread-sheet 2.43E-09	54 Ratio RESRAD- BUILD/Spread- sheet 0.99	RESRAD- BUILD 3.46E-14	ource 4 – Tc- Spread- sheet 3.47E-14	99 Ratio RESRAD- BUILD/Spread- sheet 1.00		
Room – Floor Area Room 4 – 1,000 m2 Room 3 – 100 m2	RESRAD- BUILD 2.41E-09 9.80E-09	Source 3 - Mn- Spread-sheet 2.43E-09 9.87E-09	54 Ratio RESRAD- BUILD/Spread- sheet 0.99 0.99	S RESRAD- BUILD 3.46E-14 1.3E-13	ource 4 - Tc- Spread- sheet 3.47E-14 1.30E-13	99 Ratio RESRAD- BUILD/Spread- sheet 1.00 1.00		
Room – Floor Area Room 4 – 1,000 m2 Room 3 – 100 m2 Room 2 – 36 m2	RESRAD- BUILD 2.41E-09 9.80E-09 1.15E-08	Source 3 - Mn- Spread-sheet 2.43E-09 9.87E-09 1.16E-08	54 Ratio RESRAD- BUILD/Spread- sheet 0.99 0.99 0.99	S RESRAD- BUILD 3.46E-14 1.3E-13 1.48E-13	ource 4 - Tc- Spread- sheet 3.47E-14 1.30E-13 1.46E-13	99 Ratio RESRAD- BUILD/Spread- sheet 1.00 1.00 1.01		

3 VERIFICATION OF THE VENTILATION MODELING

To verify the ventilation modeling results of the RESRAD-BUILD code, seven cases involving a building with nine rooms, different types of radiation sources in different rooms, different air exchange rates between the rooms and with the outside environment, as well as different vacuuming schedules and vacuuming efficiencies were developed. Both the RESRAD-BUILD code and the verification spreadsheets were applied to calculate release rates of radionuclides to the indoor air; concentrations of radionuclides remaining in the source, in the air, and on the floor of each room over time; the average radionuclide concentrations and integrated ingestion over the exposure duration; and the potential radiation doses and risks to four receptors in different rooms of the building.

Each source considered in the verification cases was assumed to initially contain Co-60, Cs-137, and Ra-226 with a concentration of 1 pCi/g in a volume source or 1 pCi/m² in an area source. A cut-off half-life of 30 days was used to assemble the radiological decay chains. ICRP 72 adult internal dose coefficients and ICRP 60 external dose coefficients were used to calculate radiation doses, while FGR 13 morbidity slope factors were used to calculate cancer risks.

Appendix B of the RESRAD-BUILD User's Manual, Volume I (Yu et al. 2022) describes the modeling of the fate of radionuclides implemented in Version 4.0. Equations B.10 and B.11 are solved to track the changes in the concentrations of source particles in the air and on the floor of each room in the building as time progresses. After the concentration of source particles in the air and on the floor are determined, they are multiplied by the initial concentration of a parent nuclide in the source and an ingrowth and decay factor relating the concentration of a progeny in the decay chain to the initial concentration of parent nuclide in the source to obtain the concentration of that progeny in the air and on the floor over time. In the verification spreadsheets, a numerical analysis method was implemented to solve Equations B.10 and B.11. The ingrowth and decay factors obtained from an execution of RESRAD-OFFSITE were imported to the spreadsheets to calculate radionuclide concentrations in the air and on the floor.

The numerical analysis method implemented in the spreadsheets involved calculating the concentration of source particles in the air and on the floor at numerous time steps that began at 0 and increased steadily. To obtain more precise estimates of concentrations, a small increment between successive time steps (2 hours) was selected to build the concentration profiles up to 1.5 years. The exposure duration and indoor time fraction for each receptor were set to 91.25 days (25% of a year) and 0.5, respectively.

The following sections discuss in more detail the calculations performed and the comparison of the calculation results from RESRAD-BUILD and spreadsheets for each case.

3.1 CASE I – A VOLUME SOURCE IN ROOM 1 WITH NO SCHEDULED VACUUMING

Case I considers a cylindrical volume source, with a circular area of 36 m^2 and a length of 15 cm, located in Room 1. No vacuuming to remove dust deposition on the floor was assumed.

Potential radiation dose and cancer risk to four receptors, located in Rooms 1, 3, 6, and 9, respectively, via the inhalation of airborne particulates, ingestion of source particles, and external radiation emitted by airborne particulates were evaluated.

Table 3.1 shows the room dimensions, ventilation rates between rooms and the outside environment, deposition velocity, and resuspension rate assumed for the case. Vacuuming to reduce floor deposition periodically was not considered in the analysis. Table 3.2 lists the properties assumed for the radiation source as well as its releases over time.

3.1.1 Calculation and Comparison of Release Rates and Source Concentrations

Table 3.3 shows the air release rate calculated by RESRAD-BUILD, obtained from the intermediate output file "AirRelRate1.out," and part of the estimated air release rates in the spreadsheet. The air release rate calculated by RESRAD-BUILD in terms of the fraction of the initial source per second was converted to mass of source materials per hour. The converted air release rate matches those estimated in the spreadsheet.

Table 3.4 lists part of the ingrowth and decay factors obtained with an execution of RESRAD-OFFSITE, which were used with the remaining mass of source materials to estimate the remaining radioactivity in the source and the integrated radioactivity directly ingested over the exposure duration by a receptor located in the same room as the source. Table 3.5 shows part of calculations in the spreadsheet.

Table 3.6 compares the average radioactivity remaining in the source over the exposure duration from RESRAD-BUILD and spreadsheets. Table 3.7 compares the integrated radioactivity directly ingested over the exposure duration, based on full occupancy. The results from RESRAD-BUILD were listed in the intermediate output file "AirRelTimeIntegratedConcSource1.out." The comparisons show the RESRAD-BUILD results agree with the spreadsheet results.

3.1.2 Calculation and Comparison of Air and Floor Concentrations

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol. 1 (Yu et al. 2022) describe the change in the fraction of source materials suspended in the air and deposited on the floor, respectively, in each room of the building as a function of time. They were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.8 presents part of the calculations and results at different time steps in the spreadsheets.

Deposition Velocity		0.00039	(m/s) =	1.404	(m/hr)					
	-									
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9
Area (m2)		36	36	36	36	36	36	36	36	36
Volume (m3)		90	90	90	90	90	90	90	90	90
Resuspension rate		5.00E-07								
(1/5)										
Resuspension rate		1.80E-03								
(1/h)										
-		1	7	7	1	1	1	1	7	,
Air flow (m3/hr)										
from										
Outdoors	0	72	72	72	72	72	72	72	72	72
Room 1	72	0	72	72	72	72	72	72	72	72
Room 2	72	72	0	72	72	72	72	72	72	72
Room 3	72	72	72	0	72	72	72	72	72	72
Room 4	72	72	72	72	0	72	72	72	72	72
Room 5	72	72	72	72	72	0	72	72	72	72
Room 6	72	72	72	72	72	72	0	72	72	72
Room 7	72	72	72	72	72	72	72	0	72	72
Room 8	72	72	72	72	72	72	72	72	0	72
Room 9	72	72	72	72	72	72	72	72	72	0
Vacuum frequency (once in)		366	day(s) =	8784	hr(s)					
Vacuum efficiency		0								

Table 3.1 Air Flows, Vacuuming, and Resuspension and Deposition of Particulates Assumed for Case I

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Location (Room No.)	1	Air Fraction	0.1	Area of source		36	m2
	Region 1	Region 2	Region 3	Region 4	Region 5		
Contamination?							
1-Yes, 2-No	1	2	2	2	2		
thickness (cm)	15	0	0	0	0		
density (g/cm3)	2.4	2.4	2.4	2.4	2.4		
erosion rate (cm/d)	2.40E-03	2.40E-08	2.40E-08	2.40E-08	2.40E-08		
Start time (d)	0.00E+00	6.25E+03	6.25E+03	6.25E+03	6.25E+03		
Start time (hr)	0	150000	150000	150000	150000		
End time (d)	6.25E+03	6.25E+03	6.25E+03	6.25E+03	6.25E+03		
End time (hr)	1.50E+05	1.50E+05	1.50E+05	1.50E+05	1.50E+05		
Release rate (g/hr)	86.4	0	0	0	0		

Table 3.2 Source Releases Assumed for Case I

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Table 3.3 Comparison of Calculated Air Release Rate from RESRAD-BUILD and Spreadsheets for Case I

From "AirRelRate1.out"							
Rate of relea	se of source m	aterial to a	ir				
fraction of so	ource per secor	nd per volu	me (m3) of	f the room	of release		
2.06E-12	from	time	0.00E+00	to	time	5.4E+08	seconds
8.64E+00	(g/hr) from	time	0.00E+00	to	time	150000	hrs
Initial source	e mass	1.30E+07	g				
Volume of so	ource room	90	m3				
	Estimated Air						
	release rate						
time (hr)	(g/hr)						
0	0						
2	8.64						
4	8.64						
6	8.64						
8	8.64						
10	8.64						
12	8.64						
14	8.64						
16	8.64						
18	8.64						
20 8.64							

Year	Hour	Co-60	Cs-137	Ra-226	Pb-210	Po-210
0	0.00	1	1	1	0	0
0.000228	2.00	0.99997	0.999995	1	7.1E-06	1.48E-09
0.000457	4.00	0.99994	0.99999	1	1.42E-05	5.93E-09
0.000685	6.00	0.99991	0.999984	1	2.13E-05	1.33E-08
0.000913	8.00	0.99988	0.999979	1	2.84E-05	2.37E-08
0.001141	10.00	0.99985	0.999974	0.999999	3.55E-05	3.7E-08
0.00137	12.00	0.99982	0.999969	0.999999	4.26E-05	5.33E-08
0.001598	14.00	0.99979	0.999963	0.999999	4.97E-05	7.25E-08
0.001826	16.00	0.99976	0.999958	0.999999	5.68E-05	9.47E-08
0.002055	18.00	0.99973	0.999953	0.999999	6.39E-05	1.2E-07
0.002283	20.00	0.9997	0.999948	0.999999	7.1E-05	1.48E-07
0.002511	22.00	0.99967	0.999942	0.999999	7.8E-05	1.79E-07
0.002739	24.00	0.99964	0.999937	0.999999	8.51E-05	2.13E-07
0.002968	26.00	0.99961	0.999932	0.999999	9.22E-05	2.5E-07
0.003196	28.00	0.99958	0.999927	0.999998	9.93E-05	2.9E-07
0.003424	30.00	0.99955	0.999921	0.999998	0.000106	3.33E-07
0.003653	32.00	0.99952	0.999916	0.999998	0.000114	3.78E-07
0.003881	34.00	0.99949	0.999911	0.999998	0.000121	4.27E-07
0.004109	36.00	0.99946	0.999906	0.999998	0.000128	4.79E-07
0.004337	38.00	0.99943	0.9999	0.999998	0.000135	5.33E-07
0.004566	40.00	0.9994	0.999895	0.999998	0.000142	5.91E-07

Table 3.4 Radiological Ingrowth and Decay Factors Obtained fromRESRAD-OFFSITE

Initial ma	ss of contaminat	ion	1.30E+07	g	Direct ingestion	n rate	0.01	g/hr (reflect input value in the input file)				
					Occupancy fact	or (summing a	ll occupants in t	he source roo	om)	0.5		
	Remaining		Based	on an initial co	onc. of 1 pCi/g fo	or the parent n	uclide	Direct	ingestion rate	te of nuclide, base on full occupancy		
	mass of	Remaining	Remaining	Remaining	Remaining	Remaining	Remaining					
	contamination	fraction of	activity of	activity of	activity of	activity of	activity of	Co-60	Cs-137	Ra-226	Pb-210	Po-210
Time (hr)	(g)	contamination	Co-60 (pCi)	Cs-137 (pCi)	Ra-226 (pCi)	Pb-210 (pCi)	Po-210 (pCi)	(pCi/hr)	(pCi/hr)	(pCi/hr)	(pCi/hr)	(pCi/hr)
0	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
2	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	9.20E+01	1.92E-02	1.00E-02	1.00E-02	1.00E-02	7.10E-08	1.48E-11
4	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.84E+02	7.68E-02	1.00E-02	1.00E-02	1.00E-02	1.42E-07	5.93E-11
6	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	2.76E+02	1.73E-01	1.00E-02	1.00E-02	1.00E-02	2.13E-07	1.33E-10
8	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	3.68E+02	3.07E-01	1.00E-02	1.00E-02	1.00E-02	2.84E-07	2.37E-10
10	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	4.60E+02	4.80E-01	1.00E-02	1.00E-02	1.00E-02	3.55E-07	3.70E-10
12	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	5.52E+02	6.91E-01	1.00E-02	1.00E-02	1.00E-02	4.26E-07	5.33E-10
14	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	6.44E+02	9.40E-01	1.00E-02	1.00E-02	1.00E-02	4.97E-07	7.25E-10
16	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	7.36E+02	1.23E+00	1.00E-02	1.00E-02	1.00E-02	5.68E-07	9.47E-10
18	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	8.28E+02	1.55E+00	1.00E-02	1.00E-02	1.00E-02	6.39E-07	1.20E-09
20	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	9.19E+02	1.92E+00	1.00E-02	1.00E-02	1.00E-02	7.10E-07	1.48E-09
22	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.01E+03	2.32E+00	1.00E-02	1.00E-02	1.00E-02	7.80E-07	1.79E-09
24	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.10E+03	2.76E+00	1.00E-02	1.00E-02	1.00E-02	8.51E-07	2.13E-09
26	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.20E+03	3.24E+00	1.00E-02	1.00E-02	1.00E-02	9.22E-07	2.50E-09
28	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.29E+03	3.76E+00	1.00E-02	1.00E-02	1.00E-02	9.93E-07	2.90E-09
30	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.38E+03	4.31E+00	1.00E-02	1.00E-02	1.00E-02	1.06E-06	3.33E-09
32	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.47E+03	4.90E+00	1.00E-02	1.00E-02	1.00E-02	1.14E-06	3.78E-09
34	1.30E+07	1.00E+00	1.30E+07	1.30E+07	1.30E+07	1.56E+03	5.54E+00	9.99E-03	1.00E-02	1.00E-02	1.21E-06	4.27E-09
36	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	1.65E+03	6.20E+00	9.99E-03	1.00E-02	1.00E-02	1.28E-06	4.79E-09
38	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	1.75E+03	6.91E+00	9.99E-03	1.00E-02	1.00E-02	1.35E-06	5.33E-09
40	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	1.84E+03	7.66E+00	9.99E-03	1.00E-02	1.00E-02	1.42E-06	5.91E-09
42	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	1.93E+03	8.44E+00	9.99E-03	1.00E-02	1.00E-02	1.49E-06	6.52E-09
44	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.02E+03	9.26E+00	9.99E-03	1.00E-02	1.00E-02	1.56E-06	7.15E-09
46	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.11E+03	1.01E+01	9.99E-03	1.00E-02	1.00E-02	1.63E-06	7.81E-09
48	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.21E+03	1.10E+01	9.99E-03	1.00E-02	1.00E-02	1.70E-06	8.51E-09
50	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.30E+03	1.20E+01	9.99E-03	1.00E-02	1.00E-02	1.77E-06	9.23E-09
52	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.39E+03	1.29E+01	9.99E-03	1.00E-02	1.00E-02	1.84E-06	9.98E-09
54	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.48E+03	1.39E+01	9.99E-03	1.00E-02	1.00E-02	1.92E-06	1.08E-08
56	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.57E+03	1.50E+01	9.99E-03	1.00E-02	1.00E-02	1.99E-06	1.16E-08
58	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.67E+03	1.61E+01	9.99E-03	1.00E-02	1.00E-02	2.06E-06	1.24E-08
60	1.30E+07	1.00E+00	1.29E+07	1.30E+07	1.30E+07	2.76E+03	1.72E+01	9.99E-03	1.00E-02	1.00E-02	2.13E-06	1.33E-08

Table 3.5 Calculation of Remaining Mass and Radioactivity in the Source and Direct Ingestion Rate of Radioactivity for Case I

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It reflected the input to the RESRAD-BUILD code.

					Time Averaged Activity (pCi)		Difference (%)
		Begin					RESRAD-Spreadsheet
iSrc	iTime	Time (yr)	Parent	Porgeny	RESRAD-BUILD	Spreadsheet	RESRAD
1	1	0	RA-226	RA-226	1.29E+07	1.29E+07	0.00
1	1	0	RA-226	PB-210	4.97E+04	4.97E+04	0.06
1	1	0	RA-226	PO-210	6.77E+03	6.79E+03	0.18
1	2	0.25	RA-226	RA-226	1.27E+07	1.27E+07	0.00
1	2	0.25	RA-226	PB-210	1.47E+05	1.47E+05	0.01
1	2	0.25	RA-226	PO-210	4.15E+04	4.15E+04	0.05
1	3	0.5	RA-226	RA-226	1.25E+07	1.25E+07	0.00
1	3	0.5	RA-226	PB-210	2.40E+05	2.40E+05	0.00
1	3	0.5	RA-226	PO-210	9.78E+04	9.78E+04	0.03
1	4	0.75	RA-226	RA-226	1.23E+07	1.23E+07	0.00
1	4	0.75	RA-226	PB-210	3.30E+05	3.30E+05	0.00
1	4	0.75	RA-226	PO-210	1.66E+05	1.66E+05	0.02
1	5	1	RA-226	RA-226	1.21E+07	1.21E+07	0.01
1	5	1	RA-226	PB-210	4.16E+05	4.16E+05	0.00
1	5	1	RA-226	PO-210	2.41E+05	2.41E+05	0.01
1	6	1.25	RA-226	RA-226	1.19E+07	1.19E+07	0.01
1	6	1.25	RA-226	PB-210	4.98E+05	4.98E+05	0.01
1	6	1.25	RA-226	PO-210	3.18E+05	3.18E+05	0.01
1	7	1.5	RA-226	RA-226	1.17E+07	1.17E+07	0.01
1	7	1.5	RA-226	PB-210	5.77E+05	5.77E+05	0.01
1	7	1.5	RA-226	PO-210	3.95E+05	3.95E+05	0.01
1	1	0	CS-137	CS-137	1.28E+07	1.28E+07	0.00
1	2	0.25	CS-137	CS-137	1.26E+07	1.26E+07	0.00
1	3	0.5	CS-137	CS-137	1.23E+07	1.23E+07	0.00
1	4	0.75	CS-137	CS-137	1.21E+07	1.21E+07	0.00
1	5	1	CS-137	CS-137	1.18E+07	1.18E+07	0.01
1	6	1.25	CS-137	CS-137	1.15E+07	1.15E+07	0.01
1	7	1.5	CS-137	CS-137	1.13E+07	1.13E+07	0.01
1	1	0	CO-60	CO-60	1.27E+07	1.27E+07	0.00
1	2	0.25	CO-60	CO-60	1.21E+07	1.21E+07	0.00
1	3	0.5	CO-60	CO-60	1.15E+07	1.15E+07	0.00
1	4	0.75	CO-60	CO-60	1.10E+07	1.10E+07	0.01
1	5	1	CO-60	CO-60	1.04E+07	1.04E+07	0.01
1	6	1.25	CO-60	CO-60	9.95E+06	9.95E+06	0.01
1	7	1.5	CO-60	CO-60	9.47E+06	9.47E+06	0.01

Table 3.6 Comparison of Time-Averaged Radioactivity Remaining in the Source over the Exposure Duration for Case I

Note: The difference (%) listed in the last column was calculated by dividing the difference between the RESRAD-BUILD result and the spreadsheet result with the RESRAD-BUILD result, and then multiplying the ratio by 100.

					Time-integrated Ingestion (p		Difference (%)
		Begin					RESRAD-Spreadsheet
iSrc	iTime	Time (yr)	Parent	Porgeny	RESRAD-BUILD	Spreadsheet	RESRAD
1	1	0	RA-226	RA-226	2.19E+01	2.19E+01	0.09
1	1	0	RA-226	PB-210	8.48E-02	8.49E-02	0.06
1	1	0	RA-226	PO-210	1.16E-02	1.16E-02	0.18
1	2	0.25	RA-226	RA-226	2.19E+01	2.19E+01	0.00
1	2	0.25	RA-226	PB-210	2.54E-01	2.54E-01	0.01
1	2	0.25	RA-226	PO-210	7.18E-02	7.19E-02	0.05
1	3	0.5	RA-226	RA-226	2.19E+01	2.19E+01	0.01
1	3	0.5	RA-226	PB-210	4.21E-01	4.21E-01	0.00
1	3	0.5	RA-226	PO-210	1.72E-01	1.72E-01	0.03
1	4	0.75	RA-226	RA-226	2.19E+01	2.19E+01	0.01
1	4	0.75	RA-226	PB-210	5.87E-01	5.87E-01	0.01
1	4	0.75	RA-226	PO-210	2.96E-01	2.96E-01	0.01
1	5	1	RA-226	RA-226	2.19E+01	2.19E+01	0.01
1	5	1	RA-226	PB-210	7.52E-01	7.52E-01	0.01
1	5	1	RA-226	PO-210	4.36E-01	4.36E-01	0.01
1	6	1.25	RA-226	RA-226	2.19E+01	2.19E+01	0.01
1	6	1.25	RA-226	PB-210	9.16E-01	9.16E-01	0.01
1	6	1.25	RA-226	PO-210	5.84E-01	5.84E-01	0.00
1	7	1.5	RA-226	RA-226	2.19E+01	2.19E+01	0.01
1	7	1.5	RA-226	PB-210	1.08E+00	1.08E+00	0.01
1	7	1.5	RA-226	PO-210	7.38E-01	7.38E-01	0.00
1	1	0	CS-137	CS-137	2.18E+01	2.18E+01	0.09
1	2	0.25	CS-137	CS-137	2.17E+01	2.17E+01	0.00
1	3	0.5	CS-137	CS-137	2.16E+01	2.16E+01	0.00
1	4	0.75	CS-137	CS-137	2.15E+01	2.15E+01	0.00
1	5	1	CS-137	CS-137	2.13E+01	2.13E+01	0.00
1	6	1.25	CS-137	CS-137	2.12E+01	2.12E+01	0.00
1	7	1.5	CS-137	CS-137	2.11E+01	2.11E+01	0.00
1	1	0	CO-60	CO-60	2.15E+01	2.15E+01	0.09
1	2	0.25	CO-60	CO-60	2.08E+01	2.08E+01	0.00
1	3	0.5	CO-60	CO-60	2.02E+01	2.02E+01	0.00
1	4	0.75	CO-60	CO-60	1.95E+01	1.95E+01	0.00
1	5	1	CO-60	CO-60	1.89E+01	1.89E+01	0.00
1	6	1.25	CO-60	CO-60	1.83E+01	1.83E+01	0.00
1	7	1.5	CO-60	CO-60	1.77E+01	1.77E+01	0.01

Table 3.7 Comparison of Time-Integrated Radioactivity Directly Ingested over the Exposure Duration for Case I

Note: The difference (%) listed in the last column was calculated by dividing the difference between the RESRAD-BUILD result and the spreadsheet result with the RESRAD-BUILD result, and then multiplying the ratio by 100.

	time interval	2	hr																	
			Roc	om 1	Roo	om 2	Roc	om 3	Roc	m 4	R	oom 5	Roo	m 6	Roc	om 7	Roc	om 8	Roc	om 9
	Source_Rm (1-Yes, 0-No)	1		0)	0		0		0		0		0		0		0	
		Vacuum																		
		Removal												Floor		Floor		Floor		Floor
	Air release	(1-Yes, 0-	Air conc.	Floor conc.	Air conc.	Floor conc.	Air conc.	Floor conc.	Air conc.	Floor conc.	Air conc.	Floor conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.
time (hr)	rate (g/hr)	No)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)
0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	8.64	0	0.01162	0.016256	C	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	8.64	0	0.0123247	0.0496955	0.0011252	0.0015741	0.0011252	0.0015741	0.0011252	0.0015741	0.001125	0.001574125	0.001125	0.001574	0.001125	0.001574	0.001125	0.001574	0.001125	0.001574
6	8.64	0	0.0132419	0.085284	0.0020244	0.0059746	0.0020244	0.0059746	0.0020244	0.0059746	0.002024	0.005974646	0.002024	0.005975	0.002024	0.005975	0.002024	0.005975	0.002024	0.005975
8	8.64	0	0.0139971	0.1230845	0.0027775	0.0126709	0.0027775	0.0126709	0.0027775	0.0126709	0.002777	0.012670877	0.002777	0.012671	0.002777	0.012671	0.002777	0.012671	0.002777	0.012671
10	8.64	0	0.0146295	0.1626905	0.0034073	0.0212777	0.0034073	0.0212777	0.0034073	0.0212777	0.003407	0.021277701	0.003407	0.021278	0.003407	0.021278	0.003407	0.021278	0.003407	0.021278
12	8.64	0	0.0151591	0.2037802	0.0039343	0.0314719	0.0039343	0.0314719	0.0039343	0.0314719	0.003934	0.031471923	0.003934	0.031472	0.003934	0.031472	0.003934	0.031472	0.003934	0.031472
14	8.64				CI	oor Conce	ntration	(α/m^2)			0.0043			Air	Concontr	ation (al	m2)			2984
16	8.64	20			FI	UUI CUIICE	Intration	(g/1112)			0.0047			AIL	concenti		115)			5559
18	8.64	10									0.0050	0.03								9101
20	8.64	10								-Room 1	0.0053							_	Deem	3363
22	8.64	16	/							Room 2	0.0055 0	.025							Room	3244
24	8.64	14								- Room 3	0.005								Room	3 3637
26	8.64	12								-Room 4	0.0058	0.02							Room	4 2945
28	8.64	10								- Room 5	0.0060								Room	5 5609
30	8.64	10								-Room 6	0.0061	.015							Room	⁶ / ₇ 5205
32	8.64	8								- Room 7	0.0062	0.01							Room	8 7872
34	8.64	6								- Room 8	0.0062	0.01							Room	9 577
36	8.64	4								- KOOTT 9	0.0063	005								2584
38	8.64	2									0.0064	.005								2971
40	8.64	0									0.0064	0								1693
42	8.64		0 1000	2000 30	00 4000	5000 6	000 7000	8000 9	000 10000		0.00€	0 1000	2000	3000 40	00 5000	6000	7000 8000	9000	10000	1224
44	8.64					Time (hr)					0.0065				Time (hr	r)				1572
46	8.64	0	0.0178611	0.9809285	0.0065932	0.2989613	0.0065932	0.2989613	0.0065932	0.2989613	0.006593	0.298961272	0.006593	0.298961	0.006593	0.298961	0.006593	0.298961	0.006593	0.298961
48	8.64	0	0.0178941	1.02743	0.0066238	0.316379	0.0066238	0.316379	0.0066238	0.316379	0.006624	0.316379003	0.006624	0.316379	0.006624	0.316379	0.006624	0.316379	0.006624	0.316379
50	8.64	0	0.0179238	1.0738524	0.006651	0.3338151	0.006651	0.3338151	0.006651	0.3338151	0.006651	0.333815071	0.006651	0.333815	0.006651	0.333815	0.006651	0.333815	0.006651	0.333815
52	8.64	0	0.0179507	1.1201874	0.0066755	0.351261	0.0066755	0.351261	0.0066755	0.351261	0.006676	0.351261003	0.006676	0.351261	0.006676	0.351261	0.006676	0.351261	0.006676	0.351261

Table 3.8 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case I

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

During the analysis of Case I, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m^3 of air and the fraction of the initial source per m^2 on the floor. They were multiplied by the total mass of source (materials) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

Figure 3.1 compares the air concentrations of source particles (g/m^3) in Room 1, where the volume source was assumed to be located. Figure 3.2 compares the floor deposition concentrations of source particles (g/m^2) in the same room. Figures 3.3 and 3.4 compare the air concentrations and floor deposition concentrations, respectively, in Room 2. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD. The comparisons of concentrations in the air and on the floor for Rooms 3-9 were like those for Room 2. As shown in the figures, the concentration results from RESRAD-BUILD and from the spreadsheets are in good agreement.

Table 3.9 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 1. Table 3.10 compares the same calculated results in Room 3. The comparisons show good agreement between the calculated results from RESRAD-BUILD and the spreadsheets. All but six results differ by less than 1%. The six exceptions are the calculated concentrations of Ra-226, Cs-137, and Co-60 at time 0 in Room 3; for them, the difference is more than 1% but less than 1.5%. The same calculated results in the other rooms from RESRAD-BUILD and the spreadsheets also show good agreement.

3.1.3 Calculation and Comparison of Radiation Doses and Cancer Risks

Table 3.11 lists the dose coefficients and slope factors used to calculate radiation doses and cancer risks incurred by the four receptors considered in the seven verification cases.

Table 3.12 compares the radiation doses at t = 0 and 0.75 year and the cancer risks at t = 1 year that RESRAD-BUILD and the spreadsheets estimated to Receptor 1. Receptor 1 was assumed to spend 100% of the time in Room 1, same as the source, while he was in the building. He was also assumed to inhale 18 m³ of air per day, would not ingest dust particles deposited on floor, but would ingest 0.01 g of source particles per hour. The comparison shows the RESRAD-BUILD results agree well with the spreadsheet results, with a difference of less than 1 %.

Table 3.13 compares the radiation doses at t = 0 and 1.5 years and the cancer risks at t = 1 year that RESRAD-BUILD and the spreadsheets estimated to Receptor 3 in Room 6. Receptor 3 would spend 30% of the time in Room 6 while he was in the building. He was assumed to inhale 25 m³ of air per day, would ingest dust particles deposited on floor, 0.0002 m² per hour, and would ingest 0.01 g of source particles per hour. The comparison shows the RESRAD-BUILD results agree well with the spreadsheet results, with a difference of less than 1.5%.

The radiation doses and cancer risks calculated by RESRAD-BUILD and the spreadsheets at other times or to other receptors all agree well with each other.

Figure 3.1 Comparison of Calculated Source Particulate Concentrations in the Air of Room 1 for Case I

Figure 3.2 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 1 for Case I

Figure 3.3 Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case I

Figure 3.4 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case I

					Concentration [(pCi	$/m^3$) or (pCi/m ²)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	RA-226	RA-226	Air	2.17E-02	2.15E-02	0.50
1	0	RA-226	RA-226	Floor	1.25E+01	1.24E+01	0.69
1	0	RA-226	PB-210	Air	8.72E-05	8.71E-05	0.17
1	0	RA-226	PB-210	Floor	5.82E-02	5.80E-02	0.37
1	0	RA-226	PO-210	Air	1.21E-05	1.21E-05	0.01
1	0	RA-226	PO-210	Floor	8.41E-03	8.39E-03	0.18
1	0.25	RA-226	RA-226	Air	2.38E-02	2.38E-02	0.06
1	0.25	RA-226	RA-226	Floor	1.83E+01	1.82E+01	0.11
1	0.25	RA-226	PB-210	Air	2.76E-04	2.76E-04	0.04
1	0.25	RA-226	PB-210	Floor	2.12E-01	2.12E-01	0.08
1	0.25	RA-226	PO-210	Air	7.81E-05	7.82E-05	0.01
1	0.25	RA-226	PO-210	Floor	6.02E-02	6.02E-02	0.03
1	0.5	RA-226	RA-226	Air	2.40E-02	2.40E-02	0.01
1	0.5	RA-226	RA-226	Floor	1.87E+01	1.87E+01	0.02
1	0.5	RA-226	PB-210	Air	4.61E-04	4.61E-04	0.01
1	0.5	RA-226	PB-210	Floor	3.59E-01	3.59E-01	0.02
1	0.5	RA-226	PO-210	Air	1.88E-04	1.88E-04	0.02
1	0.5	RA-226	PO-210	Floor	1.46E-01	1.46E-01	0.01
1	0.75	RA-226	RA-226	Air	2.40E-02	2.40E-02	0.01
1	0.75	RA-226	RA-226	Floor	1.87E+01	1.87E+01	0.01
1	0.75	RA-226	PB-210	Air	6.44E-04	6.44E-04	0.01
1	0.75	RA-226	PB-210	Floor	5.02E-01	5.02E-01	0.01
1	0.75	RA-226	PO-210	Air	3.24E-04	3.24E-04	0.01
1	0.75	RA-226	PO-210	Floor	2.53E-01	2.53E-01	0.01
1	1	RA-226	RA-226	Air	2.40E-02	2.40E-02	0.01
1	1	RA-226	RA-226	Floor	1.87E+01	1.87E+01	0.01
1	1	RA-226	PB-210	Air	8.24E-04	8.24E-04	0.01
1	1	RA-226	PB-210	Floor	6.43E-01	6.43E-01	0.01
1	1	RA-226	PO-210	Air	4.77E-04	4.77E-04	0.01
1	1	RA-226	PO-210	Floor	3.72E-01	3.72E-01	0.01
1	1.25	RA-226	RA-226	Air	2.40E-02	2.40E-02	0.01
1	1.25	RA-226	RA-226	Floor	1.87E+01	1.87E+01	0.01
1	1.25	RA-226	PB-210	Air	1.00E-03	1.00E-03	0.01
1	1.25	RA-226	PB-210	Floor	7.83E-01	7.83E-01	0.01
1	1.25	RA-226	PO-210	Air	6.40E-04	6.40E-04	0.00
1	1.25	RA-226	PO-210	Floor	4.99E-01	4.99E-01	0.00
1	1.5	RA-226	RA-226	Air	2.40E-02	2.40E-02	0.01
1	1.5	RA-226	RA-226	Floor	1.87E+01	1.87E+01	0.01
1	1.5	RA-226	PB-210	Air	1.18E-03	1.18E-03	0.01
1	1.5	RA-226	PB-210	Floor	9.22E-01	9.22E-01	0.01
1	1.5	RA-226	PO-210	Air	8.09E-04	8.09E-04	0.00
1	1.5	RA-226	PO-210	Floor	6.31E-01	6.31E-01	0.00

Table 3.9 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case I

Table 3.9 (Continued)

					Concentration [(pCi	/m ³) or (pCi/m ²)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	I RESRAD I
1	0	CS-137	CS-137	Air	2.16E-02	2.15E-02	0.50
1	0	CS-137	CS-137	Floor	1.24E+01	1.23E+01	0.69
1	0.25	CS-137	CS-137	Air	2.36E-02	2.36E-02	0.05
1	0.25	CS-137	CS-137	Floor	1.81E+01	1.81E+01	0.10
1	0.5	CS-137	CS-137	Air	2.36E-02	2.36E-02	0.01
1	0.5	CS-137	CS-137	Floor	1.84E+01	1.84E+01	0.01
1	0.75	CS-137	CS-137	Air	2.35E-02	2.35E-02	0.00
1	0.75	CS-137	CS-137	Floor	1.83E+01	1.83E+01	0.00
1	1	CS-137	CS-137	Air	2.34E-02	2.34E-02	0.00
1	1	CS-137	CS-137	Floor	1.82E+01	1.82E+01	0.00
1	1.25	CS-137	CS-137	Air	2.32E-02	2.32E-02	0.00
1	1.25	CS-137	CS-137	Floor	1.81E+01	1.81E+01	0.00
1	1.5	CS-137	CS-137	Air	2.31E-02	2.31E-02	0.00
1	1.5	CS-137	CS-137	Floor	1.80E+01	1.80E+01	0.00
1	0	CO-60	CO-60	Air	2.13E-02	2.12E-02	0.50
1	0	CO-60	CO-60	Floor	1.22E+01	1.21E+01	0.69
1	0.25	CO-60	CO-60	Air	2.26E-02	2.26E-02	0.05
1	0.25	CO-60	CO-60	Floor	1.74E+01	1.74E+01	0.10
1	0.5	CO-60	CO-60	Air	2.21E-02	2.21E-02	0.01
1	0.5	CO-60	CO-60	Floor	1.72E+01	1.72E+01	0.01
1	0.75	CO-60	CO-60	Air	2.14E-02	2.14E-02	0.00
1	0.75	CO-60	CO-60	Floor	1.67E+01	1.67E+01	0.00
1	1	CO-60	CO-60	Air	2.07E-02	2.07E-02	0.00
1	1	CO-60	CO-60	Floor	1.61E+01	1.61E+01	0.00
1	1.25	CO-60	CO-60	Air	2.00E-02	2.00E-02	0.00
1	1.25	CO-60	CO-60	Floor	1.56E+01	1.56E+01	0.00
1	1.5	CO-60	CO-60	Air	1.94E-02	1.94E-02	0.01
1	1.5	CO-60	CO-60	Floor	1.51E+01	1.51E+01	0.01

Note: The difference (%) listed in the last column was calculated by dividing the difference between the RESRAD-BUILD result and the spreadsheet result with the RESRAD-BUILD result, and then multiplying the ratio by 100.

					Concentration [(pCi	$/m^3$) or (pCi $/m^2$)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	RA-226	RA-226	Air	9.87E-03	9.77E-03	1.05
3	0	RA-226	RA-226	Floor	5.58E+00	5.51E+00	1.35
3	0	RA-226	PB-210	Air	4.12E-05	4.10E-05	0.41
3	0	RA-226	PB-210	Floor	2.66E-02	2.64E-02	0.81
3	0	RA-226	PO-210	Air	5.76E-06	5.75E-06	0.21
3	0	RA-226	PO-210	Floor	3.89E-03	3.87E-03	0.54
3	0.25	RA-226	RA-226	Air	1.18E-02	1.18E-02	0.11
3	0.25	RA-226	RA-226	Floor	8.97E+00	8.95E+00	0.20
3	0.25	RA-226	PB-210	Air	1.37E-04	1.37E-04	0.08
3	0.25	RA-226	PB-210	Floor	1.04E-01	1.04E-01	0.17
3	0.25	RA-226	PO-210	Air	3.88E-05	3.88E-05	0.03
3	0.25	RA-226	PO-210	Floor	2.97E-02	2.96E-02	0.11
3	0.5	RA-226	RA-226	Air	1.20E-02	1.20E-02	0.02
3	0.5	RA-226	RA-226	Floor	9.32E+00	9.31E+00	0.04
3	0.5	RA-226	PB-210	Air	2.30E-04	2.30E-04	0.02
3	0.5	RA-226	PB-210	Floor	1.79E-01	1.79E-01	0.03
3	0.5	RA-226	PO-210	Air	9.39E-05	9.39E-05	0.01
3	0.5	RA-226	PO-210	Floor	7.31E-02	7.31E-02	0.00
3	0.75	RA-226	RA-226	Air	1.20E-02	1.20E-02	0.01
3	0.75	RA-226	RA-226	Floor	9.35E+00	9.35E+00	0.01
3	0.75	RA-226	PB-210	Air	3.22E-04	3.22E-04	0.01
3	0.75	RA-226	PB-210	Floor	2.51E-01	2.51E-01	0.01
3	0.75	RA-226	PO-210	Air	1.62E-04	1.62E-04	0.01
3	0.75	RA-226	PO-210	Floor	1.26E-01	1.27E-01	0.01
3	1	RA-226	RA-226	Air	1.20E-02	1.20E-02	0.01
3	1	RA-226	RA-226	Floor	9.36E+00	9.35E+00	0.01
3	1	RA-226	PB-210	Air	4.12E-04	4.12E-04	0.01
3	1	RA-226	PB-210	Floor	3.22E-01	3.21E-01	0.01
3	1	RA-226	PO-210	Air	2.39E-04	2.39E-04	0.01
3	1	RA-226	PO-210	Floor	1.86E-01	1.86E-01	0.01
3	1.25	RA-226	RA-226	Air	1.20E-02	1.20E-02	0.01
3	1.25	RA-226	RA-226	Floor	9.35E+00	9.35E+00	0.01
3	1.25	RA-226	PB-210	Air	5.02E-04	5.02E-04	0.01
3	1.25	RA-226	PB-210	Floor	3.91E-01	3.91E-01	0.01
3	1.25	RA-226	PO-210	Air	3.20E-04	3.20E-04	0.00
3	1.25	RA-226	PO-210	Floor	2.50E-01	2.50E-01	0.00
3	1.5	RA-226	RA-226	Air	1.20E-02	1.20E-02	0.01
3	1.5	RA-226	RA-226	Floor	9.35E+00	9.35E+00	0.01
3	1.5	RA-226	PB-210	Air	5.91E-04	5.91E-04	0.01
3	1.5	RA-226	PB-210	Floor	4.61E-01	4.61E-01	0.01
3	1.5	RA-226	PO-210	Air	4.04E-04	4.04E-04	0.00
3	1.5	RA-226	PO-210	Floor	3.15E-01	3.15E-01	0.00

Table 3.10 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case I

Table 3.10 (Continued)

					Concentration [(pCi	/m ³) or (pCi/m ²)]	Difference (%)
	Begin						RESRAD –Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	CS-137	CS-137	Air	9.84E-03	9.74E-03	1.05
3	0	CS-137	CS-137	Floor	5.56E+00	5.49E+00	1.35
3	0.25	CS-137	CS-137	Air	1.17E-02	1.17E-02	0.10
3	0.25	CS-137	CS-137	Floor	8.89E+00	8.87E+00	0.20
3	0.5	CS-137	CS-137	Air	1.18E-02	1.18E-02	0.01
3	0.5	CS-137	CS-137	Floor	9.19E+00	9.18E+00	0.03
3	0.75	CS-137	CS-137	Air	1.18E-02	1.18E-02	0.00
3	0.75	CS-137	CS-137	Floor	9.17E+00	9.17E+00	0.00
3	1	CS-137	CS-137	Air	1.17E-02	1.17E-02	0.00
3	1	CS-137	CS-137	Floor	9.12E+00	9.12E+00	0.00
3	1.25	CS-137	CS-137	Air	1.16E-02	1.16E-02	0.00
3	1.25	CS-137	CS-137	Floor	9.07E+00	9.07E+00	0.00
3	1.5	CS-137	CS-137	Air	1.16E-02	1.16E-02	0.00
3	1.5	CS-137	CS-137	Floor	9.02E+00	9.02E+00	0.00
3	0	CO-60	CO-60	Air	9.70E-03	9.60E-03	1.06
3	0	CO-60	CO-60	Floor	5.47E+00	5.40E+00	1.36
3	0.25	CO-60	CO-60	Air	1.12E-02	1.12E-02	0.10
3	0.25	CO-60	CO-60	Floor	8.53E+00	8.52E+00	0.20
3	0.5	CO-60	CO-60	Air	1.10E-02	1.10E-02	0.01
3	0.5	CO-60	CO-60	Floor	8.59E+00	8.58E+00	0.03
3	0.75	CO-60	CO-60	Air	1.07E-02	1.07E-02	0.00
3	0.75	CO-60	CO-60	Floor	8.34E+00	8.34E+00	0.00
3	1	CO-60	CO-60	Air	1.03E-02	1.04E-02	0.00
3	1	CO-60	CO-60	Floor	8.07E+00	8.07E+00	0.00
3	1.25	CO-60	CO-60	Air	1.00E-02	1.00E-02	0.00
3	1.25	CO-60	CO-60	Floor	7.81E+00	7.81E+00	0.00
3	1.5	CO-60	CO-60	Air	9.69E-03	9.69E-03	0.01
3	1.5	CO-60	CO-60	Floor	7.56E+00	7.56E+00	0.01

Note: The difference (%) listed in the last column was calculated by dividing the difference between the RESRAD-BUILD result and the spreadsheet result with the RESRAD-BUILD result, and then multiplying the ratio by 100.

	Dose convers	ion factors - IC	RP-72 Adults	Slope fac	tors - FGR13 N	Лorbidity
			Air			Air
						submersion
	Ingestion	Inhalation	(mrem/yr)/	Ingestion	Inhalation	(1/yr)/
Radionuclide	(mrem/pCi)	(mrem/pCi)	(pCi/m ³)	(1/pCi)	(1/pCi)	(pCi/m ³)
Ra-226	1.04E-03	3.53E-02	9.77E-03	5.15E-10	2.83E-08	7.87E-09
Pb-210	2.56E-03	2.11E-02	3.53E-05	1.19E-09	1.63E-08	9.04E-12
Po-210	4.44E-03	1.59E-02	4.54E-08	2.25E-09	1.45E-08	3.66E-14
Cs-137	4.81E-05	1.44E-04	2.98E-03	3.74E-11	1.12E-10	2.39E-09
Co-60	1.26E-05	1.15E-04	1.39E-02	2.23E-11	1.01E-10	1.12E-08

 Table 3.11 Dose Conversion Factors and Slope Factors Used for Radiation Dose and Cancer Risk Estimates

Table 3.12 Comparison of Radiation Doses and Cancer Risks to Receptor 1 of Case I

Receptor 1	location room	1				(Reflect value in	n the input file)				
	time fraction in	room	1			(Reflect value in	n the input file)				
	breathing rate	18	m3/d			(Reflect value in	n the input file)				
	ingestion rate	0	m2/hr			(Reflect value in the input file)						
	direct ingestion	rate	1.00E-02	g/hr								
	In the same room as source			1	(1-Yes, 0-No)	(reflect selectio	n in the input	file)				
Radiation Dose (mrem/yr) at time =		0.00	yr									
	Direct	Ingestion (mr	em/yr)	Ing	estion (deposi	ition)		Inhalation			Air submersio	n
			Difference (%)	Ingestion	Ingestion	Difference (%)	RRB-		Difference (%)	RRB-Air	Air	Difference (%)
Nuclide	RESRAD-BUILD	Estimate	RESRAD-Spreadsheet RESRAD	(deposition)	(deposition)	RESRAD-Spreadsheet RESRAD	Inhalation	Inhalation	RESRAD-Spreadsheet RESRAD	submersion	submersion	RESRAD-Spreadsheet RESRAD
Ra-226	1.14E-02	1.13E-02	0.49	0.00E+00	0.00E+00	-	6.27E-01	6.24E-01	0.48	2.65E-05	2.63E-05	0.70
Pb-210	1.08E-04	1.09E-04	0.49	0.00E+00	0.00E+00	-	1.51E-03	1.51E-03	0.25	3.86E-10	3.85E-10	0.34
Po-210	2 575 05	0 575 05	0.45	0.005.00		_	1 58F-04	1 58F-04	0.21	6 86F-14	6.85E-14	0.18
	2.57E-05	2.57E-05	0.15	0.00E+00	0.00E+00		1.501 04	1.301 04	0.21	0.001 14		
Cs-137	5.25E-04	2.57E-05 5.25E-04	0.15	0.00E+00	0.00E+00	-	2.56E-03	2.55E-03	0.54	8.05E-06	8.01E-06	0.54
Cs-137 Co-60	2.57E-05 5.25E-04 1.36E-04	2.57E-05 5.25E-04 1.35E-04	0.15	0.00E+00 0.00E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00		2.56E-03 2.01E-03	2.55E-03 2.00E-03	0.54	8.05E-06 3.70E-05	8.01E-06 3.68E-05	0.54 0.59

Radiation Do	ose (mrem/yr) at	time =	0.75	yr								
	Direct Ingestion (mrem/yr)		Ing	estion (depos	sition)	Inhalation			Air submersion			
			Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)
Nuclide	RESRAD-BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD
Ra-226	1.14E-02	1.13E-02	0.44	0.00E+00	0.00E+00	-	6.95E-01	6.95E-01	0.06	2.93E-05	2.93E-05	0.03
Pb-210	7.51E-04	7.51E-04	0.03	0.00E+00	0.00E+00	-	1.11E-02	1.11E-02	0.28	2.85E-09	2.84E-09	0.24
Po-210	6.57E-04	6.57E-04	0.06	0.00E+00	0.00E+00	-	4.24E-03	4.24E-03	0.01	1.84E-12	1.84E-12	0.08
Cs-137	5.16E-04	5.16E-04	0.03	0.00E+00	0.00E+00	-	2.79E-03	2.79E-03	0.11	8.77E-06	8.76E-06	0.08
Co-60	1.23E-04	1.23E-04	0.17	0.00E+00	0.00E+00	-	2.01E-03	2.01E-03	0.25	3.72E-05	3.71E-05	0.16
Total	1.34E-02	1.34E-02	0.37	0.00E+00	0.00E+00	-	7.15E-01	7.15E-01	0.05	7.53E-05	7.52E-05	0.10

Cancer Risk at	time =	1	L yr									
	Direct Ingestion (mrem/yr)		Ingestion (deposition)			Inhalation			Air submersion			
	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)
Nuclide	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD
Ra-226	5.63E-09	5.63E-09	0.05	0.00E+00	0.00E+00	-	5.57E-07	5.57E-07	0.02	2.36E-11	2.36E-11	0.08
Pb-210	4.49E-10	4.49E-10	0.07	0.00E+00	0.00E+00	-	1.10E-08	1.10E-08	0.01	9.32E-16	9.31E-16	0.09
Po-210	4.90E-10	4.90E-10	0.01	0.00E+00	0.00E+00	-	5.68E-09	5.68E-09	0.08	2.18E-18	2.18E-18	0.04
Cs-137	3.99E-10	3.99E-10	0.01	0.00E+00	0.00E+00	-	2.15E-09	2.15E-09	0.04	6.99E-12	6.98E-12	0.18
Co-60	2.11E-10	2.11E-10	0.18	0.00E+00	0.00E+00	-	1.72E-09	1.72E-09	0.17	2.91E-11	2.91E-11	0.05
Total	7.18E-09	7.18E-09	0.03	0.00E+00	0.00E+00	-	5.78E-07	5.77E-07	0.02	5.97E-11	5.96E-11	0.08

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.
Table 3.13 Comparison of Radiation Doses and Cancer Risks to Receptor 3 of Case I

Receptor 3	location room	6	<mark>;</mark>			(Reflect value in	the input file)				
	time fraction in	room	0.3			(Reflect value ir	h the input file)				
	breathing rate	25	m3/d			(Reflect value in	the input file)				
	ingestion rate	0.0002	m2/hr			(Reflect value ir	h the input file)				
	direct ingestion	n rate	1.00E-02	g/hr								
	In the same roo	om as source?		0	(1-Yes, 0-No)	(reflect selectio	n in the input	file)				
Radiation Do	ose (mrem/yr) at	time =	0.00E+00	yr								
	Direct	Ingestion (mr	em/yr)	Ing	estion (deposi	tion)		Inhalation			Air submersio	on
			Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)
Nuclide	RESRAD-BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD
Ra-226	0.00E+00	0.00E+00	-	3.80E-04	3.75E-04	1.26	1.19E-01	1.18E-01	0.94	3.62E-06	3.58E-06	1.13
Pb-210	0.00E+00	0.00E+00	-	4.48E-06	4.44E-06	0.85	2.97E-04	2.95E-04	0.54	5.46E-11	5.43E-11	0.51
Po-210	0.00E+00	0.00E+00	-	1.14E-06	1.13E-06	0.94	3.14E-05	3.13E-05	0.30	9.82E-15	9.79E-15	0.30
Cs-137	0.00E+00	0.00E+00	-	1.76E-05	1.73E-05	1.46	4.86E-04	4.81E-04	1.04	1.10E-06	1.09E-06	1.02
Co-60	0.00E+00	0.00E+00	-	4.52E-06	4.46E-06	1.31	3.81E-04	3.77E-04	1.12	5.06E-06	5.00E-06	1.19
Total	0.00E+00	0.00E+00	-	4.08E-04	4.03E-04	1.26	1.20E-01	1.19E-01	0.94	9.78E-06	9.67E-06	1.15

Radiation D	ose (mrem/yr) at	time =	1.50	yr								
	Direct Ingestion (mrem/yr)			Ingestion (deposition)				Inhalation			Air submersio	on
Nuclide	RESRAD-BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%)	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD
Ra-226	0.00E+00	0.00E+00	-	6.37E-04	6.37E-04	0.03	1.45E-01	1.45E-01	0.23	4.40E-06	4.39E-06	0.17
Pb-210	0.00E+00	0.00E+00	-	7.74E-05	7.74E-05	0.04	4.26E-03	4.26E-03	0.07	7.84E-10	7.83E-10	0.15
Po-210	0.00E+00	0.00E+00	-	9.20E-05	9.20E-05	0.00	2.20E-03	2.20E-03	0.06	6.89E-13	6.88E-13	0.09
Cs-137	0.00E+00	0.00E+00	-	2.85E-05	2.85E-05	0.04	5.71E-04	5.71E-04	0.05	1.29E-06	1.29E-06	0.16
Co-60	0.00E+00	0.00E+00	-	6.25E-06	6.25E-06	0.03	3.80E-04	3.80E-04	0.10	5.05E-06	5.05E-06	0.03
Total	0.00E+00	0.00E+00	-	8.41E-04	8.41E-04	0.02	1.52E-01	1.52E-01	0.22	1.07E-05	1.07E-05	0.07

Cancer Risk at	ancer Risk at time = 1 yr		yr									
	Direc	ct Ingestion (m	rem/yr)	Ingestion (deposition)				Inhalation			Air submers	sion
	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)
Nuclide	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD	BUILD	Estimate	RESRAD
Ra-226	0.00E+00	0.00E+00	-	3.16E-10	3.16E-10	0.10	1.16E-07	1.16E-07	0.01	3.54E-12	3.54E-12	0.08
Pb-210	0.00E+00	0.00E+00	-	2.52E-11	2.52E-11	0.01	2.29E-09	2.29E-09	0.08	1.40E-16	1.40E-16	0.23
Po-210	0.00E+00	0.00E+00	-	2.75E-11	2.75E-11	0.07	1.18E-09	1.18E-09	0.36	3.27E-19	3.27E-19	0.04
Cs-137	0.00E+00	0.00E+00	-	2.24E-11	2.24E-11	0.04	4.48E-10	4.48E-10	0.02	1.05E-12	1.05E-12	0.33
Co-60	0.00E+00	0.00E+00	-	1.18E-11	1.18E-11	0.24	3.58E-10	3.58E-10	0.08	4.37E-12	4.36E-12	0.17
Total	0.00E+00	0.00E+00	-	4.03E-10	4.03E-10	0.09	1.20E-07	1.20E-07	0.02	8.96E-12	8.95E-12	0.15

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

3.2 CASE II – A VOLUME SOURCE IN ROOM 1 WITH SCHEDULED VACUUMING

Case II considered the same source as in Case I in Room 1. However, the air fraction of released source materials was changed from 0.1 to 1. Furthermore, vacuuming to clean the floor of every room was assumed to be conducted every 30 days, with an efficiency of 90%. The estimated concentrations of source particles and radionuclides in the air and on the floor of each room from RESRAD-BUILD and the verification spreadsheets were compared.

Table 3.14 shows the room dimensions, ventilation rates between rooms and with the outside environment, deposition velocity, and resuspension rate assumed for the case. Table 3.15 lists the properties assumed for the radiation source as well as its releases over time.

Table 3.16 shows the air release rate calculated by RESRAD-BUILD, obtained from the intermediate output file "AirRelRate1.out," and part of the estimated air release rates in the spreadsheet. The air release rate calculated by RESRAD-BUILD in terms of the fraction of the initial source per second was converted to mass of source materials per hour. The converted air release rate matches those estimated in the spreadsheet.

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol.1 (Yu et al. 2022) were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.17 presents part of the calculations and results at different time steps in the spreadsheets.

During the analysis of Case II, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m^3 of air and the fraction of the initial source per m^2 on the floor. They were multiplied by the total mass of source (materials) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

Figure 3.5 compares the air concentrations of source particles (g/m^3) in Room 1, where the volume source was assumed to be located. Figure 3.6 compares the floor deposition concentrations of source particles (g/m^2) in the same room. Figures 3.7 and 3.8 compare the air concentrations and floor deposition concentrations, respectively, in Room 4. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD. The comparison of concentrations in the air and on the floor for the other rooms were like those for Room 4. As shown in the figures, the concentration results from RESRAD-BUILD and from the spreadsheets are in good agreement.

Deposition Velocity		0.00039	(m/s) =	1.404	(m/hr)					
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9
Area (m2)		36	36	36	36	36	36	36	36	36
Volume (m3)		90	90	90	90	90	90	90	90	90
Resuspension rate (1/s)		5.00E-07								
Resuspension rate (1/h)		1.80E-03								
Air flow (m3/hr) from										
Outdoors	0	72	72	72	72	72	72	72	72	72
Room 1	72	0	72	72	72	72	72	72	72	72
Room 2	72	72	0	72	72	72	72	72	72	72
Room 3	72	72	72	0	72	72	72	72	72	72
Room 4	72	72	72	72	0	72	72	72	72	72
Room 5	72	72	72	72	72	0	72	72	72	72
Room 6	72	72	72	72	72	72	0	72	72	72
Room 7	72	72	72	72	72	72	72	0	72	72
Room 8	72	72	72	72	72	72	72	72	0	72
Room 9	72	72	72	72	72	72	72	72	72	0
Vacuum frequency (once in)	30	day(s) =	720	hr(s)					
Vacuum efficiency		0.9								

Table 3.14 Air Flows, Vacuuming, and Resuspension and Deposition of Particulates Assumed for Case II

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Source Releases							
Location (Room No.)	1	Air Fraction	1	Area of sou	rce	36	m2
	Region 1	Region 2	Region 3	Region 4	Region 5		
Contamination?							
1-Yes, 2-No	1	2	2	2	2		
thickness (cm)	15	0	0	0	0		
density (g/cm3)	2.4	2.4	2.4	2.4	2.4		
erosion rate (cm/d)	2.40E-03	2.40E-08	2.40E-08	2.40E-08	2.40E-08		
Start time (d)	0.00E+00	6.25E+03	6.25E+03	6.25E+03	6.25E+03		
Start time (hr)	0	150000	150000	150000	150000		
End time (d)	6.25E+03	6.25E+03	6.25E+03	6.25E+03	6.25E+03		
End time (hr)	1.50E+05	1.50E+05	1.50E+05	1.50E+05	1.50E+05		
Release rate (g/hr)	86.4	0	0	0	0		

Table 3.15 Source Releases Assumed for Case II

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Table 3.16 Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case II

From "AirRelRa	ate1.out"						
Rate of release	e of source materia	l to air					
fraction of sou	rce per second per	r volume (r	n3) of the r	oom of re	lease		
2.06E-11	2.06E-11 from		0.00E+00	to	time	5.4E+08	seconds
8.64E+01	from	time	0.00E+00	to	time	150000	hrs
Initial source n	nass	1.30E+07	g				
Volume of sou	rce room	90	m3				
	Estimated Air						
	release rate						
time (hr)	(g/hr)						
0	0						
2	86.4						
4	86.4						
6	86.4						
8	86.4						
10	86.4						
12	86.4						
14	86.4						

Table 3.17 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case II

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

Figure 3.5 Comparison of Calculated Source Particulate Concentrations in the Air of Room 1 for Case II

Figure 3.6 Comparison of Calculated Source Particulate Concentrations on the Floor or Room 1 for Case II

Figure 3.7 Comparison of Calculated Source Particulate Concentrations in the Air of Room 4 for Case II

Figure 3.8 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 4 for Case II

Table 3.18 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 1. Table 3.19 compares the same calculated results in Room 6. The comparisons show good agreement between the calculated results from RESRAD-BUILD and the spreadsheets. All but three results differ by less than 1%. The three exceptions are the calculated concentrations of Ra-226, Cs-137, and Co-60 at time 0 in Room 6; for them, the difference is more than 1% but less than 1.5%. The same calculated results in the other rooms from RESRAD-BUILD and from the spreadsheets also show good agreement.

3.3 CASE III – A VOLUME SOURCE IN ROOM 2 WITH NO SCHEDULED VACUUMING

Case III considers the same cylindrical volume source as that in Cases I and II, but the source was in Room 2 where no receptor was located. Unlike Cases I and II that assumed there was air exchange between each pair of rooms, in Case III, the air exchange was limited to just a few pairs of rooms. Vacuuming to remove dust deposition on the floor was not considered. The estimated concentrations of source particles and radionuclides in the air and on the floor of each room from RESRAD-BUILD and the verification spreadsheets were compared.

Table 3.20 shows the room dimensions, ventilation rates between rooms and with the outside environment, deposition velocity, and resuspension rate assumed for the case. Table 3.21 lists the properties assumed for the radiation source as well as its releases over time.

Table 3.22 shows the air release rate calculated by RESRAD-BUILD, obtained from the intermediate output file "AirRelRate1.out," and part of the estimated air release rates in the spreadsheet. The air release rate calculated by RESRAD-BUILD in terms of the fraction of the initial source per second was converted to mass of source materials per hour. The converted air release rate matches those estimated in the spreadsheet.

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol. 1 (Yu et al. 2022) were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.23 presents part of the calculations and results at different time steps in the spreadsheets.

During the analysis of Case III, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m^3 of air and the fraction of the initial source per m^2 on the floor. They were multiplied by the total mass of source (materials) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

Figure 3.9 compares the air concentrations of source particles (g/m^3) in Room 2, where the volume source was assumed to be located. Figure 3.10 compares the floor deposition concentrations of source particles (g/m^2) in the same room. Figures 3.11 and 3.12 compare the air concentrations and floor deposition concentrations, respectively, in Room 9, which did not have direct air exchange with Room 2. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD.

					Concentration [(pCi/m ³) or (pCi/m ²)		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	RA-226	RA-226	Air	1.99E-01	1.98E-01	0.34
1	0	RA-226	RA-226	Floor	7.03E+01	6.97E+01	0.77
1	0	RA-226	PB-210	Air	7.78E-04	7.78E-04	0.04
1	0	RA-226	PB-210	Floor	2.98E-01	2.97E-01	0.38
1	0	RA-226	PO-210	Air	1.07E-04	1.07E-04	0.20
1	0	RA-226	PO-210	Floor	4.18E-02	4.17E-02	0.23
1	0.25	RA-226	RA-226	Air	2.00E-01	2.00E-01	0.04
1	0.25	RA-226	RA-226	Floor	7.30E+01	7.28E+01	0.23
1	0.25	RA-226	PB-210	Air	2.32E-03	2.32E-03	0.00
1	0.25	RA-226	PB-210	Floor	8.58E-01	8.56E-01	0.25
1	0.25	RA-226	PO-210	Air	6.57E-04	6.57E-04	0.06
1	0.25	RA-226	PO-210	Floor	2.46E-01	2.45E-01	0.23
1	0.5	RA-226	RA-226	Air	2.00E-01	2.00E-01	0.03
1	0.5	RA-226	RA-226	Floor	7.31E+01	7.29E+01	0.26
1	0.5	RA-226	PB-210	Air	3.84E-03	3.84E-03	0.01
1	0.5	RA-226	PB-210	Floor	1.41E+00	1.41E+00	0.23
1	0.5	RA-226	PO-210	Air	1.57E-03	1.57E-03	0.03
1	0.5	RA-226	PO-210	Floor	5.78E-01	5.77E-01	0.19
1	0.75	RA-226	RA-226	Air	2.00E-01	2.00E-01	0.02
1	0.75	RA-226	RA-226	Floor	7.30E+01	7.30E+01	0.10
1	0.75	RA-226	PB-210	Air	5.36E-03	5.36E-03	0.01
1	0.75	RA-226	PB-210	Floor	1.96E+00	1.96E+00	0.05
1	0.75	RA-226	PO-210	Air	2.70E-03	2.70E-03	0.02
1	0.75	RA-226	PO-210	Floor	9.90E-01	9.90E-01	0.00
1	1	RA-226	RA-226	Air	2.00E-01	2.00E-01	0.04
1	1	RA-226	RA-226	Floor	7.33E+01	7.31E+01	0.32
1	1	RA-226	PB-210	Air	6.86E-03	6.86E-03	0.03
1	1	RA-226	PB-210	Floor	2.52E+00	2.51E+00	0.31
1	1	RA-226	PO-210	Air	3.97E-03	3.97E-03	0.01
1	1	RA-226	PO-210	Floor	1.46E+00	1.45E+00	0.29
1	1.25	RA-226	RA-226	Air	2.00E-01	2.00E-01	0.04
1	1.25	RA-226	RA-226	Floor	7.34E+01	7.31E+01	0.34
1	1.25	RA-226	PB-210	Air	8.35E-03	8.35E-03	0.03
1	1.25	RA-226	PB-210	Floor	3.07E+00	3.06E+00	0.32
1	1.25	RA-226	PO-210	Air	5.33E-03	5.33E-03	0.01
1	1.25	RA-226	PO-210	Floor	1.95E+00	1.95E+00	0.30
1	1.5	RA-226	RA-226	Air	2.00E-01	2.00E-01	0.03
1	1.5	RA-226	RA-226	Floor	7.33E+01	7.32E+01	0.17
1	1.5	RA-226	PB-210	Air	9.83E-03	9.83E-03	0.02
1	1.5	RA-226	PB-210	Floor	3.61E+00	3.60E+00	0.15
1	1.5	RA-226	PO-210	Air	6.73E-03	6.73E-03	0.01
1	1.5	RA-226	PO-210	Floor	2.47E+00	2.46E+00	0.12

Table 3.18 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case II

Table 3.18 (Continued)

					Concentration [(pCi/m ³) or (pCi/m ²)]		Difference (%)
	Begin						RESRAD - Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	CS-137	CS-137	Air	1.98E-01	1.97E-01	0.34
1	0	CS-137	CS-137	Floor	7.00E+01	6.95E+01	0.77
1	0.25	CS-137	CS-137	Air	1.98E-01	1.98E-01	0.03
1	0.25	CS-137	CS-137	Floor	7.24E+01	7.22E+01	0.23
1	0.5	CS-137	CS-137	Air	1.97E-01	1.97E-01	0.02
1	0.5	CS-137	CS-137	Floor	7.21E+01	7.19E+01	0.25
1	0.75	CS-137	CS-137	Air	1.96E-01	1.96E-01	0.01
1	0.75	CS-137	CS-137	Floor	7.16E+01	7.15E+01	0.09
1	1	CS-137	CS-137	Air	1.95E-01	1.95E-01	0.03
1	1	CS-137	CS-137	Floor	7.14E+01	7.12E+01	0.30
1	1.25	CS-137	CS-137	Air	1.94E-01	1.93E-01	0.02
1	1.25	CS-137	CS-137	Floor	7.11E+01	7.09E+01	0.33
1	1.5	CS-137	CS-137	Air	1.92E-01	1.92E-01	0.01
1	1.5	CS-137	CS-137	Floor	7.07E+01	7.06E+01	0.16
1	0	CO-60	CO-60	Air	1.95E-01	1.95E-01	0.35
1	0	CO-60	CO-60	Floor	6.90E+01	6.85E+01	0.78
1	0.25	CO-60	CO-60	Air	1.90E-01	1.90E-01	0.03
1	0.25	CO-60	CO-60	Floor	6.94E+01	6.93E+01	0.23
1	0.5	CO-60	CO-60	Air	1.84E-01	1.84E-01	0.02
1	0.5	CO-60	CO-60	Floor	6.73E+01	6.71E+01	0.25
1	0.75	CO-60	CO-60	Air	1.78E-01	1.78E-01	0.01
1	0.75	CO-60	CO-60	Floor	6.51E+01	6.51E+01	0.09
1	1	CO-60	CO-60	Air	1.72E-01	1.72E-01	0.03
1	1	CO-60	CO-60	Floor	6.32E+01	6.30E+01	0.30
1	1.25	CO-60	CO-60	Air	1.67E-01	1.67E-01	0.02
1	1.25	CO-60	CO-60	Floor	6.13E+01	6.11E+01	0.33
1	1.5	CO-60	CO-60	Air	1.61E-01	1.61E-01	0.01
1	1.5	CO-60	CO-60	Floor	5.93E+01	5.92E+01	0.16

					Concentration [(pCi/m ³) or (pCi/m ²)		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
6	0	RA-226	RA-226	Air	8.31E-02	8.25E-02	0.77
6	0	RA-226	RA-226	Floor	2.88E+01	2.84E+01	1.34
6	0	RA-226	PB-210	Air	3.29E-04	3.29E-04	0.03
6	0	RA-226	PB-210	Floor	1.23E-01	1.23E-01	0.51
6	0	RA-226	PO-210	Air	4.52E-05	4.53E-05	0.25
6	0	RA-226	PO-210	Floor	1.73E-02	1.73E-02	0.24
6	0.25	RA-226	RA-226	Air	8.40E-02	8.39E-02	0.06
6	0.25	RA-226	RA-226	Floor	3.02E+01	3.01E+01	0.09
6	0.25	RA-226	PB-210	Air	9.76E-04	9.76E-04	0.00
6	0.25	RA-226	PB-210	Floor	3.55E-01	3.55E-01	0.12
6	0.25	RA-226	PO-210	Air	2.77E-04	2.77E-04	0.08
6	0.25	RA-226	PO-210	Floor	1.02E-01	1.02E-01	0.11
6	0.5	RA-226	RA-226	Air	8.39E-02	8.39E-02	0.04
6	0.5	RA-226	RA-226	Floor	3.02E+01	3.02E+01	0.12
6	0.5	RA-226	PB-210	Air	1.62E-03	1.62E-03	0.00
6	0.5	RA-226	PB-210	Floor	5.84E-01	5.84E-01	0.10
6	0.5	RA-226	PO-210	Air	6.60E-04	6.60E-04	0.05
6	0.5	RA-226	PO-210	Floor	2.39E-01	2.39E-01	0.06
6	0.75	RA-226	RA-226	Air	8.39E-02	8.39E-02	0.03
6	0.75	RA-226	RA-226	Floor	3.02E+01	3.02E+01	0.05
6	0.75	RA-226	PB-210	Air	2.25E-03	2.25E-03	0.01
6	0.75	RA-226	PB-210	Floor	8.11E-01	8.12E-01	0.10
6	0.75	RA-226	PO-210	Air	1.14E-03	1.14E-03	0.03
6	0.75	RA-226	PO-210	Floor	4.09E-01	4.10E-01	0.15
6	1	RA-226	RA-226	Air	8.40E-02	8.39E-02	0.07
6	1	RA-226	RA-226	Floor	3.03E+01	3.02E+01	0.18
6	1	RA-226	PB-210	Air	2.89E-03	2.88E-03	0.05
6	1	RA-226	PB-210	Floor	1.04E+00	1.04E+00	0.17
6	1	RA-226	PO-210	Air	1.67E-03	1.67E-03	0.03
6	1	RA-226	PO-210	Floor	6.03E-01	6.02E-01	0.15
6	1.25	RA-226	RA-226	Air	8.40E-02	8.39E-02	0.05
6	1.25	RA-226	RA-226	Floor	3.03E+01	3.03E+01	0.21
6	1.25	RA-226	PB-210	Air	3.51E-03	3.51E-03	0.04
6	1.25	RA-226	PB-210	Floor	1.27E+00	1.26E+00	0.19
6	1.25	RA-226	PO-210	Air	2.24E-03	2.24E-03	0.02
6	1.25	RA-226	PO-210	Floor	8.08E-01	8.06E-01	0.16
6	1.5	RA-226	RA-226	Air	8.40E-02	8.39E-02	0.03
6	1.5	RA-226	RA-226	Floor	3.03E+01	3.03E+01	0.03
6	1.5	RA-226	PB-210	Air	4.14E-03	4.13E-03	0.02
6	1.5	RA-226	PB-210	Floor	1.49E+00	1.49E+00	0.00
6	1.5	RA-226	PO-210	Air	2.83E-03	2.83E-03	0.00
6	1.5	RA-226	PO-210	Floor	1.02E+00	1.02E+00	0.02

Table 3.19 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 6 for Case II

Table 3.19 (Continued)

					Concentration [(pCi/m ³) or (pCi/m ²)]		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
6	0	CS-137	CS-137	Air	8.29E-02	8.23E-02	0.77
6	0	CS-137	CS-137	Floor	2.87E+01	2.84E+01	1.34
6	0.25	CS-137	CS-137	Air	8.33E-02	8.32E-02	0.06
6	0.25	CS-137	CS-137	Floor	2.99E+01	2.99E+01	0.08
6	0.5	CS-137	CS-137	Air	8.28E-02	8.27E-02	0.04
6	0.5	CS-137	CS-137	Floor	2.98E+01	2.97E+01	0.11
6	0.75	CS-137	CS-137	Air	8.23E-02	8.23E-02	0.02
6	0.75	CS-137	CS-137	Floor	2.96E+01	2.96E+01	0.06
6	1	CS-137	CS-137	Air	8.19E-02	8.18E-02	0.06
6	1	CS-137	CS-137	Floor	2.95E+01	2.95E+01	0.17
6	1.25	CS-137	CS-137	Air	8.14E-02	8.14E-02	0.04
6	1.25	CS-137	CS-137	Floor	2.94E+01	2.93E+01	0.20
6	1.5	CS-137	CS-137	Air	8.09E-02	8.09E-02	0.01
6	1.5	CS-137	CS-137	Floor	2.92E+01	2.92E+01	0.02
6	0	CO-60	CO-60	Air	8.18E-02	8.11E-02	0.78
6	0	CO-60	CO-60	Floor	2.83E+01	2.79E+01	1.36
6	0.25	CO-60	CO-60	Air	7.99E-02	7.99E-02	0.06
6	0.25	CO-60	CO-60	Floor	2.87E+01	2.87E+01	0.08
6	0.5	CO-60	CO-60	Air	7.73E-02	7.73E-02	0.04
6	0.5	CO-60	CO-60	Floor	2.78E+01	2.78E+01	0.11
6	0.75	CO-60	CO-60	Air	7.49E-02	7.48E-02	0.02
6	0.75	CO-60	CO-60	Floor	2.69E+01	2.69E+01	0.05
6	1	CO-60	CO-60	Air	7.25E-02	7.24E-02	0.06
6	1	CO-60	CO-60	Floor	2.61E+01	2.61E+01	0.17
6	1.25	CO-60	CO-60	Air	7.01E-02	7.01E-02	0.04
6	1.25	CO-60	CO-60	Floor	2.53E+01	2.53E+01	0.20
6	1.5	CO-60	CO-60	Air	6.79E-02	6.79E-02	0.01
6	1.5	CO-60	CO-60	Floor	2.45E+01	2.45E+01	0.02

Deposition Velocity		0.00039	(m/s) =	1.404	(m/hr)					
	Outdoors	Poom 1	Boom 2	Boom 2	Boom 4	Poom F	Poom 6	Boom 7	Doom 9	Boom 0
	Outdoors	ROOM 1	ROOITI Z	ROOM 3	ROOM 4	ROUITI 5	ROOM	ROOM 7	ROOM 8	RUUIII 9
Area (m2)		36	36	36	36	36	36	36	36	36
Volume (m3)		90	90	90	90	90	90	90	90	90
Resuspension rate (1/s)		5.00E-07								
Resuspension rate (1/h)		1.80E-03								
Air flow (m2/br)										
from										
Outdoors	0	90	0	0	36	0	0	0	0	0
Room 1	0	0	72	0	36	0	0	0	0	0
Room 2	0	0	0	72	0	0	0	0	0	0
Room 3	36	0	0	0	18	0	18	0	0	0
Room 4	0	0	0	0	0	36	0	54	0	0
Room 5	0	0	0	0	0	0	36	0	18	0
Room 6	0	0	0	0	0	0	0	0	0	54
Room 7	0	0	0	0	0	0	0	0	54	0
Room 8	0	0	0	0	0	18	0	0	0	72
Room 9	90	18	0	0	0	0	0	0	18	0
Vacuum frequency (once in)	366	day(s) =	8784	hr(s)					
Vacuum efficiency		0								

Table 3.20 Air Flows, Vacuuming, and Resuspension and Deposition of Particulates Assumed for Case III

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Source Releases							
Location (Room No.)	2	Air Fraction	1	Area of sou	rce	36	m2
	Region 1	Region 2	Region 3	Region 4	Region 5		
Contamination?							
1-Yes, 2-No	1	2	2	2	2		
thickness (cm)	15	0	0	0	0		
density (g/cm3)	2.4	2.4	2.4	2.4	2.4		
erosion rate (cm/d)	2.40E-03	2.40E-08	2.40E-08	2.40E-08	2.40E-08		
Start time (d)	0.00E+00	6.25E+03	6.25E+03	6.25E+03	6.25E+03		
Start time (hr)	0	150000	150000	150000	150000		
End time (d)	6.25E+03	6.25E+03	6.25E+03	6.25E+03	6.25E+03		
End time (hr)	1.50E+05	1.50E+05	1.50E+05	1.50E+05	1.50E+05		
Release rate (g/hr)	86.4	0	0	0	0		

Table 3.21 Source Releases Assumed for Case III

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Table 3.22 Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case III

From "AirRelR	ate1.out"						
Rate of release	e of source material	to air					
fraction of sou	rce per second per	volume (m	3) of the ro	om of re	elease		
2.06E-11 from		time	0.00E+00	to	time	5.4E+08	seconds
8.64E+01	from	time	0.00E+00	to	time	150000	hrs
Initial source r	nass	1.30E+07	g				
Volume of sou	irce room	90	m3				
	Estimated Air						
time (hr)	release rate (g/hr)						
0	0						
2	86.4						
4	86.4						
6	86.4						
8	86.4						
10	86.4						
12	86.4						
14	86.4						
16	86.4						

Table 3.23 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case III

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

Figure 3.9 Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case III

Figure 3.10 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case III

Figure 3.11 Comparison of Calculated Source Particulate Concentrations in the Air of Room 9 for Case III

Figure 3.12 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 9 for Case III

The comparison of concentrations in the air and on the floor for the other rooms were like those for Room 9. As shown in the figures, the concentration results from RESRAD-BUILD and the spreadsheets are in good agreement.

Table 3.24 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 3. Table 3.25 compares the same calculated results in Room 9. The comparisons show good agreement between the calculated results from RESRAD-BUILD and the spreadsheets. All but eight results differ by less than 1%. The eight exceptions are the calculated concentrations at time 0 in Room 9; for them, the difference is more than 1% but less than 1.6%. The same calculated results in the other rooms from RESRAD-BUILD and the spreadsheets also show good agreement.

3.4 CASE IV – A VOLUME SOURCE IN ROOM 2 WITH SCHEDULED VACUUMING

Case IV considers the same cylindrical volume source in Room 2 as Case III. The more limited air exchange between rooms considered in Case III was also retained. However, vacuuming to remove dust deposition on the floor was assumed to occur every 14 days, with a dust removal efficiency of 80%. The estimated concentrations of source particles and radionuclides in the air and on the floor of each room from RESRAD-BUILD and the verification spreadsheets were compared.

The room dimensions, ventilation rates between rooms and with the outside environment, deposition velocity, and resuspension rate assumed for Case III were applicable to Case IV (Table 3.20). The properties of the radiation source as well as its releases over time assumed in Case III were also applicable to Case IV (Table 3.21). The air release rate calculated by RESRAD-BUILD, obtained from the intermediate output file "AirRelRate1.out," matched those calculated in the spreadsheet, after being converted from fraction of the initial source per second to mass of source materials per hour (Table 3.22).

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol. 1 (Yu et al. 2022) were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.26 presents part of the calculations and results at different time steps in the spreadsheets.

During the analysis of Case IV, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m^3 of air and the fraction of the initial source per m^2 on the floor. They were multiplied by the total mass of source (materials) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

					Concentration [(pC	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	RA-226	RA-226	Air	8.47E-01	8.43E-01	0.42
3	0	RA-226	RA-226	Floor	4.65E+02	4.63E+02	0.53
3	0	RA-226	PB-210	Air	3.71E-03	3.70E-03	0.19
3	0	RA-226	PB-210	Floor	2.29E+00	2.28E+00	0.32
3	0	RA-226	PO-210	Air	5.29E-04	5.29E-04	0.04
3	0	RA-226	PO-210	Floor	3.40E-01	3.40E-01	0.16
3	0.25	RA-226	RA-226	Air	1.19E+00	1.19E+00	0.11
3	0.25	RA-226	RA-226	Floor	8.82E+02	8.80E+02	0.17
3	0.25	RA-226	PB-210	Air	1.38E-02	1.38E-02	0.09
3	0.25	RA-226	PB-210	Floor	1.03E+01	1.03E+01	0.14
3	0.25	RA-226	PO-210	Air	3.93E-03	3.93E-03	0.04
3	0.25	RA-226	PO-210	Floor	2.94E+00	2.94E+00	0.09
3	0.5	RA-226	RA-226	Air	1.25E+00	1.25E+00	0.04
3	0.5	RA-226	RA-226	Floor	9.69E+02	9.68E+02	0.06
3	0.5	RA-226	PB-210	Air	2.41E-02	2.41E-02	0.04
3	0.5	RA-226	PB-210	Floor	1.87E+01	1.87E+01	0.05
3	0.5	RA-226	PO-210	Air	9.84E-03	9.84E-03	0.01
3	0.5	RA-226	PO-210	Floor	7.61E+00	7.61E+00	0.03
3	0.75	RA-226	RA-226	Air	1.27E+00	1.27E+00	0.02
3	0.75	RA-226	RA-226	Floor	9.87E+02	9.87E+02	0.03
3	0.75	RA-226	PB-210	Air	3.40E-02	3.40E-02	0.02
3	0.75	RA-226	PB-210	Floor	2.65E+01	2.65E+01	0.03
3	0.75	RA-226	PO-210	Air	1.72E-02	1.72E-02	0.00
3	0.75	RA-226	PO-210	Floor	1.34E+01	1.34E+01	0.00
3	1	RA-226	RA-226	Air	1.27E+00	1.27E+00	0.02
3	1	RA-226	RA-226	Floor	9.92E+02	9.92E+02	0.02
3	1	RA-226	PB-210	Air	4.37E-02	4.37E-02	0.01
3	1	RA-226	PB-210	Floor	3.41E+01	3.41E+01	0.02
3	1	RA-226	PO-210	Air	2.53E-02	2.53E-02	0.00
3	1	RA-226	PO-210	Floor	1.97E+01	1.97E+01	0.00
3	1.25	RA-226	RA-226	Air	1.27E+00	1.27E+00	0.01
3	1.25	RA-226	RA-226	Floor	9.93E+02	9.93E+02	0.01
3	1.25	RA-226	PB-210	Air	5.33E-02	5.33E-02	0.01
3	1.25	RA-226	PB-210	Floor	4.16E+01	4.16E+01	0.01
3	1.25	RA-226	PO-210	Air	3.40E-02	3.40E-02	0.00
3	1.25	RA-226	PO-210	Floor	2.65E+01	2.65E+01	0.00
3	1.5	RA-226	RA-226	Air	1.27E+00	1.27E+00	0.02
3	1.5	RA-226	RA-226	Floor	9.94E+02	9.93E+02	0.02
3	1.5	RA-226	PB-210	Air	6.28E-02	6.28E-02	0.01
3	1.5	RA-226	PB-210	Floor	4.90E+01	4.89E+01	0.02
3	1.5	RA-226	PO-210	Air	4.30E-02	4.30E-02	0.00
3	1.5	RA-226	PO-210	Floor	3.35E+01	3.35E+01	0.00

 Table 3.24 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case III

Table 3.24 (Continued)

					Concentration [(p0	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	CS-137	CS-137	Air	8.44E-01	8.41E-01	0.42
3	0	CS-137	CS-137	Floor	4.63E+02	4.61E+02	0.53
3	0.25	CS-137	CS-137	Air	1.18E+00	1.18E+00	0.11
3	0.25	CS-137	CS-137	Floor	8.74E+02	8.73E+02	0.17
3	0.5	CS-137	CS-137	Air	1.24E+00	1.24E+00	0.04
3	0.5	CS-137	CS-137	Floor	9.55E+02	9.55E+02	0.05
3	0.75	CS-137	CS-137	Air	1.24E+00	1.24E+00	0.01
3	0.75	CS-137	CS-137	Floor	9.68E+02	9.68E+02	0.02
3	1	CS-137	CS-137	Air	1.24E+00	1.24E+00	0.00
3	1	CS-137	CS-137	Floor	9.67E+02	9.67E+02	0.01
3	1.25	CS-137	CS-137	Air	1.23E+00	1.23E+00	0.00
3	1.25	CS-137	CS-137	Floor	9.63E+02	9.63E+02	0.00
3	1.5	CS-137	CS-137	Air	1.23E+00	1.23E+00	0.00
3	1.5	CS-137	CS-137	Floor	9.58E+02	9.58E+02	0.00
3	0	CO-60	CO-60	Air	8.31E-01	8.28E-01	0.42
3	0	CO-60	CO-60	Floor	4.55E+02	4.53E+02	0.54
3	0.25	CO-60	CO-60	Air	1.13E+00	1.13E+00	0.11
3	0.25	CO-60	CO-60	Floor	8.39E+02	8.38E+02	0.17
3	0.5	CO-60	CO-60	Air	1.16E+00	1.15E+00	0.04
3	0.5	CO-60	CO-60	Floor	8.93E+02	8.92E+02	0.05
3	0.75	CO-60	CO-60	Air	1.13E+00	1.13E+00	0.01
3	0.75	CO-60	CO-60	Floor	8.81E+02	8.80E+02	0.02
3	1	CO-60	CO-60	Air	1.10E+00	1.10E+00	0.00
3	1	CO-60	CO-60	Floor	8.56E+02	8.56E+02	0.00
3	1.25	CO-60	CO-60	Air	1.06E+00	1.06E+00	0.00
3	1.25	CO-60	CO-60	Floor	8.30E+02	8.30E+02	0.00
3	1.5	CO-60	CO-60	Air	1.03E+00	1.03E+00	0.00
3	1.5	CO-60	CO-60	Floor	8.03E+02	8.03E+02	0.00

					Concentration [(pC	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
9	0	RA-226	RA-226	Air	1.50E-01	1.48E-01	1.29
9	0	RA-226	RA-226	Floor	7.60E+01	7.48E+01	1.53
9	0	RA-226	PB-210	Air	7.30E-04	7.23E-04	0.94
9	0	RA-226	PB-210	Floor	4.02E-01	3.97E-01	1.21
9	0	RA-226	PO-210	Air	1.09E-04	1.08E-04	0.74
9	0	RA-226	PO-210	Floor	6.20E-02	6.14E-02	1.01
9	0.25	RA-226	RA-226	Air	3.30E-01	3.28E-01	0.52
9	0.25	RA-226	RA-226	Floor	2.27E+02	2.26E+02	0.67
9	0.25	RA-226	PB-210	Air	3.90E-03	3.88E-03	0.48
9	0.25	RA-226	PB-210	Floor	2.71E+00	2.69E+00	0.62
9	0.25	RA-226	PO-210	Air	1.12E-03	1.11E-03	0.42
9	0.25	RA-226	PO-210	Floor	7.82E-01	7.78E-01	0.55
9	0.5	RA-226	RA-226	Air	4.09E-01	4.08E-01	0.23
9	0.5	RA-226	RA-226	Floor	3.07E+02	3.06E+02	0.30
9	0.5	RA-226	PB-210	Air	7.90E-03	7.88E-03	0.22
9	0.5	RA-226	PB-210	Floor	5.93E+00	5.92E+00	0.29
9	0.5	RA-226	PO-210	Air	3.23E-03	3.22E-03	0.19
9	0.5	RA-226	PO-210	Floor	2.43E+00	2.42E+00	0.25
9	0.75	RA-226	RA-226	Air	4.37E-01	4.36E-01	0.10
9	0.75	RA-226	RA-226	Floor	3.37E+02	3.36E+02	0.13
9	0.75	RA-226	PB-210	Air	1.17E-02	1.17E-02	0.10
9	0.75	RA-226	PB-210	Floor	9.04E+00	9.03E+00	0.13
9	0.75	RA-226	PO-210	Air	5.92E-03	5.91E-03	0.07
9	0.75	RA-226	PO-210	Floor	4.56E+00	4.56E+00	0.10
9	1	RA-226	RA-226	Air	4.46E-01	4.46E-01	0.05
9	1	RA-226	RA-226	Floor	3.46E+02	3.46E+02	0.06
9	1	RA-226	PB-210	Air	1.53E-02	1.53E-02	0.04
9	1	RA-226	PB-210	Floor	1.19E+01	1.19E+01	0.06
9	1	RA-226	PO-210	Air	8.87E-03	8.87E-03	0.03
9	1	RA-226	PO-210	Floor	6.90E+00	6.89E+00	0.04
9	1.25	RA-226	RA-226	Air	4.48E-01	4.48E-01	0.03
9	1.25	RA-226	RA-226	Floor	3.49E+02	3.49E+02	0.03
9	1.25	RA-226	PB-210	Air	1.88E-02	1.88E-02	0.03
9	1.25	RA-226	PB-210	Floor	1.46E+01	1.46E+01	0.03
9	1.25	RA-226	PO-210	Air	1.20E-02	1.20E-02	0.01
9	1.25	RA-226	PO-210	Floor	9.33E+00	9.32E+00	0.01
9	1.5	RA-226	RA-226	Air	4.49E-01	4.49E-01	0.02
9	1.5	RA-226	RA-226	Floor	3.50E+02	3.50E+02	0.02
9	1.5	RA-226	PB-210	Air	2.21E-02	2.21E-02	0.02
9	1.5	RA-226	PB-210	Floor	1.73E+01	1.73E+01	0.02
9	1.5	RA-226	PO-210	Air	1.52E-02	1.51E-02	0.01
9	1.5	RA-226	PO-210	Floor	1.18E+01	1.18E+01	0.01

 Table 3.25 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 9 for Case III

Table 3.25 (Continued)

					Concentration [(p0	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
9	0	CS-137	CS-137	Air	1.49E-01	1.47E-01	1.29
9	0	CS-137	CS-137	Floor	7.57E+01	7.45E+01	1.53
9	0.25	CS-137	CS-137	Air	3.27E-01	3.25E-01	0.52
9	0.25	CS-137	CS-137	Floor	2.25E+02	2.24E+02	0.67
9	0.5	CS-137	CS-137	Air	4.03E-01	4.02E-01	0.22
9	0.5	CS-137	CS-137	Floor	3.03E+02	3.02E+02	0.29
9	0.75	CS-137	CS-137	Air	4.28E-01	4.28E-01	0.09
9	0.75	CS-137	CS-137	Floor	3.30E+02	3.30E+02	0.12
9	1	CS-137	CS-137	Air	4.35E-01	4.34E-01	0.03
9	1	CS-137	CS-137	Floor	3.38E+02	3.37E+02	0.05
9	1.25	CS-137	CS-137	Air	4.35E-01	4.35E-01	0.01
9	1.25	CS-137	CS-137	Floor	3.39E+02	3.39E+02	0.02
9	1.5	CS-137	CS-137	Air	4.33E-01	4.33E-01	0.00
9	1.5	CS-137	CS-137	Floor	3.38E+02	3.38E+02	0.01
9	0	CO-60	CO-60	Air	1.47E-01	1.45E-01	1.30
9	0	CO-60	CO-60	Floor	7.43E+01	7.31E+01	1.53
9	0.25	CO-60	CO-60	Air	3.13E-01	3.12E-01	0.52
9	0.25	CO-60	CO-60	Floor	2.16E+02	2.15E+02	0.67
9	0.5	CO-60	CO-60	Air	3.77E-01	3.76E-01	0.22
9	0.5	CO-60	CO-60	Floor	2.83E+02	2.82E+02	0.29
9	0.75	CO-60	CO-60	Air	3.90E-01	3.89E-01	0.09
9	0.75	CO-60	CO-60	Floor	3.00E+02	3.00E+02	0.12
9	1	CO-60	CO-60	Air	3.85E-01	3.85E-01	0.03
9	1	CO-60	CO-60	Floor	2.99E+02	2.99E+02	0.04
9	1.25	CO-60	CO-60	Air	3.75E-01	3.75E-01	0.01
9	1.25	CO-60	CO-60	Floor	2.92E+02	2.92E+02	0.01
9	1.5	CO-60	CO-60	Air	3.63E-01	3.63E-01	0.00
9	1.5	CO-60	CO-60	Floor	2.83E+02	2.83E+02	0.00

Table 3.26 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case IV

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

Figure 3.13 compares the air concentrations of source particles (g/m^3) in Room 2, where the volume source was assumed to be located. Figure 3.14 compares the floor deposition concentrations of source particles (g/m^2) in the same room. Figures 3.15 and 3.16 compare the air concentrations and floor deposition concentrations, respectively, in Room 9 which did not have direct air exchange with Room 2. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD. The comparison of concentrations in the air and on the floor for the other rooms were like those for Room 9. As shown in the figures, the concentration results from RESRAD-BUILD and the spreadsheets are in good agreement.

Table 3.27 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 1. Table 3.28 compares the same calculated results in Room 6. The comparisons show good agreement between the calculated results from RESRAD-BUILD and the spreadsheets. All but six results differ by less than 1%. The six exceptions are the calculated concentrations on the floor at time 0; for them, the difference is more than 1% but less than 1.2%. The same calculated results in the other rooms from RESRAD-BUILD and the spreadsheets also show good agreement.

3.5 CASE V – AN AREA SOURCE IN ROOM 3 WITH NO SCHEDULED VACUUMING

Case V considers an area source of 36 m² located in Room 3. The air exchange rates between rooms and with the outside environment were the same as in Cases III and IV. Vacuuming to remove dust deposition on the floor was not considered. The estimated concentrations of source particles and radionuclides in the air and on the floor of each room from RESRAD-BUILD and the verification spreadsheets were compared.

The room dimensions, ventilation rates between rooms and with the outside environment, deposition velocity, and resuspension rate assumed for Cases III and IV were applicable to Case IV (Table 3.20). The contaminated source materials were assumed to be eroded and released to the indoor air over several phases with a constant erosion/release rate in each phase. Table 3.29 lists the beginning and ending time and fraction of the source materials involved in each release phase.

The air release rates calculated by RESRAD-BUILD, listed in the intermediate output file "AirRelRate1.out," were in terms of the fraction of the initial source inventory. They were multiplied by the initial mass assumed for the source materials for comparison with the calculated source release rates from the spreadsheets. Table 3.30 shows the comparison of source release rates.

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol. 1 (Yu et al. 2022) were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.31 presents part of the calculations and results at different time steps in the spreadsheets.

Figure 3.13 Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case IV

Figure 3.14 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case IV

Figure 3.15 Comparison of Calculated Source Particulate Concentrations in the Air of Room 9 for Case IV

Figure 3.16 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 9 for Case IV

					Concentration [(pC	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD –Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	RA-226	RA-226	Air	7.02E-03	6.95E-03	0.91
1	0	RA-226	RA-226	Floor	1.55E+00	1.54E+00	1.17
1	0	RA-226	PB-210	Air	2.81E-05	2.81E-05	0.22
1	0	RA-226	PB-210	Floor	6.52E-03	6.50E-03	0.35
1	0	RA-226	PO-210	Air	3.85E-06	3.85E-06	0.03
1	0	RA-226	PO-210	Floor	8.97E-04	8.96E-04	0.07
1	0.25	RA-226	RA-226	Air	7.48E-03	7.48E-03	0.10
1	0.25	RA-226	RA-226	Floor	1.79E+00	1.79E+00	0.14
1	0.25	RA-226	PB-210	Air	8.68E-05	8.67E-05	0.06
1	0.25	RA-226	PB-210	Floor	2.08E-02	2.08E-02	0.10
1	0.25	RA-226	PO-210	Air	2.46E-05	2.46E-05	0.00
1	0.25	RA-226	PO-210	Floor	5.90E-03	5.89E-03	0.03
1	0.5	RA-226	RA-226	Air	7.31E-03	7.29E-03	0.29
1	0.5	RA-226	RA-226	Floor	1.71E+00	1.71E+00	0.11
1	0.5	RA-226	PB-210	Air	1.41E-04	1.40E-04	0.27
1	0.5	RA-226	PB-210	Floor	3.30E-02	3.30E-02	0.11
1	0.5	RA-226	PO-210	Air	5.74E-05	5.73E-05	0.23
1	0.5	RA-226	PO-210	Floor	1.35E-02	1.34E-02	0.08
1	0.75	RA-226	RA-226	Air	7.46E-03	7.46E-03	0.03
1	0.75	RA-226	RA-226	Floor	1.78E+00	1.78E+00	0.04
1	0.75	RA-226	PB-210	Air	2.00E-04	2.00E-04	0.02
1	0.75	RA-226	PB-210	Floor	4.79E-02	4.79E-02	0.05
1	0.75	RA-226	PO-210	Air	1.01E-04	1.01E-04	0.01
1	0.75	RA-226	PO-210	Floor	2.41E-02	2.41E-02	0.03
1	1	RA-226	RA-226	Air	7.33E-03	7.30E-03	0.36
1	1	RA-226	RA-226	Floor	1.72E+00	1.72E+00	0.33
1	1	RA-226	PB-210	Air	2.52E-04	2.51E-04	0.34
1	1	RA-226	PB-210	Floor	5.92E-02	5.91E-02	0.32
1	1	RA-226	PO-210	Air	1.46E-04	1.45E-04	0.31
1	1	RA-226	PO-210	Floor	3.43E-02	3.42E-02	0.29
1	1.25	RA-226	RA-226	Air	7.45E-03	7.45E-03	0.00
1	1.25	RA-226	RA-226	Floor	1.78E+00	1.78E+00	0.05
1	1.25	RA-226	PB-210	Air	3.12E-04	3.12E-04	0.01
1	1.25	RA-226	PB-210	Floor	7.43E-02	7.44E-02	0.05
1	1.25	RA-226	PO-210	Air	1.99E-04	1.99E-04	0.03
1	1.25	RA-226	PO-210	Floor	4.74E-02	4.74E-02	0.07
1	1.5	RA-226	RA-226	Air	7.35E-03	7.32E-03	0.41
1	1.5	RA-226	RA-226	Floor	1.73E+00	1.72E+00	0.25
1	1.5	RA-226	PB-210	Air	3.62E-04	3.60E-04	0.40
1	1.5	RA-226	PB-210	Floor	8.51E-02	8.49E-02	0.23
1	1.5	RA-226	PO-210	Air	2.48E-04	2.47E-04	0.39
1	1.5	RA-226	PO-210	Floor	5.83E-02	5.81E-02	0.22

Table 3.27 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case $\rm IV$

Table 3.27 (Continued)

					Concentration [(p0	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD -Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	CS-137	CS-137	Air	6.99E-03	6.93E-03	0.91
1	0	CS-137	CS-137	Floor	1.55E+00	1.53E+00	1.17
1	0.25	CS-137	CS-137	Air	7.42E-03	7.41E-03	0.10
1	0.25	CS-137	CS-137	Floor	1.78E+00	1.77E+00	0.14
1	0.5	CS-137	CS-137	Air	7.21E-03	7.19E-03	0.29
1	0.5	CS-137	CS-137	Floor	1.69E+00	1.69E+00	0.11
1	0.75	CS-137	CS-137	Air	7.32E-03	7.32E-03	0.02
1	0.75	CS-137	CS-137	Floor	1.75E+00	1.75E+00	0.03
1	1	CS-137	CS-137	Air	7.14E-03	7.12E-03	0.35
1	1	CS-137	CS-137	Floor	1.68E+00	1.67E+00	0.32
1	1.25	CS-137	CS-137	Air	7.22E-03	7.22E-03	0.02
1	1.25	CS-137	CS-137	Floor	1.72E+00	1.72E+00	0.06
1	1.5	CS-137	CS-137	Air	7.08E-03	7.05E-03	0.40
1	1.5	CS-137	CS-137	Floor	1.67E+00	1.66E+00	0.23
1	0	CO-60	CO-60	Air	6.90E-03	6.83E-03	0.92
1	0	CO-60	CO-60	Floor	1.53E+00	1.51E+00	1.19
1	0.25	CO-60	CO-60	Air	7.12E-03	7.12E-03	0.10
1	0.25	CO-60	CO-60	Floor	1.71E+00	1.70E+00	0.14
1	0.5	CO-60	CO-60	Air	6.75E-03	6.72E-03	0.47
1	0.5	CO-60	CO-60	Floor	1.59E+00	1.58E+00	0.95
1	0.75	CO-60	CO-60	Air	6.66E-03	6.65E-03	0.02
1	0.75	CO-60	CO-60	Floor	1.59E+00	1.59E+00	0.03
1	1	CO-60	CO-60	Air	6.32E-03	6.30E-03	0.35
1	1	CO-60	CO-60	Floor	1.49E+00	1.48E+00	0.32
1	1.25	CO-60	CO-60	Air	6.22E-03	6.22E-03	0.02
1	1.25	CO-60	CO-60	Floor	1.48E+00	1.48E+00	0.07
1	1.5	CO-60	CO-60	Air	5.94E-03	5.91E-03	0.40
1	1.5	CO-60	CO-60	Floor	1.40E+00	1.39E+00	0.23

					Concentration [(p0	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD –Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
6	0	RA-226	RA-226	Air	1.24E-01	1.23E-01	0.60
6	0	RA-226	RA-226	Floor	2.80E+01	2.76E+01	1.16
6	0	RA-226	PB-210	Air	4.90E-04	4.89E-04	0.19
6	0	RA-226	PB-210	Floor	1.16E-01	1.15E-01	0.72
6	0	RA-226	PO-210	Air	6.70E-05	6.69E-05	0.04
6	0	RA-226	PO-210	Floor	1.59E-02	1.58E-02	0.54
6	0.25	RA-226	RA-226	Air	1.29E-01	1.29E-01	0.16
6	0.25	RA-226	RA-226	Floor	3.16E+01	3.14E+01	0.59
6	0.25	RA-226	PB-210	Air	1.50E-03	1.49E-03	0.13
6	0.25	RA-226	PB-210	Floor	3.67E-01	3.65E-01	0.54
6	0.25	RA-226	PO-210	Air	4.24E-04	4.24E-04	0.07
6	0.25	RA-226	PO-210	Floor	1.04E-01	1.04E-01	0.47
6	0.5	RA-226	RA-226	Air	1.27E-01	1.27E-01	0.29
6	0.5	RA-226	RA-226	Floor	3.03E+01	3.01E+01	0.65
6	0.5	RA-226	PB-210	Air	2.44E-03	2.44E-03	0.27
6	0.5	RA-226	PB-210	Floor	5.83E-01	5.80E-01	0.64
6	0.5	RA-226	PO-210	Air	9.97E-04	9.94E-04	0.23
6	0.5	RA-226	PO-210	Floor	2.38E-01	2.36E-01	0.61
6	0.75	RA-226	RA-226	Air	1.29E-01	1.29E-01	0.12
6	0.75	RA-226	RA-226	Floor	3.15E+01	3.13E+01	0.49
6	0.75	RA-226	PB-210	Air	3.46E-03	3.45E-03	0.11
6	0.75	RA-226	PB-210	Floor	8.45E-01	8.41E-01	0.50
6	0.75	RA-226	PO-210	Air	1.74E-03	1.74E-03	0.08
6	0.75	RA-226	PO-210	Floor	4.26E-01	4.24E-01	0.48
6	1	RA-226	RA-226	Air	1.27E-01	1.27E-01	0.31
6	1	RA-226	RA-226	Floor	3.05E+01	3.02E+01	0.85
6	1	RA-226	PB-210	Air	4.37E-03	4.36E-03	0.30
6	1	RA-226	PB-210	Floor	1.05E+00	1.04E+00	0.84
6	1	RA-226	PO-210	Air	2.53E-03	2.52E-03	0.28
6	1	RA-226	PO-210	Floor	6.06E-01	6.01E-01	0.82
6	1.25	RA-226	RA-226	Air	1.29E-01	1.29E-01	0.09
6	1.25	RA-226	RA-226	Floor	3.13E+01	3.12E+01	0.41
6	1.25	RA-226	PB-210	Air	5.38E-03	5.38E-03	0.09
6	1.25	RA-226	PB-210	Floor	1.31E+00	1.31E+00	0.40
6	1.25	RA-226	PO-210	Air	3.43E-03	3.43E-03	0.07
6	1.25	RA-226	PO-210	Floor	8.36E-01	8.33E-01	0.39
6	1.5	RA-226	RA-226	Air	1.27E-01	1.27E-01	0.35
6	1.5	RA-226	RA-226	Floor	3.06E+01	3.03E+01	0.77
6	1.5	RA-226	PB-210	Air	6.28E-03	6.26E-03	0.34
6	1.5	RA-226	PB-210	Floor	1.51E+00	1.49E+00	0.76
6	1.5	RA-226	PO-210	Air	4.30E-03	4.28E-03	0.33
6	1.5	RA-226	PO-210	Floor	1.03E+00	1.02E+00	0.74

Table 3.28 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 6 for Case IV

Table 3.28 (Continued)

					Concentration [(p0	Ci/m3) or (pCi/m2)]	Difference (%)
	Begin						RESRAD –Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
6	0	CS-137	CS-137	Air	1.23E-01	1.23E-01	0.60
6	0	CS-137	CS-137	Floor	2.79E+01	2.76E+01	1.15
6	0.25	CS-137	CS-137	Air	1.28E-01	1.28E-01	0.15
6	0.25	CS-137	CS-137	Floor	3.14E+01	3.12E+01	0.59
6	0.5	CS-137	CS-137	Air	1.25E-01	1.25E-01	0.28
6	0.5	CS-137	CS-137	Floor	2.99E+01	2.97E+01	0.64
6	0.75	CS-137	CS-137	Air	1.26E-01	1.26E-01	0.11
6	0.75	CS-137	CS-137	Floor	3.09E+01	3.07E+01	0.49
6	1	CS-137	CS-137	Air	1.24E-01	1.24E-01	0.30
6	1	CS-137	CS-137	Floor	2.97E+01	0.84	
6	1.25	CS-137	CS-137	Air	1.25E-01	0.08	
6	1.25	CS-137	CS-137	Floor	3.04E+01	3.03E+01	0.39
6	1.5	CS-137	CS-137	Air	1.23E-01	1.22E-01	0.33
6	1.5	CS-137	CS-137	Floor	2.94E+01	2.92E+01	0.76
6	0	CO-60	CO-60	Air	1.22E-01	1.21E-01	0.61
6	0	CO-60	CO-60	Floor	2.75E+01	2.72E+01	1.16
6	0.25	CO-60	CO-60	Air	1.23E-01	1.23E-01	0.15
6	0.25	CO-60	CO-60	Floor	3.01E+01	2.99E+01	0.59
6	0.5	CO-60	CO-60	Air	1.17E-01	1.17E-01	0.28
6	0.5	CO-60	CO-60	Floor	2.79E+01	2.77E+01	0.64
6	0.75	CO-60	CO-60	Air	1.15E-01	1.15E-01	0.11
6	0.75	CO-60	CO-60	Floor	2.81E+01	2.79E+01	0.48
6	1	CO-60	CO-60	Air	1.10E-01	1.09E-01	0.30
6	1	CO-60	CO-60	Floor	2.63E+01	2.61E+01	0.84
6	1.25	CO-60	CO-60	Air	1.07E-01	1.07E-01	0.08
6	1.25	CO-60	CO-60	Floor	2.62E+01	2.61E+01	0.39
6	1.5	CO-60	CO-60	Air	1.03E-01	1.03E-01	0.33
6	1.5	CO-60	CO-60	Floor	2.47E+01	2.45E+01	0.75

Table 3.29 Source Releases Assumed for Case V

Source Releases											
Location (Room No	b.)	3		Air Fractio	n	1		Initial mas	S	1.000E+03	g
	Release 1	Release 2	Release 3	Release 4	Release 5	Release 6	Release 7	Release 8	Release 9	Release 10	
Start time (d)	0	30	60	100	120	200	280	350	1000	1100	
Start time (hr)	0	720	1440	2400	2880	4800	6720	8400	24000	26400	
End time (d)	30	60	100	120	200	280	350	1000	1100	1500	
End time (hr)	720	1440	2400	2880	4800	6720	8400	24000	26400	36000	
Fraction released	0.1	0.15	0.25	0.3	0.1	0	0.1	0	0	0	
Release rate (1/hr)	0.000138889	0.000208	0.00026	0.000625	5.20833E-05	0	5.95238E-05	0	(0 0	

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Table 3.30 Comparison of	f Calculated Air Release	e Rates from RESRA	D-BUILD and Spread	sheets for Case V

From "Air	RelRate1.ou	t"													
Rate of re	lease of sou	rce materi	al to air							Volume	of source	room		90	m3
fraction of	f source per	second pe	er volume (m3)	of the roor	n of rel	ease									
4.29E-10	from	time	0	to	time		2592000	seconds							
6.43E-10	from	time	2592000	to	time		5184000	seconds							
8.04E-10	from	time	5184000	to	time		8640000	seconds							
1.93E-09	from	time	8640000	to	time		10368000	seconds							
1.61E-10	from	time	10368000	to	time		17280000	seconds							
1.84E-10	from	time	24192000	to	time		30240000	seconds							
															1
	Estimated		RES	RAD-BUILD				Compar	ison of	Release	Rate (fr	action/h	r)		
								compu	.5011 01				• /		
	Air release			Air release		0.0007	7								
time (hr)	rate (1/hr)		time (hr)	rate (1/hr)	1	0.0006	5								
0	0		0.00	0.00E+00	1/4/		;								
2	0.0001389		0.10	1.39E-04			,								
4	0.0001389		720.00	1.39E-04	(fr.)	0.0004	1								
6	0.0001389		720.01	2.08E-04	+	0.0003	3								
8	0.0001389		1440.00	2.08E-04		ນ ກ	,								
10	0.0001389		1440.01	2.60E-04											
12	0.0001389		2400.00	2.60E-04	à	ž 0.0001									
14	0.0001389		2400.01	6.26E-04		()								
16	0.0001389		2880.00	6.26E-04			0 100	2000	3000	4000 50	000 6000	7000	8000	9000	10000
18	0.0001389		2880.01	5.21E-05						Time	e (hr)				
20	0.0001389		4800.00	5.21E-05											
22	0.0001389		4800.01	0.00E+00											
24	0.0001389		6720.00	0.00E+00											
26	0.0001389		6720.01	5.95E-05											
28	0.0001389		8400.00	5.95E-05											
30	0.0001389		8400.01	0.00E+00											
32	0.0001389		8800.00	0.00E+00											

time i	interval	<mark>2</mark> hr																	
	Room 1		om 1	Room 2		Room 3		Room 4		Room 5		Room 6		Room 7		Room 8		Room 9	
Source_Rm (1-Yes, 0-No) 0			0		1		0		0		0		0		0		0		
	Vacuum																		
	Remova	1	Floor		Floor		Floor		Floor		Floor		Floor		Floor		Floor		Floor
Relea	ase rate (1-Yes, C	- Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.	Air conc.	conc.
time (hr) (1/hr)	r) No)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)	(g/m3)	(g/m2)
0	0	0 0	0	0	0	0	0	0	0	0	0) C	0 0	0 0	0 0	0	0	C	0
2 0.000	00138889	0 0	0	0	0	0.00082897	0.002319	0	0	0	0	C	0 0	0 0	0 0	0	0	C	0
4 0.000	00138889	0 0	0	0	0	0.001052516	0.004943	8.042E-05	0.000113	0	0	9.98E-05	0.00014	C	0 0	0	0	C	0
6 0.000	00138889	0 0	0	0	0	0.001113573	0.007956	0.00012165	0.000395	1.94E-05	2.71E-05	0.000157	0.000498	2.9E-05	4.06E-05	0	0	2.43E-05	3.4E-05
8 0.000	00138889	0 2.15E-06	3.01E-06	0	0	0.001131137	0.011067	0.000137672	0.000756	3.51E-05	0.000103	0.000186	0.000976	5.27E-05	0.000155	1.27E-05	1.78E-05	4.32E-05	0.000128
10 0.000	00138889	0 4.29E-06	1.2E-05	9.24259E-07	1.29E-06	0.001137058	0.014201	0.000143805	0.001147	4.53E-05	0.000215	0.000201	0.001514	6.56E-05	0.00032	2.6E-05	7.18E-05	5.83E-05	0.00027
12 0.000	00138889	0 6.11E-06	2.65E-05	2.09379E-06	5.51E-06	0.001140257	0.017336	0.000146419	0.001549	5.15E-05	0.00035	0.000209	0.002082	7.18E-05	0.000511	3.55E-05	0.000158	6.94E-05	0.000447
14		-1			-			0001478							`			7E-05	0.00065
16		Floo	r Concent	tration (g/n	n2)			0001488	0.008			Air Con	contratio	on (g/m3)			2E-05	0.000869
18 4.5								0001496										4E-05	0.001097
20		Λ			-	Room 1		0001503	0.007			A -				Room 1		7E-05	0.00133
22						Room 2		0001509			(Room 2		8E-05	0.001566
24 3.5		- / · ·				-Room 3		0.000151	0.006									7E-05	0.001805
26		/				Room 4		0001519								Room F		3E-05	0.002045
28 3						Room 5		0001523	0.005							Room 6		9E-05	0.002285
30 2.5						- Room 6		0001528	0.004									4E-05	0.002527
32						Room 7		0001532	0.004							Room 8		9E-05	0.002768
34 2						Room 9		0001536	0.003							Room 9		4E-05	0.003011
36 15						Koonii 3		0001541]						-	8E-05	0.003253
38								0001545	0.002			$\langle \rangle$	_					3E-05	0.003497
40 1								0001549										7E-05	0.00374
42 0.5							-	0001553	0.001	1				3				2E-05	0.003984
44 0.5								000155										6E-05	0.004228
46 0								0001561	0	1000	2000	2000	4000	5000	6000	7000	2000	1E-05	0.004473
48 0	1000 2	000 300	0 4000	5000	6000	7000	8000	0001565	U	1000	2000	5000	4000 Time e (5000	3000	/000	0000	5E-05	0.004718
50			Ti	me (hr)				0001570					rine (,				9E-05	0.004963
52 0.00	00138889	0 1 09F-05	0.000561	6 48659E-06	0.000311	0.001176682	0.07888	0.000157423	0.00972	6 53E-05	0.003659	0.000233	0.014078	8 38F-05	0 0048	5 36E-05	0.002832	9 44F-05	0.005209
54 0.00	0138880	0 1.09E-05	0.000501	6 53183E-06	0.000328	0.001178305	0.07000	0.000157835	0.010126	6 56E-05	0.003820	0.000233	0.014670	8 /1E-05	0.0040	5 30E-05	0.002032	9.48E-05	0.005455

Table 3.31 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case V

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

During the analysis of Case V, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m^3 of air and the fraction of the initial source per m^2 on the floor. They were multiplied by the total mass of source (materials) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

Figures 3.17 and 3.18 compare the air concentrations (g/m³) and floor deposition concentrations (g/m²), respectively, in Room 1, which did not have direct air exchange with Room 3, where the area source was located. Figures 3.19 and 3.20 compare the air concentrations and floor deposition concentrations, respectively, in Room 3. Figures 3.21 and 3.22 compare the air concentrations and floor deposition concentrations, respectively, in Room 5. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD. As shown in the figures, the concentration results from RESRAD-BUILD and the spreadsheets are in good agreement. Good agreement was observed with the concentration results in other rooms.

Table 3.32 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 3. Table 3.33 compares the same calculated results in Room 9. The comparisons show good agreement between the calculated results from RESRAD-BUILD and the spreadsheets; all results differ by less than 3%. The differences seem to increase with time, which is typical with numerical analysis solutions.

3.6 CASE VI – AN AREA SOURCE IN ROOM 3 WITH SCHEDULED VACUUMING

Case VI considered the same area source as Case V that had an area of 36 m² and was in Room 3 of the building. It was assumed that regular vacuuming was conducted to remove dust deposition on the floor. The efficiency of vacuuming was 80%. Potential radiation dose and cancer risk to four receptors, located in Rooms 1, 3, 6, and 9, respectively, via the inhalation of airborne particulates, ingestion of source particles, and external radiation emitted by airborne particulates were evaluated.

The room dimensions, ventilation rates between rooms and with the outside environment, deposition velocity, and resuspension rate assumed for Case V (same as Cases III and IV) were applicable to Case VI (Table 3.20). The contaminated source materials were assumed to be eroded away over several phases with a constant erosion rate in each phase, as assumed in Case V (Table 3.29). However, only 50% of the eroded materials were assumed to become airborne and get into the indoor air.

3.6.1 Calculation and Comparison of Release Rates and Source Concentrations

The air release rates calculated by RESRAD-BUILD, listed in the intermediate output file "AirRelRate1.out," were in terms of the fraction of the initial source inventory. They were multiplied by the initial mass assumed for the source materials for comparison with the calculated air release rates from the spreadsheets. Table 3.34 shows that the converted air release rates from RESRAD-BUILD match those from the spreadsheets.

Figure 3.17 Comparison of Calculated Source Particulate Concentrations in the Air of Room 1 for Case V

Figure 3.18 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 1 for Case V

Figure 3.19 Comparison of Calculated Source Particulate Concentrations in the Air of Room 3 for Case V

Figure 3.20 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 3 for Case V

Figure 3.21 Comparison of Calculated Source Particulate Concentrations in the Air of Room 5 for Case V

Figure 3.22 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 5 for Case V

					Concentration [(pCi/m3) or (pCi/m2)]		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	RA-226	RA-226	Air	8.43E-05	8.41E-05	0.27
3	0	RA-226	RA-226	Floor	4.48E-02	4.46E-02	0.33
3	0	RA-226	PB-210	Air	3.87E-07	3.86E-07	0.12
3	0	RA-226	PB-210	Floor	2.27E-04	2.27E-04	0.20
3	0	RA-226	PO-210	Air	5.65E-08	5.65E-08	0.01
3	0	RA-226	PO-210	Floor	3.43E-05	3.43E-05	0.07
3	0.25	RA-226	RA-226	Air	1.11E-04	1.11E-04	0.08
3	0.25	RA-226	RA-226	Floor	9.51E-02	9.50E-02	0.10
3	0.25	RA-226	PB-210	Air	1.16E-06	1.16E-06	0.15
3	0.25	RA-226	PB-210	Floor	1.06E-03	1.06E-03	0.04
3	0.25	RA-226	PO-210	Air	3.03E-07	3.03E-07	0.24
3	0.25	RA-226	PO-210	Floor	2.90E-04	2.90E-04	0.04
3	0.5	RA-226	RA-226	Air	1.82E-05	1.84E-05	1.05
3	0.5	RA-226	RA-226	Floor	2.49E-02	2.51E-02	0.70
3	0.5	RA-226	PB-210	Air	3.26E-07	3.30E-07	1.06
3	0.5	RA-226	PB-210	Floor	4.51E-04	4.54E-04	0.71
3	0.5	RA-226	PO-210	Air	1.26E-07	1.28E-07	1.09
3	0.5	RA-226	PO-210	Floor	1.76E-04	1.77E-04	0.75
3	0.75	RA-226	RA-226	Air	2.33E-05	2.33E-05	0.06
3	0.75	RA-226	RA-226	Floor	1.64E-02	1.64E-02	0.09
3	0.75	RA-226	PB-210	Air	6.23E-07	6.23E-07	0.01
3	0.75	RA-226	PB-210	Floor	4.48E-04	4.48E-04	0.07
3	0.75	RA-226	PO-210	Air	3.14E-07	3.14E-07	0.07
3	0.75	RA-226	PO-210	Floor	2.28E-04	2.28E-04	0.04
3	1	RA-226	RA-226	Air	4.11E-06	4.17E-06	1.37
3	1	RA-226	RA-226	Floor	6.52E-03	6.60E-03	1.19
3	1	RA-226	PB-210	Air	1.37E-07	1.39E-07	1.37
3	1	RA-226	PB-210	Floor	2.17E-04	2.19E-04	1.19
3	1	RA-226	PO-210	Air	7.80E-08	7.91E-08	1.39
3	1	RA-226	PO-210	Floor	1.23E-04	1.25E-04	1.21
3	1.25	RA-226	RA-226	Air	8.40E-07	8.58E-07	2.16
3	1.25	RA-226	RA-226	Floor	1.09E-03	1.11E-03	2.00
3	1.25	RA-226	PB-210	Air	3.44E-08	3.52E-08	2.16
3	1.25	RA-226	PB-210	Floor	4.45E-05	4.54E-05	2.00
3	1.25	RA-226	PO-210	Air	2.18E-08	2.22E-08	2.18
3	1.25	RA-226	PO-210	Floor	2.81E-05	2.87E-05	2.02
3	1.5	RA-226	RA-226	Air	2.32E-07	2.39E-07	2.96
3	1.5	RA-226	RA-226	Floor	2.68E-04	2.75E-04	2.78
3	1.5	RA-226	PB-210	Air	1.13E-08	1.16E-08	2.97
3	1.5	RA-226	PB-210	Floor	1.30E-05	1.34E-05	2.79
3	1.5	RA-226	PO-210	Air	7.67E-09	7.90E-09	2.98
3	1.5	RA-226	PO-210	Floor	8.84E-06	9.08E-06	2.80

Table 3.32 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case V $\,$

Table 3.32 (Continued)

					Concentration [(pCi/m3) or (pCi/m2)]		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	CS-137	CS-137	Air	8.40E-05	8.38E-05	0.27
3	0	CS-137	CS-137	Floor	4.46E-02	4.44E-02	0.33
3	0.25	CS-137	CS-137	Air	1.10E-04	1.11E-04	0.09
3	0.25	CS-137	CS-137	Floor	9.44E-02	9.43E-02	0.10
3	0.5	CS-137	CS-137	Air	1.80E-05	1.82E-05	1.06
3	0.5	CS-137	CS-137	Floor	2.46E-02	2.47E-02	0.70
3	0.75	CS-137	CS-137	Air	2.28E-05	2.28E-05	0.05
3	0.75	CS-137	CS-137	Floor	1.61E-02	1.61E-02	0.09
3	1	CS-137	CS-137	Air	4.01E-06	4.07E-06	1.38
3	1	CS-137	CS-137	Floor	6.36E-03	6.44E-03	1.20
3	1.25	CS-137	CS-137	Air	8.14E-07	8.32E-07	2.17
3	1.25	CS-137	CS-137	Floor	1.06E-03	1.08E-03	2.01
3	1.5	CS-137	CS-137	Air	2.24E-07	2.31E-07	2.98
3	1.5	CS-137	CS-137	Floor	2.58E-04	2.65E-04	2.80
3	0	CO-60	CO-60	Air	8.27E-05	8.25E-05	0.27
3	0	CO-60	CO-60	Floor	4.38E-02	4.37E-02	0.33
3	0.25	CO-60	CO-60	Air	1.06E-04	1.07E-04	0.08
3	0.25	CO-60	CO-60	Floor	9.08E-02	9.07E-02	0.10
3	0.5	CO-60	CO-60	Air	1.69E-05	1.71E-05	1.06
3	0.5	CO-60	CO-60	Floor	2.30E-02	2.32E-02	0.70
3	0.75	CO-60	CO-60	Air	2.08E-05	2.07E-05	0.05
3	0.75	CO-60	CO-60	Floor	1.46E-02	1.46E-02	0.09
3	1	CO-60	CO-60	Air	3.57E-06	3.62E-06	1.38
3	1	CO-60	CO-60	Floor	5.66E-03	5.73E-03	1.20
3	1.25	CO-60	CO-60	Air	7.04E-07	7.19E-07	2.18
3	1.25	CO-60	CO-60	Floor	9.12E-04	9.31E-04	2.01
3	1.5	CO-60	CO-60	Air	1.88E-07	1.94E-07	2.98
3	1.5	CO-60	CO-60	Floor	2.17E-04	2.23E-04	2.80

					Concentration [(pCi/m3) or (pCi/m2)]		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
9	0	RA-226	RA-226	Air	1.44E-05	1.43E-05	0.94
9	0	RA-226	RA-226	Floor	7.13E-03	7.03E-03	1.34
9	0	RA-226	PB-210	Air	7.23E-08	7.18E-08	0.75
9	0	RA-226	PB-210	Floor	3.84E-05	3.80E-05	1.09
9	0	RA-226	PO-210	Air	1.10E-08	1.09E-08	0.65
9	0	RA-226	PO-210	Floor	5.99E-06	5.93E-06	0.91
9	0.25	RA-226	RA-226	Air	3.52E-05	3.50E-05	0.35
9	0.25	RA-226	RA-226	Floor	2.54E-02	2.52E-02	0.58
9	0.25	RA-226	PB-210	Air	4.01E-07	4.00E-07	0.25
9	0.25	RA-226	PB-210	Floor	2.99E-04	2.97E-04	0.48
9	0.25	RA-226	PO-210	Air	1.12E-07	1.12E-07	0.18
9	0.25	RA-226	PO-210	Floor	8.53E-05	8.50E-05	0.38
9	0.5	RA-226	RA-226	Air	1.82E-05	1.83E-05	0.69
9	0.5	RA-226	RA-226	Floor	1.76E-02	1.77E-02	0.46
9	0.5	RA-226	PB-210	Air	3.39E-07	3.41E-07	0.72
9	0.5	RA-226	PB-210	Floor	3.30E-04	3.31E-04	0.49
9	0.5	RA-226	PO-210	Air	1.35E-07	1.36E-07	0.76
9	0.5	RA-226	PO-210	Floor	1.32E-04	1.33E-04	0.53
9	0.75	RA-226	RA-226	Air	1.01E-05	1.02E-05	0.77
9	0.75	RA-226	RA-226	Floor	8.81E-03	8.87E-03	0.68
9	0.75	RA-226	PB-210	Air	2.71E-07	2.73E-07	0.74
9	0.75	RA-226	PB-210	Floor	2.35E-04	2.36E-04	0.64
9	0.75	RA-226	PO-210	Air	1.36E-07	1.37E-07	0.57
9	0.75	RA-226	PO-210	Floor	1.18E-04	1.19E-04	0.66
9	1	RA-226	RA-226	Air	5.08E-06	5.15E-06	1.28
9	1	RA-226	RA-226	Floor	5.07E-03	5.13E-03	1.09
9	1	RA-226	PB-210	Air	1.72E-07	1.74E-07	1.29
9	1	RA-226	PB-210	Floor	1.72E-04	1.73E-04	1.10
9	1	RA-226	PO-210	Air	9.84E-08	9.97E-08	1.32
9	1	RA-226	PO-210	Floor	9.85E-05	9.96E-05	1.13
9	1.25	RA-226	RA-226	Air	1.74E-06	1.78E-06	2.11
9	1.25	RA-226	RA-226	Floor	1.88E-03	1.91E-03	1.92
9	1.25	RA-226	PB-210	Air	7.18E-08	7.33E-08	2.12
9	1.25	RA-226	PB-210	Floor	7.73E-05	7.87E-05	1.93
9	1.25	RA-226	PO-210	Air	4.54E-08	4.64E-08	2.14
9	1.25	RA-226	PO-210	Floor	4.89E-05	4.99E-05	1.94
9	1.5	RA-226	RA-226	Air	5.51E-07	5.67E-07	2.95
9	1.5	RA-226	RA-226	Floor	6.07E-04	6.24E-04	2.75
9	1.5	RA-226	PB-210	Air	2.67E-08	2.75E-08	2.95
9	1.5	RA-226	PB-210	Floor	2.95E-05	3.03E-05	2.76
9	1.5	RA-226	PO-210	Air	1.82E-08	1.87E-08	2.97
9	1.5	RA-226	PO-210	Floor	2.01E-05	2.06E-05	2.78

Table 3.33 Comparison of Calculated Average Concentrations of Radionuclides in the Air and on the Floor of Room 9 for Case V $\,$

Table 3.33 (Continued)

					Concentration [(pCi/m3) or (pCi/m2)]		Difference (%)
	Begin						RESRAD – Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
9	0	CS-137	CS-137	Air	1.44E-05	1.42E-05	0.94
9	0	CS-137	CS-137	Floor	7.10E-03	7.01E-03	1.34
9	0.25	CS-137	CS-137	Air	3.49E-05	3.48E-05	0.34
9	0.25	CS-137	CS-137	Floor	2.52E-02	2.50E-02	0.57
9	0.5	CS-137	CS-137	Air	1.79E-05	1.81E-05	0.70
9	0.5	CS-137	CS-137	Floor	1.74E-02	1.74E-02	0.47
9	0.75	CS-137	CS-137	Air	9.93E-06	1.00E-05	0.78
9	0.75	CS-137	CS-137	Floor	8.64E-03	8.70E-03	0.69
9	1	CS-137	CS-137	Air	4.96E-06	5.02E-06	1.30
9	1	CS-137	CS-137	Floor	4.95E-03	5.00E-03	1.11
9	1.25	CS-137	CS-137	Air	1.69E-06	1.73E-06	2.13
9	1.25	CS-137	CS-137	Floor	1.82E-03	1.85E-03	1.93
9	1.5	CS-137	CS-137	Air	5.31E-07	5.47E-07	2.96
9	1.5	CS-137	CS-137	Floor	5.86E-04	6.02E-04	2.77
9	0	CO-60	CO-60	Air	1.41E-05	1.40E-05	0.94
9	0	CO-60	CO-60	Floor	6.97E-03	6.88E-03	1.34
9	0.25	CO-60	CO-60	Air	3.35E-05	3.34E-05	0.35
9	0.25	CO-60	CO-60	Floor	2.42E-02	2.40E-02	0.58
9	0.5	CO-60	CO-60	Air	1.68E-05	1.69E-05	0.70
9	0.5	CO-60	CO-60	Floor	1.62E-02	1.63E-02	0.46
9	0.75	CO-60	CO-60	Air	9.04E-06	9.11E-06	0.74
9	0.75	CO-60	CO-60	Floor	7.87E-03	7.92E-03	0.67
9	1	CO-60	CO-60	Air	4.40E-06	4.45E-06	1.30
9	1	CO-60	CO-60	Floor	4.39E-03	4.44E-03	1.11
9	1.25	CO-60	CO-60	Air	1.46E-06	1.49E-06	2.13
9	1.25	CO-60	CO-60	Floor	1.57E-03	1.60E-03	1.93
9	1.5	CO-60	CO-60	Air	4.46E-07	4.60E-07	2.97
9	1.5	CO-60	CO-60	Floor	4.92E-04	5.06E-04	2.77

From "Air	RelRate1.ou	t"													
Rate of re	lease of sou	rce materi	al to air						Volume o	f source room	90	<mark>)</mark> m3	(reflect val	ue in input	; file)
fraction o	f source per	second pe	er volume (m3)	of the roor	n of release	9									
2.14E-10	from	time	0	to	time	2592000	seconds	720	hr						
3.22E-10	from	time	2592000	to	time	5184000	seconds	1440	hr						
4.02E-10	from	time	5184000	to	time	8640000	seconds	2400	hr						
9.65E-10	from	time	8640000	to	time	10368000	seconds	2880	hr						
8.04E-11	from	time	10368000	to	time	17280000	seconds	4800	hr						
9.19E-11	from	time	24192000	to	time	30240000	seconds	8400	hr						
	Estimated			RRB					Comp	arison of Rele	ase Rate (fr	action/h	r)		
	Air roloaco			Air roloaco			0.00035								
time (hr)	All Teledse		time (br)	All Telease			0.00035								
ume (m)							0 0003								
2	6 044E-05		0.00	6 95E-05			0.0000								
Z	6.944E-05		720.00	6 95E-05			<u>नि</u> 0.00025								
4	6 044E 05		720.00	1.045.04			/uo								
0	6.944E-05		1440.00	1.04E-04			0.0002								_
10	6 044E-05		1440.00	1.04L-04			(fr								
10	6 944F-05		2400.00	1.30E-04			e 0.00015								
14	6 944F-05		2400.00	3 13F-04			ase								
16	6 944F-05		2400.01	3 13E-04			0.0001	- F							_
18	6 944F-05		2880.00	2 60F-05			Ľ.								
20	6 944F-05		4800.00	2.00E 05			0.00005								_
20	6 944F-05		4800.00	0.00E+00						L + -					
24	6 944F-05		6720.00	0.00E+00			0							_	
24	6 944F-05		6720.00	2 98F-05				0 1000	0 2000	3000 4000	5000 60	00 7000	8000	9000 1	10000
20	6 944F-05		8400.00	2.38E-05							Time (hr)				
20	6 944F-05		8400.01	0.00F+00											
20	6 944F-05		8800.00	0.00E+00											
52	0.3441-03		0000.00	0.002 000											

Table 3.34 Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case VI

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It reflected the input to the RESRAD-BUILD code.

The remaining mass of source materials were multiplied with the ingrowth and decay factors to estimate the remaining radioactivity in the source and the integrated radioactivity directly ingested over the exposure duration by a receptor located in the same room as the source, in this case, Receptor 2. Table 3.35 compares the average radioactivity remaining in the source over the exposure duration from RESRAD-BUILD and the spreadsheets. Table 3.36 compares the integrated radioactivity directly ingested over the exposure duration, based on full occupancy. The results from RESRAD-BUILD were listed in the intermediate output file "AirRelTimeIntegratedConcSource1.out." The comparisons show the RESRAD-BUILD results agree well with the spreadsheet results, with differences of less than 1.2%.

3.6.2 Calculation and Comparison of Air and Floor Concentrations

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol. 1 (Yu et al. 2022) describe the change in the fraction of source materials suspended in the air and deposited on the floor, respectively, in each room of the building as a function of time. They were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.37 presents part of the calculations and results at different time steps in the spreadsheets.

During the analysis of Case VI, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m³ of air and the fraction of the initial source per m² on the floor. They were multiplied by the initial mass of source (materials) (assumed to be 1,000 g) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

Figure 3.23 compares the air concentrations of source particles (g/m³) in Room 3, where the area source was assumed to be located. Figure 3.24 compares the floor deposition concentrations of source particles (g/m²) in the same room. Figures 3.25 and 3.26 compare the air concentrations and floor deposition concentrations, respectively, in Room 6. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD. As shown in the figures, the concentration results from RESRAD-BUILD and the spreadsheets are in good agreement. The comparison of concentrations in the air and on the floor of other rooms also shows good agreement.

Table 3.38 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 1. Table 3.39 compares the same calculated results in Room 3. For most of the results, the comparisons show good agreement between RESRAD-BUILD and the spreadsheets. More than 10% of differences were observed when radionuclide concentrations were very small, i.e., close to 0. This is thought to be due to the different precisions used in RESRAD-BUILD and spreadsheets for numeric values.

					Time Averaged Radioactivity (pCi)		Difference (%)
		Begin					RESRAD-Spreadsheet
iSrc	iTime	Time (yr)	Parent	Porgeny	RESRAD-BUILD	Estimated	RESRAD
1	1	0	RA-226	RA-226	2.90E+01	2.91E+01	0.02
1	1	0	RA-226	PB-210	1.02E-01	1.02E-01	0.06
1	1	0	RA-226	PO-210	1.32E-02	1.32E-02	0.19
1	2	0.25	RA-226	RA-226	8.54E+00	8.56E+00	0.24
1	2	0.25	RA-226	PB-210	9.00E-02	9.02E-02	0.22
1	2	0.25	RA-226	PO-210	2.37E-02	2.38E-02	0.23
1	3	0.5	RA-226	RA-226	3.67E+00	3.67E+00	0.04
1	3	0.5	RA-226	PB-210	7.04E-02	7.04E-02	0.04
1	3	0.5	RA-226	PO-210	2.86E-02	2.87E-02	0.06
1	4	0.75	RA-226	RA-226	1.62E+00	1.63E+00	0.56
1	4	0.75	RA-226	PB-210	4.08E-02	4.10E-02	0.58
1	4	0.75	RA-226	PO-210	1.97E-02	1.99E-02	0.61
1	5	1	RA-226	RA-226	0.00E+00	0.00E+00	-
1	5	1	RA-226	PB-210	0.00E+00	0.00E+00	-
1	5	1	RA-226	PO-210	0.00E+00	0.00E+00	-
1	6	1.25	RA-226	RA-226	0.00E+00	0.00E+00	-
1	6	1.25	RA-226	PB-210	0.00E+00	0.00E+00	-
1	6	1.25	RA-226	PO-210	0.00E+00	0.00E+00	-
1	7	1.5	RA-226	RA-226	0.00E+00	0.00E+00	-
1	7	1.5	RA-226	PB-210	0.00E+00	0.00E+00	-
1	7	1.5	RA-226	PO-210	0.00E+00	0.00E+00	-
1	1	0	CS-137	CS-137	2.90E+01	2.90E+01	0.02
1	2	0.25	CS-137	CS-137	8.47E+00	8.49E+00	0.25
1	3	0.5	CS-137	CS-137	3.62E+00	3.62E+00	0.05
1	4	0.75	CS-137	CS-137	1.59E+00	1.60E+00	0.57
1	5	1	CS-137	CS-137	0.00E+00	0.00E+00	-
1	6	1.25	CS-137	CS-137	0.00E+00	0.00E+00	-
1	7	1.5	CS-137	CS-137	0.00E+00	0.00E+00	-
1	1	0	CO-60	CO-60	2.86E+01	2.86E+01	0.02
1	2	0.25	CO-60	CO-60	8.17E+00	8.19E+00	0.25
1	3	0.5	CO-60	CO-60	3.39E+00	3.39E+00	0.05
1	4	0.75	CO-60	CO-60	1.45E+00	1.46E+00	0.57
1	5	1	CO-60	CO-60	0.00E+00	0.00E+00	-
1	6	1.25	CO-60	CO-60	0.00E+00	0.00E+00	-
1	7	1.5	CO-60	CO-60	0.00E+00	0.00E+00	-

 Table 3.35 Comparison of Time-Averaged Radioactivity Remaining in the Source over the Exposure Duration for Case VI

Time Integrated Radioactivity (pCi) Difference (%) RESRAD-Spreadsheet Begin RESRAD iSrc iTime Time (yr) Parent Porgeny **RESRAD-BUILD** Estimated 1 1 0 RA-226 7.88E-04 7.88E-04 0.09 RA-226 1 1 0 RA-226 PB-210 0.06 3.05E-06 3.05E-06 1 1 0 RA-226 PO-210 4.17E-07 4.17E-07 0.18 1 2 0.25 RA-226 RA-226 7.88E-04 7.88E-04 0.00 1 2 0.25 RA-226 PB-210 9.13E-06 9.13E-06 0.01 1 2 0.25 RA-226 PO-210 2.59E-06 2.59E-06 0.05 1 3 0.5 RA-226 RA-226 1.50E-04 1.52E-04 1.10 1 3 0.5 RA-226 PB-210 2.42E-06 2.45E-06 1.13 3 0.5 RA-226 1 PO-210 8.67E-07 8.77E-07 1.17 RA-226 RA-226 1 4 0.75 6.05E-04 6.04E-04 0.10 4 0.75 RA-226 PB-210 0.03 1 1.60E-05 1.60E-05 1 4 0.75 RA-226 PO-210 7.99E-06 7.99E-06 0.04 1 5 RA-226 RA-226 0.00E+00 0.00E+00 _ 1 -1 5 1 RA-226 PB-210 0.00E+00 0.00E+00 _ 1 5 1 RA-226 PO-210 0.00E+00 0.00E+00 6 1.25 RA-226 RA-226 0.00E+00 0.00E+00 _ 1 1 6 1.25 RA-226 PB-210 0.00E+00 0.00E+00 _ 1 6 1.25 RA-226 PO-210 0.00E+00 0.00E+00 _ 7 1 1.5 RA-226 RA-226 0.00E+00 0.00E+00 _

7

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1.5

1.5

0

0.25

0.5

0.75

1

1.25

1.5

0

0.25

0.5

0.75

1

1.25

1.5

RA-226

RA-226

CS-137

CS-137

CS-137

CS-137

CS-137

CS-137

CS-137

CO-60

CO-60

CO-60

CO-60

CO-60

CO-60

CO-60

PB-210

PO-210

CS-137

CS-137

CS-137

CS-137

CS-137

CS-137

CS-137

CO-60

CO-60

CO-60

CO-60

CO-60

CO-60

CO-60

0.00E+00

0.00E+00

7.86E-04

7.82E-04

1.48E-04

5.93E-04

0.00E+00

0.00E+00

0.00E+00

7.76E-04

7.50E-04

1.40E-04

5.40E-04

0.00E+00

0.00E+00

0.00E+00

0.00E+00

0.00E+00

7.85E-04

7.82E-04

1.50E-04

5.92E-04

0.00E+00

0.00E+00

0.00E+00

7.75E-04

7.51E-04

1.42E-04

5.39E-04

0.00E+00

0.00E+00

0.00E+00

_

_

0.09

0.00

1.11

0.09

_

_

_

0.09

0.00

1.11

0.10

_

_

_

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Table 3.36 Comparison of Time-Integrated Radioactivity Directly Ingested over the Exp	osure
Duration for Case VI	

Table 3.37 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case VI

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

Figure 3.23 Comparison of Calculated Source Particulate Concentrations in the Air of Room 3 for Case VI

Figure 3.24 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 3 for Case VI

Figure 3.25 Comparison of Calculated Source Particulate Concentrations in the Air of Room 6 for Case VI

Figure 3.26 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 6 for Case VI

					Concentration (pCi/m3 or pCi/m2)		Difference (%)
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	RA-226	RA-226	Air	4.40E-07	4.35E-07	0.98
1	0	RA-226	RA-226	Floor	9.58E-05	9.44E-05	1.44
1	0	RA-226	PB-210	Air	1.97E-09	1.96E-09	0.51
1	0	RA-226	PB-210	Floor	4.43E-07	4.38E-07	0.92
1	0	RA-226	PO-210	Air	2.83E-10	2.82E-10	0.32
1	0	RA-226	PO-210	Floor	6.40E-08	6.36E-08	0.69
1	0.25	RA-226	RA-226	Air	4.85E-07	4.86E-07	0.17
1	0.25	RA-226	RA-226	Floor	1.26E-04	1.26E-04	0.22
1	0.25	RA-226	PB-210	Air	4.84E-09	4.86E-09	0.40
1	0.25	RA-226	PB-210	Floor	1.29E-06	1.29E-06	0.04
1	0.25	RA-226	PO-210	Air	1.21E-09	1.21E-09	0.60
1	0.25	RA-226	PO-210	Floor	3.28E-07	3.29E-07	0.27
1	0.5	RA-226	RA-226	Air	2.78E-08	2.85E-08	2.46
1	0.5	RA-226	RA-226	Floor	8.43E-06	8.64E-06	2.53
1	0.5	RA-226	PB-210	Air	4.58E-10	4.70E-10	2.63
1	0.5	RA-226	PB-210	Floor	1.42E-07	1.45E-07	2.70
1	0.5	RA-226	PO-210	Air	1.66E-10	1.71E-10	2.78
1	0.5	RA-226	PO-210	Floor	5.22E-08	5.37E-08	2.85
1	0.75	RA-226	RA-226	Air	1.04E-07	1.04E-07	0.45
1	0.75	RA-226	RA-226	Floor	2.45E-05	2.44E-05	0.73
1	0.75	RA-226	PB-210	Air	2.78E-09	2.77E-09	0.24
1	0.75	RA-226	PB-210	Floor	6.65E-07	6.62E-07	0.48
1	0.75	RA-226	PO-210	Air	1.40E-09	1.40E-09	0.09
1	0.75	RA-226	PO-210	Floor	3.37E-07	3.36E-07	0.30
1	1	RA-226	RA-226	Air	7.48E-10	8.49E-10	13.54
1	1	RA-226	RA-226	Floor	5.35E-07	6.13E-07	14.67
1	1	RA-226	PB-210	Air	2.35E-11	2.67E-11	13.59
1	1	RA-226	PB-210	Floor	1.68E-08	1.93E-08	14.69
1	1	RA-226	PO-210	Air	1.29E-11	1.47E-11	13.64
1	1	RA-226	PO-210	Floor	9.28E-09	1.06E-08	14.73
1	1.25	RA-226	RA-226	Air	1.40E-14	1.78E-14	26.72
1	1.25	RA-226	RA-226	Floor	1.36E-11	1.72E-11	26.29
1	1.25	RA-226	PB-210	Air	5.43E-16	6.89E-16	26.73
1	1.25	RA-226	PB-210	Floor	5.27E-13	6.66E-13	26.29
1	1.25	RA-226	PO-210	Air	3.34E-16	4.23E-16	26.76
1	1.25	RA-226	PO-210	Floor	3.24E-13	4.09E-13	26.32
1	1.5	RA-226	RA-226	Air	1.14E-19	1.53E-19	34.52
1	1.5	RA-226	RA-226	Floor	1.21E-16	1.63E-16	34.73
1	1.5	RA-226	PB-210	Air	5.28E-21	7.10E-21	34.57
1	1.5	RA-226	PB-210	Floor	5.62E-18	7.57E-18	34.76
1	1.5	RA-226	PO-210	Air	3.52E-21	4.74E-21	34.61
1	1.5	RA-226	PO-210	Floor	3.74E-18	5.05E-18	34.79

Table 3.38 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 1 for Case VI

Table 3.38 (Continued)

					Concentration (pCi/m3 or pCi/m2)		Difference (%)
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
1	0	CS-137	CS-137	Air	4.38E-07	4.34E-07	0.97
1	0	CS-137	CS-137	Floor	9.55E-05	9.41E-05	1.44
1	0.25	CS-137	CS-137	Air	4.81E-07	4.82E-07	0.17
1	0.25	CS-137	CS-137	Floor	1.25E-04	1.25E-04	0.22
1	0.5	CS-137	CS-137	Air	2.75E-08	2.82E-08	2.47
1	0.5	CS-137	CS-137	Floor	8.33E-06	8.54E-06	2.54
1	0.75	CS-137	CS-137	Air	1.02E-07	1.02E-07	0.45
1	0.75	CS-137	CS-137	Floor	2.41E-05	2.39E-05	0.73
1	1	CS-137	CS-137	Air	7.30E-10	8.29E-10	13.55
1	1	CS-137	CS-137	Floor	5.23E-07	5.99E-07	14.68
1	1.25	CS-137	CS-137	Air	1.36E-14	1.73E-14	26.73
1	1.25	CS-137	CS-137	Floor	1.32E-11	1.67E-11	26.30
1	1.5	CS-137	CS-137	Air	1.10E-19	1.48E-19	34.54
1	1.5	CS-137	CS-137	Floor	1.17E-16	1.58E-16	34.75
1	0	CO-60	CO-60	Air	4.31E-07	4.27E-07	0.98
1	0	CO-60	CO-60	Floor	9.40E-05	9.26E-05	1.45
1	0.25	CO-60	CO-60	Air	4.65E-07	4.65E-07	0.17
1	0.25	CO-60	CO-60	Floor	1.21E-04	1.21E-04	0.23
1	0.5	CO-60	CO-60	Air	2.59E-08	2.66E-08	2.46
1	0.5	CO-60	CO-60	Floor	7.85E-06	8.05E-06	2.53
1	0.75	CO-60	CO-60	Air	9.29E-08	9.24E-08	0.47
1	0.75	CO-60	CO-60	Floor	2.19E-05	2.17E-05	0.75
1	1	CO-60	CO-60	Air	6.53E-10	7.42E-10	13.55
1	1	CO-60	CO-60	Floor	4.68E-07	5.36E-07	14.68
1	1.25	CO-60	CO-60	Air	1.19E-14	1.51E-14	26.73
1	1.25	CO-60	CO-60	Floor	1.15E-11	1.46E-11	26.30
1	1.5	CO-60	CO-60	Air	9.34E-20	1.26E-19	34.54
1	1.5	CO-60	CO-60	Floor	9.93E-17	1.34E-16	34.75

					Concentration (pCi/m3 or pCi/m2)		Difference (%)
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	RA-226	RA-226	Air	3.41E-05	3.41E-05	0.25
3	0	RA-226	RA-226	Floor	7.78E-03	7.71E-03	0.90
3	0	RA-226	PB-210	Air	1.51E-07	1.50E-07	0.12
3	0	RA-226	PB-210	Floor	3.54E-05	3.51E-05	0.84
3	0	RA-226	PO-210	Air	2.16E-08	2.16E-08	0.02
3	0	RA-226	PO-210	Floor	5.10E-06	5.06E-06	0.74
3	0.25	RA-226	RA-226	Air	3.43E-05	3.43E-05	0.12
3	0.25	RA-226	RA-226	Floor	9.52E-03	9.46E-03	0.66
3	0.25	RA-226	PB-210	Air	3.37E-07	3.37E-07	0.04
3	0.25	RA-226	PB-210	Floor	9.61E-05	9.56E-05	0.58
3	0.25	RA-226	PO-210	Air	8.32E-08	8.33E-08	0.06
3	0.25	RA-226	PO-210	Floor	2.42E-05	2.41E-05	0.48
3	0.5	RA-226	RA-226	Air	1.78E-06	1.80E-06	1.16
3	0.5	RA-226	RA-226	Floor	5.83E-04	5.85E-04	0.32
3	0.5	RA-226	PB-210	Air	2.89E-08	2.92E-08	1.20
3	0.5	RA-226	PB-210	Floor	9.70E-06	9.73E-06	0.38
3	0.5	RA-226	PO-210	Air	1.04E-08	1.05E-08	1.26
3	0.5	RA-226	PO-210	Floor	3.54E-06	3.56E-06	0.45
3	0.75	RA-226	RA-226	Air	7.76E-06	7.75E-06	0.17
3	0.75	RA-226	RA-226	Floor	1.93E-03	1.91E-03	0.84
3	0.75	RA-226	PB-210	Air	2.06E-07	2.06E-07	0.06
3	0.75	RA-226	PB-210	Floor	5.19E-05	5.15E-05	0.73
3	0.75	RA-226	PO-210	Air	1.03E-07	1.03E-07	0.02
3	0.75	RA-226	PO-210	Floor	2.62E-05	2.60E-05	0.65
3	1	RA-226	RA-226	Air	8.91E-09	9.53E-09	6.98
3	1	RA-226	RA-226	Floor	1.61E-05	1.70E-05	5.77
3	1	RA-226	PB-210	Air	2.79E-10	2.98E-10	7.01
3	1	RA-226	PB-210	Floor	5.04E-07	5.33E-07	5.78
3	1	RA-226	PO-210	Air	1.53E-10	1.64E-10	7.04
3	1	RA-226	PO-210	Floor	2.77E-07	2.93E-07	5.81
3	1.25	RA-226	RA-226	Air	4.83E-14	5.76E-14	19.15
3	1.25	RA-226	RA-226	Floor	7.33E-11	8.44E-11	15.14
3	1.25	RA-226	PB-210	Air	1.87E-15	2.23E-15	19.16
3	1.25	RA-226	PB-210	Floor	2.84E-12	3.26E-12	15.14
3	1.25	RA-226	PO-210	Air	1.15E-15	1.37E-15	19.19
3	1.25	RA-226	PO-210	Floor	1.74E-12	2.00E-12	15.17
3	1.5	RA-226	RA-226	Air	2.49E-19	3.28E-19	31.75
3	1.5	RA-226	RA-226	Floor	3.06E-16	3.92E-16	28.08
3	1.5	RA-226	PB-210	Air	1.15E-20	1.52E-20	31.80
3	1.5	RA-226	PB-210	Floor	1.42E-17	1.82E-17	28.12
3	1.5	RA-226	PO-210	Air	7.69E-21	1.01E-20	31.83
3	1.5	RA-226	PO-210	Floor	9.45E-18	1.21E-17	28.15

Table 3.39 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case VI

Table 3.39 (Continued)

					Concentration (pC	Difference (%)	
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	CS-137	CS-137	Air	3.40E-05	3.39E-05	0.24
3	0	CS-137	CS-137	Floor	7.75E-03	7.68E-03	0.89
3	0.25	CS-137	CS-137	Air	3.41E-05	3.40E-05	0.12
3	0.25	CS-137	CS-137	Floor	9.45E-03	9.39E-03	0.66
3	0.5	CS-137	CS-137	Air	1.76E-06	1.78E-06	1.16
3	0.5	CS-137	CS-137	Floor	5.76E-04	5.78E-04	0.32
3	0.75	CS-137	CS-137	Air	7.61E-06	7.60E-06	0.16
3	0.75	CS-137	CS-137	Floor	1.89E-03	1.88E-03	0.83
3	1	CS-137	CS-137	Air	8.70E-09	9.31E-09	6.99
3	1	CS-137	CS-137	Floor	1.57E-05	1.66E-05	5.78
3	1.25	CS-137	CS-137	Air	4.70E-14	5.60E-14	19.16
3	1.25	CS-137	CS-137	Floor	7.13E-11	8.21E-11	15.15
3	1.5	CS-137	CS-137	Air	2.41E-19	3.17E-19	31.77
3	1.5	CS-137	CS-137	Floor	2.96E-16	3.79E-16	28.10
3	0	CO-60	CO-60	Air	3.35E-05	3.34E-05	0.25
3	0	CO-60	CO-60	Floor	7.63E-03	7.56E-03	0.90
3	0.25	CO-60	CO-60	Air	3.29E-05	3.29E-05	0.12
3	0.25	CO-60	CO-60	Floor	9.12E-03	9.06E-03	0.66
3	0.5	CO-60	CO-60	Air	1.66E-06	1.68E-06	1.16
3	0.5	CO-60	CO-60	Floor	5.43E-04	5.45E-04	0.32
3	0.75	CO-60	CO-60	Air	6.93E-06	6.92E-06	0.17
3	0.75	CO-60	CO-60	Floor	1.72E-03	1.70E-03	0.84
3	1	CO-60	CO-60	Air	7.79E-09	8.33E-09	6.99
3	1	CO-60	CO-60	Floor	1.41E-05	1.49E-05	5.78
3	1.25	CO-60	CO-60	Air	4.09E-14	4.88E-14	19.16
3	1.25	CO-60	CO-60	Floor	6.21E-11	7.15E-11	15.15
3	1.5	CO-60	CO-60	Air	2.04E-19	2.69E-19	31.77
3	1.5	CO-60	CO-60	Floor	2.51E-16	3.21E-16	28.10

3.6.3 Calculation and Comparison of Radiation Doses and Cancer Risks

Table 3.40 compares the radiation doses at t = 0 and 0.75 year and the cancer risks at t = 1 year that RESRAD-BUILD and the spreadsheets estimated to Receptor 1. Receptor 1 was assumed to spend 100% of the time in Room 1, while he was in the building. He was also assumed to inhale 18 m³ of air per day and would not ingest dust particles deposited on floor. Although a direct ingestion of a fraction of 1E-8 of source particles per hour was specified, no direct ingestion of radionuclide would be considered because the receptor was not in the same room as the source. The comparison shows that for radiation dose estimates, the RESRAD-BUILD results agree well with the spreadsheet results, with a difference of less than 1.5 %. The differences in cancer risk estimates at t = 1 year were greater, because the values were very small (< 1×10^{-13}), essentially 0s. The greater differences were due to the different precisions used to save numeric values.

Table 3.41 compares the radiation doses at t = 0 and 0.75 years and the cancer risks at t = 0.75, 1, and 1.25 years that RESRAD-BUILD and the spreadsheets estimated to Receptor 2 in Room 3, where the source was located. Receptor 2 would spend 50% of the time in Room 3 while he was in the building. He was assumed to inhale 20 m³ of air per day, would ingest dust particles deposited on floor, 0.0001 m² per hour, and would ingest a fraction of 1E-8 of source particles per hour. The comparison shows the radiation dose estimates agree very well. For cancer risk estimates, the differences were less than 1% for t = 0.75 year, less than 6% for t = 1 year, and less than 20% at t = 1.25 years. The difference increases because the values of estimated cancer risk became smaller and closer to 0s.

From the above comparisons, it is concluded that the calculations of radiation dose and cancer risk using the air and floor deposition concentrations of radionuclides are accurately implemented in the RESRAD-BUILD code.

3.7 CASE VII – AN AREA SOURCE IN ROOM 5 WITH SCHEDULED VACUUMING

Case VII considers an area source of 36 m^2 located in Room 5. The air exchange rates between rooms and with the outside environment were the same as in Case VI. Vacuuming to remove dust deposition on the floor was assumed to be conducted every 14 days with a dust removal efficiency of 0.8. The estimated concentrations of source particles and radionuclides in the air and on the floor of each room from RESRAD-BUILD and the verification spreadsheets were compared.

The room dimensions, ventilation rates between rooms and with the outside environment, deposition velocity, and resuspension rate assumed for Cases III, IV, V, and VI were applicable to Case VII (Table 3.20). The contaminated source materials were assumed to be eroded and released to the indoor air over several phases with a constant erosion/release rate in each phase. Table 3.42 lists the beginning and ending time and fraction of the source materials involved in each release phase.

Receptor 1	location room	1			(Reflec	t value in the inp	out file)					
tin	ne fraction in ro	om	1		(Reflec	t value in the inp	out file)					
	breathing rate	18	m3/d		(Reflec	t value in the inp	out file)					
	ingestion rate	0	m2/hr		(Reflec	t value in the inp	out file)					
di	irect ingestion ra	ate	1.00E-08	1/hr								
In the	same room as s	source?		0	(1-Yes, 0-No)	election in the in	nput file)					
)ose (mrem/y	ose (mrem/yr) at time = 0.00		0.00	yr								
	Direct	Ingestion (m	rem/yr)	Ingestion (deposition)				Inhalation			Air submersi	on
	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)
Nuclide	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD
Ra-226	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	1.27E-05	1.26E-05	0.74	5.37E-10	5.32E-10	1.01
Pb-210	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	3.40E-08	3.38E-08	0.46	8.70E-15	8.64E-15	0.65
Po-210	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	3.70E-09	3.69E-09	0.33	1.61E-18	1.60E-18	0.51
Cs-137	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	5.19E-08	5.14E-08	0.92	1.63E-10	1.62E-10	0.81

Table 3.40 Comparison of Radiation Doses and Cancer Risks to Receptor 1 of Case VI

0.00E+00

0.00E+00

-

_

0.00E+00

0.00E+00

Radiation Dose (mrem/yr) at time =		0.75	yr									
Direct Ingestion (mrem/yr)			rem/yr)	Ing	gestion (depos	ition)		Inhalation			Air submersio	on
Nuclide	RESRAD- BUILD	Estimate	Difference (%)	RESRAD- BUILD	Estimate	Difference (%)	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%)
Ra-226	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	3.01E-06	3.00E-06	0.30	1.27E-10	1.27E-10	0.35
Pb-210	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	4.81E-08	4.80E-08	0.25	1.23E-14	1.23E-14	0.36
Po-210	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	1.83E-08	1.82E-08	0.36	7.94E-18	7.92E-18	0.25
Cs-137	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	1.21E-08	1.20E-08	0.48	3.81E-11	3.79E-11	0.62
Co-60	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	8.75E-09	8.71E-09	0.48	1.61E-10	1.61E-10	0.31
Total	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	3.10E-06	3.09E-06	0.30	3.26E-10	3.25E-10	0.36

-

_

4.06E-08

1.28E-05

4.02E-08

1.27E-05

0.90

0.74

7.50E-10

1.45E-09

7.42E-10

1.43E-09

1.12

1.04

Cancer Risk at time =		1	yr										
	Dire	ct Ingestion (m	rem/yr)	Ingestion (deposition)				Inhalation		Air submersion			
	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	
Nuclide	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	
Ra-226	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	1.74E-14	1.97E-14	13.25	7.36E-19	8.34E-19	13.38	
Pb-210	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	3.13E-16	3.56E-16	13.74	2.66E-23	3.01E-23	13.29	
Po-210	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	1.54E-16	1.75E-16	13.73	5.92E-26	6.72E-26	13.51	
Cs-137	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	6.72E-17	7.63E-17	13.51	2.18E-19	2.47E-19	13.51	
Co-60	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	5.42E-17	6.15E-17	13.54	9.19E-19	1.04E-18	13.43	
Total	0.00E+00	0.00E+00	-	0.00E+00	0.00E+00	-	1.80E-14	2.04E-14	13.27	1.87E-18	2.12E-18	13.42	

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Co-60

Total

0.00E+00

0.00E+00

0.00E+00

0.00E+00

Table 3.41 Comparison of Radiation Doses and Cancer Risks to Receptor 2 of Case VI

Receptor 2	location room	3			(Reflec	t value in the inp	out file)					
tim	e fraction in ro	om	0.5		(Reflec	t value in the inp	out file)					
	breathing rate	20	m3/d		(Reflect value in the input file)							
	ingestion rate	0.0001	m2/hr		(Reflec	t value in the inp	out file)					
dir	ect ingestion ra	ite	1.00E-08	1/hr								
In the s	same room as s	ource?		1	(1-Yes, 0-No)	election in the ir	nput file)					
)ose (mrem/yı	r) at time =		0.00E+00	yr							C	ancer Risk at time
	Direct	Ingestion (mi	rem/yr)	In	gestion (depos	ition)		Inhalation			Air submersio	on
	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)
Nuclide	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD
Ra-226	2.04E-07	2.04E-07	0.09	4.42E-07	4.38E-07	0.97	5.49E-04	5.48E-04	0.21	2.09E-08	2.08E-08	0.51
Pb-210	1.95E-09	1.95E-09	0.18	4.95E-09	4.91E-09	0.78	1.45E-06	1.44E-06	0.38	3.33E-13	3.32E-13	0.29
Po-210	4.62E-10	4.63E-10	0.28	1.24E-09	1.23E-09	0.83	1.57E-07	1.57E-07	0.02	6.14E-17	6.14E-17	0.07
Cs-137	9.45E-09	9.44E-09	0.06	2.04E-08	2.02E-08	0.80	2.24E-06	2.23E-06	0.23	6.35E-09	6.32E-09	0.40
Co-60	2.44E-09	2.44E-09	0.13	5.26E-09	5.21E-09	0.97	1.75E-06	1.75E-06	0.04	2.91E-08	2.90E-08	0.28
Total	2.18E-07	2.18E-07	0.09	4.74E-07	4.69E-07	0.96	5.55E-04	5.53E-04	0.21	5.64E-08	5.61E-08	0.38

Radiation Do	adiation Dose (mrem/yr) at time =		0.75	yr									
	Direct	Ingestion (mi	rem/yr)	Ingestion (deposition)				Inhalation		Air submersion			
	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	RESRAD-		Difference (%)	
Nuclide	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	
Ra-226	1.57E-07	1.57E-07	0.27	1.10E-07	1.09E-07	1.27	1.25E-04	1.25E-04	0.26	4.75E-09	4.73E-09	0.38	
Pb-210	1.02E-08	1.02E-08	0.25	7.27E-09	7.22E-09	0.74	1.98E-06	1.98E-06	0.17	4.55E-13	4.54E-13	0.14	
Po-210	8.86E-09	8.87E-09	0.09	6.37E-09	6.32E-09	0.71	7.47E-07	7.47E-07	0.03	2.92E-16	2.92E-16	0.04	
Cs-137	7.13E-09	7.12E-09	0.10	4.98E-09	4.94E-09	0.84	5.01E-07	5.00E-07	0.12	1.42E-09	1.42E-09	0.28	
Co-60	1.70E-09	1.70E-09	0.20	1.18E-09	1.17E-09	0.48	3.63E-07	3.62E-07	0.24	6.02E-09	6.01E-09	0.21	
Total	1.85E-07	1.84E-07	0.21	1.30E-07	1.28E-07	1.19	1.29E-04	1.28E-04	0.25	1.22E-08	1.22E-08	0.28	

Table 3.41 (Continued)

Cancer Risk a	t time =	0.75	yr									
	Direct I	ngestion (m	rem/yr)	Ingestion (de		tion)	Inhalation			Air submersion		
			Difference (%)			Difference (%)	RESRAD-		Difference (%)			Difference (%)
Nuclide	RESRAD-BUILD	Estimate	RESRAD-Spreadsheet RESRAD	RESRAD-BUILD	Estimate	RESRAD-Spreadsheet RESRAD	BUILD	Estimate	RESRAD-Spreadsheet RESRAD	RESRAD-BUILD	Estimate	RESRAD-Spreadsheet RESRAD
Ra-226	7.78E-14	7.77E-14	0.11	5.44E-14	5.39E-14	0.92	1.00E-10	1.00E-10	0.04	3.82E-15	3.81E-15	0.27
Pb-210	4.77E-15	4.77E-15	0.03	3.39E-15	3.37E-15	0.72	1.53E-12	1.53E-12	0.32	1.16E-19	1.16E-19	0.16
Po-210	4.49E-15	4.49E-15	0.08	3.23E-15	3.21E-15	0.77	6.81E-13	6.81E-13	0.01	2.35E-22	2.35E-22	0.07
Cs-137	5.54E-15	5.54E-15	0.03	3.87E-15	3.84E-15	0.78	3.89E-13	3.88E-13	0.16	1.14E-15	1.13E-15	0.54
Co-60	3.01E-15	3.01E-15	0.09	2.10E-15	2.08E-15	0.87	3.19E-13	3.19E-13	0.04	4.88E-15	4.86E-15	0.38
Total	9.56E-14	9.55E-14	0.09	6.70E-14	6.64E-14	0.89	1.03E-10	1.03E-10	0.04	9.84E-15	9.80E-15	0.36

Cancer Risk at t	time =	1	yr									
	Direc	t Ingestion (m	ırem/yr)	In	gestion (depos	sition)		Inhalation			Air submersi	on
Nuclide	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD
Ra-226	0.00E+00	0.00E+00	-	4.53E-16	4.79E-16	5.81	1.15E-13	1.23E-13	6.87	4.38E-18	4.68E-18	6.93
Pb-210	0.00E+00	0.00E+00	-	3.29E-17	3.48E-17	5.75	2.07E-15	2.21E-15	6.90	1.58E-22	1.69E-22	6.70
Po-210	0.00E+00	0.00E+00	-	3.41E-17	3.61E-17	5.88	1.02E-15	1.09E-15	6.53	3.51E-25	3.75E-25	6.90
Cs-137	0.00E+00	0.00E+00	-	3.22E-17	3.40E-17	5.70	4.45E-16	4.76E-16	6.91	1.30E-18	1.39E-18	6.85
Co-60	0.00E+00	0.00E+00	-	1.72E-17	1.82E-17	5.60	3.59E-16	3.84E-16	6.96	5.48E-18	5.85E-18	6.82
Total	0.00E+00	0.00E+00	-	5.69E-16	6.02E-16	5.80	1.19E-13	1.27E-13	6.86	1.12E-17	1.19E-17	6.87
Cancer Risk at t	time =	1.25	yr									
	Direc	t Ingestion (m	nrem/yr)	lr	gestion (depos	sition)	Inhalation			Air submersion		
Nuclide	RESRAD- BUILD	Estimate	Difference (%)	RESRAD- BUILD	Estimate	Difference (%)	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD	RESRAD- BUILD	Estimate	Difference (%) RESRAD-Spreadsheet RESRAD
Ra-226	0.00E+00	0.00E+00	-	2.07E-21	2.38E-21	14.94	6.23E-19	7.43E-19	19.24	2.38E-23	2.83E-23	18.95
Pb-210	0.00E+00	0.00E+00	_	1.85E-22	2.13E-22	15.26	1.39E-20	1.65E-20	18.82	1.06E-27	1.26E-27	18.70
Po-210	0.00E+00	0.00E+00	-	2.14E-22	2.47E-22	15.42	7.60E-21	9.05E-21	19.11	2.63E-30	3.13E-30	18.85
Cs-137	0.00E+00	0.00E+00	-	1.46E-22	1.68E-22	15.08	2.40E-21	2.86E-21	19.16	7.02E-24	8.35E-24	18.94
Co-60	0.00E+00	0.00E+00	-	7.58E-23	8.73E-23	15.19	1.89E-21	2.25E-21	18.92	2.88E-23	3.43E-23	18.98
Total	0.00E+00	0.00E+00	-	2.69E-21	3.09E-21	15.02	6.49E-19	7.74E-19	19.23	5.96E-23	7.09E-23	18.96

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

Table 3.42 Source Releases Assumed for Case VII

Source Releases											
Location (Room No	o.)	5		Air Fractio	n	1		Initial mas	S	1.000E+03	g
	Release 1	Release 2	Release 3	Release 4	Release 5	Release 6	Release 7	Release 8	Release 9	Release 10	
Start time (d)	0	60	120	200	240	400	560	700	1000	1100	
Start time (hr)	0	1440	2880	4800	5760	9600	13440	16800	24000	26400	
End time (d)	60	120	200	240	400	560	700	1000	1100	1500	
End time (hr)	1440	2880	4800	5760	9600	13440	16800	24000	26400	36000	
Fraction released	0.1	0.15	0.25	0.3	0.1	0.05	0.05	0	0	0	
Release rate (1/hr)) 6.94444E-05	0.000104	0.00013	0.000313	2.60417E-05	1.3E-05	1.4881E-05	0	0	0	

Note: The yellow highlights indicate the values were specified, not calculated, in the spreadsheet. They reflected the inputs to the RESRAD-BUILD code.

The air release rates calculated by RESRAD-BUILD, listed in the intermediate output file "AirRelRate1.out," were in terms of the fraction of the initial source inventory. They were multiplied by the initial mass assumed for the source materials (1,000 g) for comparison with the calculated source release rates from the spreadsheets. Table 3.43 shows the comparison of source release rates.

Equations B.10 and B.11 in the User's Manual of RESRAD-BUILD, Vol. 1 (Yu et al. 2022) were solved numerically in the spreadsheets to obtain source particulate concentrations in each room. Table 3.44 presents part of the calculations and results at different time steps in the spreadsheets.

During the analysis of Case V, the RESRAD-BUILD code generated an intermediate output file "AirRelConcSource1.out" that listed the concentrations in the air and on the floor of each room at various time points. The concentrations were expressed as the fraction of the initial source per m^3 of air and the fraction of the initial source per m^2 on the floor. They were multiplied by the total mass of source (materials) to convert the concentration to mass of source (particulate) per unit volume in the air (g/m³) and mass of source (particulate) per unit area on the floor (g/m²) for comparison with spreadsheet calculations.

Figures 3.27 and 3.28 compare the air concentrations (g/m³) and floor deposition concentrations (g/m²), respectively, in Room 2, which did not have direct air exchange with Room 5, where the area source was located. Figures 3.29 and 3.30 compare the air concentrations and floor deposition concentrations, respectively, in Room 5. Figures 3.31 and 3.32 compare the air concentrations and floor deposition concentrations, respectively, in Room 8, which had air exchange with Room 5. In the figures, the blue solid curve displays the results from the spreadsheets while the red dashed curve displays the results from RESRAD-BUILD. As shown in the figures, the concentration results from RESRAD-BUILD and the spreadsheets are in good agreement. Good agreement was observed with the concentration results in other rooms.

Table 3.45 compares calculated average concentrations of radionuclides in the air and on the floor over the exposure duration in Room 3. Table 3.46 compares the same calculated results in Room 7. The comparisons show good agreement between the calculated results from RESRAD-BUILD and the spreadsheets; all results differ by less than 2%. The comparisons of results for the other rooms also show good agreement.

From "Air	RelRate1.ou	t"													
Rate of re	elease of sou	rce mate	rial to air								Volume o	f source ro	om	90	m3
fraction o	of source per	second p	er volume (m3)	of the roor	n o	f release	1								
2.14E-10) from	time	0.00E+00	to	tin	ne	53	184000	seconds						
3.22E-10) from	time	5184000	to	tin	ne	103	368000	seconds						
4.02E-10) from	time	10368000	to	tin	ne	172	280000	seconds						
9.65E-10) from	time	17280000	to	tin	ne	207	736000	seconds						
8.04E-11	L from	time	20736000	to	tin	ne	345	560000	seconds						
4.02E-11	L from	time	34560000	to	tin	ne	483	384000	seconds						
4.59E-11	L from	time	48384000	to	tin	ne	604	480000	seconds						
	Estimated		RES	RAD-BUILD											
	Air release			Air release											
time (hr)	rate (1/hr)		time (hr)	rate (1/hr)											
Ċ			0.00	0.00E+00						()			. /1 \		
2	2 6.944E-05		0.10	6.95E-05				C	omparis	on of R	elease Ra	te (fract	ion/hr)		
4	4 6.944E-05		1440.00	6.95E-05		0.0	00035								
e	6.944E-05		1440.10	1.04E-04		<u> </u>	.0003								
8	6.944E-05		2880.00	1.04E-04		h/n									
10	6.944E-05		2880.10	1.30E-04		0.0 ti	0025								
12	2 6.944E-05		4800.00	1.30E-04		(fra	.0002								
14	4 6.944E-05		4800.10	3.13E-04		0.0 gte	00015								
16	6.944E-05		5760.00	3.13E-04		Ser	0001								
18	6.944E-05		5760.10	2.60E-05		elea	.0001								
20	6.944E-05		9600.00	2.60E-05		₩ 0.0	00005				-				
22	6.944E-05		9600.10	1.30E-05			0								
24	6.944E-05		13440.00	1.30E-05			()	5000		10000	15000	20000	:	25000
26	6.944E-05		13440.10	1.49E-05							Time (nr)			
28	6.944E-05		16800.00	1.49E-05											
30	6.944E-05		16800.10	0.00E+00											
32	6.944E-05		20000.00	0.00E+00											

Table 3.43 Comparison of Calculated Air Release Rates from RESRAD-BUILD and Spreadsheets for Case VII

Table 3.44 Calculations of Source Particulate Concentrations in the Air and on the Floor of Each Room for Case VII

Note: The yellow highlight indicates the value was specified, not calculated, in the spreadsheet. It was chosen to generate results for comparison.

Figure 3.27 Comparison of Calculated Source Particulate Concentrations in the Air of Room 2 for Case VII

Figure 3.28 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 2 for Case VII

Figure 3.30 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 5 for Case VII

Figure 3.31 Comparison of Calculated Source Particulate Concentrations in the Air of Room 8 for Case VII

Figure 3.32 Comparison of Calculated Source Particulate Concentrations on the Floor of Room 8 for Case VII

					Concentration (pCi	i/m3 or pCi/m2)	Difference (%)
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	RA-226	RA-226	Air	3.92E-07	3.88E-07	1.21
3	0	RA-226	RA-226	Floor	8.43E-05	8.30E-05	1.57
3	0	RA-226	PB-210	Air	1.70E-09	1.69E-09	0.63
3	0	RA-226	PB-210	Floor	3.77E-07	3.74E-07	0.85
3	0	RA-226	PO-210	Air	2.45E-10	2.44E-10	0.46
3	0	RA-226	PO-210	Floor	5.41E-08	5.38E-08	0.62
3	0.25	RA-226	RA-226	Air	6.36E-07	6.34E-07	0.24
3	0.25	RA-226	RA-226	Floor	1.49E-04	1.49E-04	0.30
3	0.25	RA-226	PB-210	Air	7.49E-09	7.48E-09	0.17
3	0.25	RA-226	PB-210	Floor	1.76E-06	1.75E-06	0.23
3	0.25	RA-226	PO-210	Air	2.15E-09	2.15E-09	0.08
3	0.25	RA-226	PO-210	Floor	5.05E-07	5.05E-07	0.13
3	0.5	RA-226	RA-226	Air	9.15E-07	9.17E-07	0.26
3	0.5	RA-226	RA-226	Floor	2.21E-04	2.22E-04	0.45
3	0.5	RA-226	PB-210	Air	1.71E-08	1.72E-08	0.50
3	0.5	RA-226	PB-210	Floor	4.19E-06	4.22E-06	0.73
3	0.5	RA-226	PO-210	Air	6.80E-09	6.85E-09	0.69
3	0.5	RA-226	PO-210	Floor	1.69E-06	1.71E-06	0.96
3	0.75	RA-226	RA-226	Air	1.40E-07	1.40E-07	0.26
3	0.75	RA-226	RA-226	Floor	3.42E-05	3.45E-05	0.74
3	0.75	RA-226	PB-210	Air	3.74E-09	3.75E-09	0.24
3	0.75	RA-226	PB-210	Floor	9.14E-07	9.20E-07	0.65
3	0.75	RA-226	PO-210	Air	1.88E-09	1.89E-09	0.26
3	0.75	RA-226	PO-210	Floor	4.59E-07	4.62E-07	0.62
3	1	RA-226	RA-226	Air	9.73E-08	9.75E-08	0.25
3	1	RA-226	RA-226	Floor	2.39E-05	2.39E-05	0.36
3	1	RA-226	PB-210	Air	3.28E-09	3.29E-09	0.27
3	1	RA-226	PB-210	Floor	8.06E-07	8.09E-07	0.38
3	1	RA-226	PO-210	Air	1.88E-09	1.89E-09	0.30
3	1	RA-226	PO-210	Floor	4.63E-07	4.65E-07	0.42
3	1.25	RA-226	RA-226	Air	6.85E-08	6.85E-08	0.03
3	1.25	RA-226	RA-226	Floor	1.63E-05	1.63E-05	0.01
3	1.25	RA-226	PB-210	Air	2.87E-09	2.87E-09	0.04
3	1.25	RA-226	PB-210	Floor	6.81E-07	6.81E-07	0.00
3	1.25	RA-226	PO-210	Air	1.83E-09	1.83E-09	0.07
3	1.25	RA-226	PO-210	Floor	4.34E-07	4.34E-07	0.02
3	1.5	RA-226	RA-226	Air	7.54E-08	7.49E-08	0.57
3	1.5	RA-226	RA-226	Floor	1.75E-05	1.74E-05	0.38
3	1.5	RA-226	PB-210	Air	3.72E-09	3.70E-09	0.55
3	1.5	RA-226	PB-210	Floor	8.64E-07	8.61E-07	0.36
3	1.5	RA-226	PO-210	Air	2.55E-09	2.53E-09	0.53
3	1.5	RA-226	PO-210	Floor	5.92E-07	5.90E-07	0.33

Table 3.45 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 3 for Case VII

					Concentration (pCi/m3 or pCi/m		Difference (%)
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
3	0	CS-137	CS-137	Air	3.91E-07	3.86E-07	1.21
3	0	CS-137	CS-137	Floor	8.40E-05	8.27E-05	1.57
3	0.25	CS-137	CS-137	Air	6.30E-07	6.29E-07	0.24
3	0.25	CS-137	CS-137	Floor	1.48E-04	1.47E-04	0.30
3	0.5	CS-137	CS-137	Air	9.02E-07	9.05E-07	0.26
3	0.5	CS-137	CS-137	Floor	2.18E-04	2.19E-04	0.46
3	0.75	CS-137	CS-137	Air	1.37E-07	1.37E-07	0.27
3	0.75	CS-137	CS-137	Floor	3.36E-05	3.38E-05	0.75
3	1	CS-137	CS-137	Air	9.49E-08	9.51E-08	0.26
3	1	CS-137	CS-137	Floor	2.33E-05	2.33E-05	0.37
3	1.25	CS-137	CS-137	Air	6.64E-08	6.64E-08	0.04
3	1.25	CS-137	CS-137	Floor	1.58E-05	1.58E-05	0.00
3	1.5	CS-137	CS-137	Air	7.26E-08	7.22E-08	0.56
3	1.5	CS-137	CS-137	Floor	1.69E-05	1.68E-05	0.36
3	0	CO-60	CO-60	Air	3.85E-07	3.80E-07	1.22
3	0	CO-60	CO-60	Floor	8.27E-05	8.14E-05	1.59
3	0.25	CO-60	CO-60	Air	6.05E-07	6.03E-07	0.24
3	0.25	CO-60	CO-60	Floor	1.42E-04	1.41E-04	0.30
3	0.5	CO-60	CO-60	Air	8.45E-07	8.47E-07	0.24
3	0.5	CO-60	CO-60	Floor	2.04E-04	2.05E-04	0.44
3	0.75	CO-60	CO-60	Air	1.25E-07	1.25E-07	0.27
3	0.75	CO-60	CO-60	Floor	3.05E-05	3.08E-05	0.76
3	1	CO-60	CO-60	Air	8.42E-08	8.44E-08	0.26
3	1	CO-60	CO-60	Floor	2.06E-05	2.07E-05	0.37
3	1.25	CO-60	CO-60	Air	5.72E-08	5.72E-08	0.05
3	1.25	CO-60	CO-60	Floor	1.36E-05	1.36E-05	0.00
3	1.5	CO-60	CO-60	Air	6.09E-08	6.05E-08	0.56
3	1.5	CO-60	CO-60	Floor	1.41E-05	1.41E-05	0.36

					Concentration (pC	/m3 or pCi/m2)	Difference (%)
	Begin						RESRAD-Spreadsheet
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD
7	0	RA-226	RA-226	Air	1.84E-07	1.82E-07	1.25
7	0	RA-226	RA-226	Floor	3.95E-05	3.88E-05	1.57
7	0	RA-226	PB-210	Air	8.02E-10	7.97E-10	0.64
7	0	RA-226	PB-210	Floor	1.77E-07	1.75E-07	0.80
7	0	RA-226	PO-210	Air	1.15E-10	1.15E-10	0.46
7	0	RA-226	PO-210	Floor	2.54E-08	2.53E-08	0.55
7	0.25	RA-226	RA-226	Air	3.00E-07	2.99E-07	0.22
7	0.25	RA-226	RA-226	Floor	7.01E-05	6.99E-05	0.22
7	0.25	RA-226	PB-210	Air	3.54E-09	3.53E-09	0.15
7	0.25	RA-226	PB-210	Floor	8.27E-07	8.26E-07	0.14
7	0.25	RA-226	PO-210	Air	1.01E-09	1.01E-09	0.06
7	0.25	RA-226	PO-210	Floor	2.38E-07	2.38E-07	0.05
7	0.5	RA-226	RA-226	Air	4.33E-07	4.34E-07	0.32
7	0.5	RA-226	RA-226	Floor	1.04E-04	1.05E-04	0.59
7	0.5	RA-226	PB-210	Air	8.09E-09	8.14E-09	0.57
7	0.5	RA-226	PB-210	Floor	1.98E-06	2.00E-06	0.88
7	0.5	RA-226	PO-210	Air	3.22E-09	3.25E-09	0.78
7	0.5	RA-226	PO-210	Floor	7.98E-07	8.06E-07	1.11
7	0.75	RA-226	RA-226	Air	6.62E-08	6.64E-08	0.36
7	0.75	RA-226	RA-226	Floor	1.62E-05	1.64E-05	0.95
7	0.75	RA-226	PB-210	Air	1.77E-09	1.78E-09	0.34
7	0.75	RA-226	PB-210	Floor	4.32E-07	4.36E-07	0.86
7	0.75	RA-226	PO-210	Air	8.92E-10	8.95E-10	0.35
7	0.75	RA-226	PO-210	Floor	2.17E-07	2.19E-07	0.82
7	1	RA-226	RA-226	Air	4.61E-08	4.62E-08	0.31
7	1	RA-226	RA-226	Floor	1.13E-05	1.13E-05	0.50
7	1	RA-226	PB-210	Air	1.56E-09	1.56E-09	0.34
7	1	RA-226	PB-210	Floor	3.81E-07	3.83E-07	0.53
7	1	RA-226	PO-210	Air	8.92E-10	8.95E-10	0.37
7	1	RA-226	PO-210	Floor	2.18E-07	2.20E-07	0.56
7	1.25	RA-226	RA-226	Air	3.24E-08	3.24E-08	0.08
7	1.25	RA-226	RA-226	Floor	7.66E-06	7.67E-06	0.09
7	1.25	RA-226	PB-210	Air	1.35E-09	1.36E-09	0.09
7	1.25	RA-226	PB-210	Floor	3.21E-07	3.21E-07	0.10
7	1.25	RA-226	PO-210	Air	8.64E-10	8.65E-10	0.11
7	1.25	RA-226	PO-210	Floor	2.04E-07	2.05E-07	0.13
7	1.5	RA-226	RA-226	Air	3.56E-08	3.54E-08	0.55
7	1.5	RA-226	RA-226	Floor	8.24E-06	8.22E-06	0.27
7	1.5	RA-226	PB-210	Air	1.75E-09	1.75E-09	0.53
7	1.5	RA-226	PB-210	Floor	4.06E-07	4.05E-07	0.25
7	1.5	RA-226	PO-210	Air	1.20E-09	1.20E-09	0.51
7	1.5	RA-226	PO-210	Floor	2.78E-07	2.78E-07	0.23

 Table 3.46 Comparison of Calculated Average Concentrations of Radionuclide in the Air and on the Floor of Room 7 for Case VII

					Concentration (pCi/m3 or pCi/m2)		Difference (%)	
	Begin						RESRAD-Spreadsheet	
iRoom	Time (yr)	Parent	Progeny	Media	RESRAD-BUILD	Spreadsheet	RESRAD	
7	0	CS-137	CS-137	Air	1.84E-07	1.81E-07	1.25	
7	0	CS-137	CS-137	Floor	3.93E-05	3.87E-05	1.57	
7	0.25	CS-137	CS-137	Air	2.98E-07	2.97E-07	0.22	
7	0.25	CS-137	CS-137	Floor	6.95E-05	6.93E-05	0.21	
7	0.5	CS-137	CS-137	Air	4.27E-07	4.28E-07	0.33	
7	0.5	CS-137	CS-137	Floor	1.03E-04	1.03E-04	0.59	
7	0.75	CS-137	CS-137	Air	6.49E-08	6.51E-08	0.36	
7	0.75	CS-137	CS-137	Floor	1.59E-05	1.60E-05	0.96	
7	1	CS-137	CS-137	Air	4.49E-08	4.51E-08	0.32	
7	1	CS-137	CS-137	Floor	1.10E-05	1.10E-05	0.51	
7	1.25	CS-137	CS-137	Air	3.14E-08	3.14E-08	0.09	
7	1.25	CS-137	CS-137	Floor	7.43E-06	7.43E-06	0.10	
7	1.5	CS-137	CS-137	Air	3.43E-08	3.41E-08	0.54	
7	1.5	CS-137	CS-137	Floor	7.94E-06	7.92E-06	0.26	
7	0	CO-60	CO-60	Air	1.81E-07	1.79E-07	1.26	
7	0	CO-60	CO-60	Floor	3.87E-05	3.81E-05	1.58	
7	0.25	CO-60	CO-60	Air	2.85E-07	2.85E-07	0.22	
7	0.25	CO-60	CO-60	Floor	6.66E-05	6.65E-05	0.22	
7	0.5	CO-60	CO-60	Air	4.00E-07	4.01E-07	0.31	
7	0.5	CO-60	CO-60	Floor	9.61E-05	9.67E-05	0.57	
7	0.75	CO-60	CO-60	Air	5.90E-08	5.92E-08	0.37	
7	0.75	CO-60	CO-60	Floor	1.45E-05	1.46E-05	0.97	
7	1	CO-60	CO-60	Air	3.99E-08	4.00E-08	0.32	
7	1	CO-60	CO-60	Floor	9.74E-06	9.79E-06	0.51	
7	1.25	CO-60	CO-60	Air	2.70E-08	2.71E-08	0.09	
7	1.25	CO-60	CO-60	Floor	6.40E-06	6.41E-06	0.10	
7	1.5	CO-60	CO-60	Air	2.87E-08	2.86E-08	0.54	
7	1.5	CO-60	CO-60	Floor	6.66E-06	6.64E-06	0.26	

This page intentionally left blank.

4 REFERENCES

Briesmeister, J.F. (editor), 1993, MCNP—A General Monte Carlo N-Particle Transport Code, Version 4A, LA-12625, Los Alamos National Laboratory, Los Alamos, NM.

Eckerman, K.F., and J.C. Ryman, 1993, External Exposure to Radionuclides in Air, Water, and Soil, Exposure-to-Dose Coefficients for General Application, based on the 1987 Federal Radiation Protection Guidance, Federal Guidance Report No. 12, prepared by Oak Ridge National Laboratory, Oak Ridge, TN, for U.S. Environmental Protection Agency.

Eckerman, K.F., et al., 1999, Cancer Risk Coefficients for Environmental Exposure to Radionuclides, EPA 402-R-99-001, Federal Guidance Report No. 13, prepared by Oak Ridge National Laboratory, Oak Ridge, TN, for U.S. Environmental Protection Agency, Office of Radiation and Indoor Air, Washington, DC.

International Commission on Radiation Protection (ICRP), 1987, Data for Use in Protection against External Radiation, ICRP Publication 51, Ann. ICRP 17 (2-3).

Kamboj, S., C. Yu, B.M. Biwer, and T. Klett, 2001. RESRAD-BUILD Verification, ANL/EAD/TM-115, Argonne National Laboratory, Argonne, IL 60439, October.

Tetra Tech NUS, Inc., 2003, Verification of RESRAD-BUILD Computer Code, Version 3.1, prepared for Argonne National Laboratory under Contract Number: 1F-00741, March.

Trubey, D.K., 1991, New Gamma Rate Buildup Factor Data for Point Kernel Calculations: ANS-6.4.3 Standard Reference Data, NUREG/CR-5740, ORNL/RSIC-49/R1, prepared for Nuclear Regulatory Commission by Oak Ridge National Laboratory, Oak Ridge, Tennessee, August.

Yu, C., et al., 2022, User's Manual for RESRAD-BUILD Code Version 4, Vol. 1, Methodology and Models Used in RESRAD-BUILD Code, ANL/EVS-21/17/Vol. 1, Argonne National Laboratory, Lemont, IL 60439, December.

This page intentionally left blank.

APPENDIX A. RESRAD-BUILD Test Cases

A total of 41 test cases were developed by the RESRAD team for testing the RESRAD-BUILD code, to verify that it meets each of 36 software requirements established for its development. The 36 requirements, each was assigned a Requirement Identification (RID) number of 1 to 36, cover various components, designs, and functions of the software, as shown in Table A.1. Table A.2 presents the test cases for each requirement, while Table A.3 presents the requirements each test case aims to verify. The establishment of software requirements and the development of test cases were consistent with the RESRAD Quality Assurance (QA) Program, and the testing of the RESRAD-BUILD code followed the protocol of the QA Program.

This appendix presents the 41 test cases which were compiled in a RESRAD program document, RESBLD-TEST-00, that was approved by RESRAD Program Manager. The results of the release testing of RESRAD-BUILD Version 4.0 are presented in Appendix B.

RID	Туре	Торіс	Specific Topic
1	Installation/Operating System	Install	Computer Configurations
2	Functional	Model> Building Compartments Ventilation	Conceptualization of air exchanges
3	Functional	Model> Receptor Location and Occupancy	Receptor Location and Occupancy
4	Functional	Model> Source Geometry and Location	Conceptualization of primary contamination
5	Functional	Model> Source/Receptor Shielding	Conceptualization of shielding
6	Functional	Model> Source Radionuclide Decay and Ingrowth Chains	Transformation chains
7	Functional	Model> Source Radionuclide Concentrations	Concentration in source
8	Functional	Model> Source Releases	Release to Air
9	Functional	Model> Source Special Radionuclides	Tritium
10	Functional	Model> Source Special Radionuclides	Radon
11	Functional	Model> Air Quality	Air quality model
12	Functional	Model> Exposure Pathway	Direct External Radiation Model
13	Functional	Model> Exposure Pathways	Particulate Inhalation
14	Functional	Model> Exposure Pathways	Special Inhalation (for radon)
15	Functional	Model> Exposure Pathways	Air submersion
16	Functional	Model> Exposure Pathways	Ingestion
17	Functional	GUI>Tools	Reports
18	Functional	GUI>Tools	Graphics
19	Functional	GUI>Tools	DCF Editor
20	Functional	GUI>Tools	Sensitivity
21	Functional	GUI>Tools	Probabilistic
22	Functional	GUI	Navigation
23	Functional	GUI	Form level
24	Functional	GUI	2D Display
25	Functional		SD Display
20		GUI	
21	Inputs	Data Data	Slope factors
20	Inputs	Data	Nuclide decay and ingrowth
30	Inputs	Data	External radiation factors
31	Inputs	Data	Uncertainty distributions
32	Performance / Timing	Calculational Time	Default
33	Security / Access Control	Software Download Access	Valid email
34	Interface	Model Connections	Output for IND
35	Design Constraints	Platform	Computer Type
36	Design Constraints	Compatibility	Input files from previous versions

 Table A.1 Topics of the RESRAD-BUILD Software Requirements
RID	Test Case(s)	RID	Test Case(s)
1	1	19	19
2	2	20	20
3	2	21	21
4	2	22	22-1, 22-2, 22-3
5	5	23	22-3
6	6	24	22-3
7	7-1, 7-2	25	25
8	7-1, 7-2, 8-1, 8-2, 8-3, 8-4, 8-5	26	26
9	9	27	27-1, 27-3, 27-3
10	10	28	28
11	7-1, 7-2, 8-1, 8-2, 8-3, 8-4, 8-5	29	6
12	12-1, 12-2, 12-3, 12-4, 12-5, 12-6	30	30-1, 30-2, 30-3
13	7-1, 7-2	31	31
14	10	32	32
15	7-1, 7-2	33	33
16	7-1, 7-2	34	34
17	17	35	1
18	18	36	36

 Table A.2 Test Cases for Each Requirement

Test Case	RID(s)	Test Case	RID(s)
1	1, 35	19	19
2	2, 3, 4	20	20
5	5	21	21
6	6, 29	22-1	22
7-1	7, 8,11, 13, 15, 16	22-2	22
7-2	7, 8, 11, 13, 15, 16	22-3	22, 23, 24
8-1	8, 11	25	25
8-2	8, 11	26	26
8-3	8, 11	27-1	27
8-4	8, 11	27-2	27
8-5	8, 11	27-3	27
9	9	28	28
10	10, 14	30-1	30
12-1	12	30-2	30
12-2	12	30-3	30
12-3	12	31	31
12-4	12	32	32
12-5	12	33	33
12-6	12	34	34
17	17	36	36
18	18		

Table A.3 Requirements for Each Test Case

TEST CASE 001

Project	RESRAD-BUILD						
Test Case ID	RESBLD-TEST-001						
Requirements Tested	1, 35						
Test Summary	Fest installation and operation on various Windows PC operating systems.						
Test Objective	Test installation and operation on various Windows PC operating systems.						
Procedure	Install and run software on the range of operating systems the version is designed for. Note and document any issues. Specifically test for font installation.						
	Steps for each operating system:						
	• Install.						
	• Look at ReadMe.						
	• Launch RESRAD-BUILD.						
	 Run one of the QA files in the QA_files subfolder of the folder installed for this version of RESRAD-BUILD (e.g., C:\RESRAD_Family\BUILD\4.0\QA_files\qa1.bld). 						
	• Open graphics, open report, look at font.						
	• Do file comparison (fc) in DOS (fc as follows) or alternative equivalent approach for the output result file.						
	 Open Command Prompt. 						
	 Navigate to the installation directory (e.g., type cd "C:\RESRAD_Family\BUILD\4.0" and press Enter). 						
	 Run fc (e.g., type "fc RESRADB.RPT QA_files\QAoutputforComparison\qa1.RPT > difference.gra" and press Enter). 						
	 Open the comparison results (e.g., type "type difference.gra" and press Enter). 						
	• Review differences reported.						
Required Data	NA						
Expected Results	Successful installation. Should see only expected differences (e.g., date and time in reports).						

TEST CASE 002

Project	RESRAD-BUILD						
Test Case ID	RESBLD-TEST-002						
Requirements Tested	2, 3, 4						
Test Summary	Test the specifications of receptors, radiation sources, and compartments in a contaminated building.						
	Eight input files are constructed to test the code's capability of conceptualizing the radiation exposures of different receptors in a contaminated building. The number of rooms in the building ranges from 1 to 9, while the number of radiation sources and the number of receptors range from 1 to 10. The code is tested for constructing four different types of radiation sources, point, line, area, and volume; the first three types would release radionuclides through multiple time periods with different release rates. After each input file is constructed, calculations are launched to generate summary reports. The summary dose/risk reports are examined to check whether the radiation exposure conditions associated with the dose/risk results reflect the input specifications.						
Test Objective	Test and verify the code provides input options to consider different exposure conditions with a contaminated building. The code allows up to 9 rooms in the building, up to 10 receptors in different rooms, and up to 10 radiation sources of different types, as specified by the code requirements 2, 3, and 4, respectively.						
Procedure	Repeat the following steps to construct an input file based on specifications in the Input Specifications table and examine the dose/risk results:						
	• Choose to create a new input file.						
	• Choose the "Traditional Appearance" or "New Appearance" associated with the Advanced menu.						
	• In the Building Parameters input form, specify the number of rooms in the building according to the specification. Click the Air Flow button to bring up the input form for specifying air flow rates. Change air flow rates between rooms and from each room to outdoors (as long as the values are accepted by the code).						
	• In the Receptor Parameters input form, specify the number of receptors and their rooms according to the Input Specifications table. Change the receptor characteristics (as long as the values are accepted by the code).						
	• Use the Source Parameter input form to create the number of sources and specify the source types and locations, and then click the source Details button to bring up input form(s) to specify source releases, according to the Input Specifications table.						
	• Save the input file and launch calculations.						
	• Open the dose summary report to verify the listings in the Input Parameters section are consistent with the input specifications. Examine the dose results to verify the number of receptors and the number of sources are also consistent with the input specifications.						

					-			
Table. Inp	ut Specificatio	ons						
		No. of						
	Form	Rooms in	No. of		No. of			No. of Release Phases
Test No.	Appearance	Building	Receptors	Receptor Room No.	Sources	Source Room No.	Source Type	of Each Source
1	Traditional	1	1	1	3	1, 1, 1	A, V, L	1, 1, 1
2	Traditional	2	3	1, 2, 1	2	1, 2	A, V	1, 1
3	Traditional	3	5	1, 2, 3, 2, 1	5	3, 2, 1, 2, 3	A, L, P, A, V	1, 1, 1, 1, 1
4	New	2	6	1, 1, 1, 2, 2, 2	1	2	V	1
5	New	4	8	1, 2, 3, 4, 4, 3, 2, 1	4	4, 3, 2, 1	V, V, A, L	1, 1, 2, 3
6	New	6	10	1, 2, 3, 4, 5, 6, 1, 2, 4, 6	5	2, 4, 6, 5, 3	A, A, V, V, L	5, 7, 1, 1, 4
7	New	8	5	2, 4, 6, 8, 1	7	1, 2, 3, 4, 5, 6, 7	A, V, A, V, L, P, V	5, 1, 4, 1, 6, 9, 1
8	New	9	3	3, 6, 9	10	1, 2, 3, 4, 5, 6, 7, 8, 9, 9	V, V, V, V, A, A, A, A, A, L, P	1, 1, 1, 1, 3, 6, 9, 10, 5, 3
Source Typ	be — A: Area,	L: Line, P: P	oint, V: Volu	me.				

Required Data None.

Expected
ResultsThe code should allow the considerations of up to 9 rooms, up to 10 receptors, and up to
10 radiation sources of 4 different types in each run of the calculations.

TEST CASE 005

Project	RESRAD-BUILD						
Test Case ID	RESBLD-TEST-005						
Requirements Tested	5						
Test Summary	Test the specification of shielding between radiation sources and receptors.						
Test Objective	To test the functionality of shielding parameters input and output in the GUI.						
Procedure	1. Launch the code and specify values to Thickness, Density, and Material input boxes in the Shielding Parameter window.						
	 Save the project as Site5.bld and open the saved project file. If the values for parameters DSOR, DSTH, DSDEN, and MTLC match the specified values, go to Step 3; otherwise, the test has failed. 						
	3. Add 1 source and 1 receptor to the project and specify different values to the input boxes in the Shielding Parameter window.						
	 Save the project as "Site5-1.bld" and check the values for the parameters DSOR, DSTH, DSDEN, and MTLC. If they match the input values, go to the next step; otherwise, the test has failed. 						
	5. Open project file "Site5-1.bld" and click View Table button in the Shielding Parameter window. If the values shown in the pop-up Source Receptor Table window match the input values, go to the next step; otherwise, the test has failed.						
	6. Open project file "Site5-1.bld" and click the View Table button in the Shielding Parameter window. Change the value in each input box in the pop-up Source Receptor Table window and then click the Save and Exit button. The pop-up window should close and the values in Shielding Parameter window should be updated accordingly. If the values do not match the input in the Source Receptor Table window, the test has failed.						
	7. Repeat Step 6 but click the Cancel button in the Source Receptor Table window. All the values in the Shielding Parameter window should not be changed.						
	8. Open project file "Site5-1.bld" and click the Copy Shielding button in the Shielding Parameter window.						
	9. Select each of the three options in the pop-up Copy Shielding window and then click the Save button. Check the values for shielding between each receptor and each source in the Shielding Parameter window. If the values in the Shielding Parameter window match with the selected option, the test has passed.						
Required Data	None.						
Expected Results	In Steps 2, 4, 5, 6, 7, and 8, the values in either the input file or interface windows should match with the input values or the specified options.						

TEST CASE 006

Project	RESRAD-BUILD					
Test Case ID	RESBLD-TEST-006					
Requirements Tested	6, 29					
Test Summary	Test the assembly of decay chains based on specified transformation database and input cut- off half-life.					
Test Objective	To test the functionality of decay chain assembling in GUI. Correct decay chains assembled also verify the decay data used.					
Procedure	 Launch the code, remove evaluation times from Evaluation Times window, select ICRP 38 radionuclide data and set cut-off half-life at 30 days, and click Details button in the Source Parameters window 					
	 Remove CO-60 from the contamination radionuclide list and add the following radionuclides to source: AM-242M, BK-247, CD-115M, CF-248, CF-251, CF-252, CM-241, CM-243, FE-60, FM-257, GD-146, GD-151, HF-182, IR-192M, LU- 174M, MD-258, MO-93, NP-235, NP-236A, PM-146, RE-184M, RH-102M, SB- 125, SM-145, TC-97M, TE-123M, TE-129M, U-238, ZR-88, ZR-93, ZR-95. 					
	3. Save the project to Site6.bld and run the code.					
	 Open the summary report and check the decay chain shown in the Nuclide Detail of Doses section. The decay chain for each nuclide should be correct compared with ICRP 38 data. 					
	5. Change the radionuclides database to ICRP 107, select cut-off half-life at 30 days, and repeat Steps 1 to 4. Compare the decay chain results with ICRP 107 data.					
Required Data	The following files can be used as optional input and output files for testing: "Test Case 006-38.bld" and "Test006-38.rpt" for ICRP 38 case and "Test Case 006-107.bld" and "Test006-107.rpt" for ICRP 107.					
Expected Results	When radionuclides are selected in the GUI, a decay chain should be correctly generated for each source radionuclide.					

TEST CASE 007-1

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-007-1
Requirements Tested	7, 8, 11, 13, 15, 16
Test Summary	Test the modeling of source release; transport of released particles; radionuclide concentrations in the source, air, and floor (deposition); and the radiation dose and risk from the inhalation, ingestion, and air submersion pathways.
	With a volume source (in Room 1), a 9-room building, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases, the remaining nuclide inventory in the source, the air concentrations and floor deposition concentrations in different rooms, and the radiation dose and cancer risks received by each receptor over time.
Test Objective	Test and verify the modeling of concentrations in the source, the particulate releases to air, the air ventilation and transport, and the dose and risk associated with the particulate inhalation, air submersion, and ingestion pathways, as required by the code requirements 7, 8, 11, 13, 15, and 16, respectively.
Procedure	Read in an input file that was used in previous code verification effort (the verification results were documented in the Excel file "Vol1_S=1.xlsx"), run the RESRAD-BUILD code to generate intermediate outputs and summary reports, and then compare the results in these outputs and reports with those previously obtained. The results obtained from the current run should match what were obtained previously.
	Steps:

- Read in the input file "Volume 1_S=1_EXP.BLD."
- Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.
- Check to see the inputs match the following. If not, change the inputs to match.

C ICRP 107 @	ICRP 38	Transformations				
Internal Dose Library	ICRP 72 (Ad	ult) 💌				
External Dose Library	ICRP 60	•				
Risk Library	FGR 13 Mort	bidity 💌				
Location of DCF database files C:\RESRAD_Family\DCF\3.3 Cut-off half life: 30 days						
-Time Parameters —	n (daue) 01.20	5				

			-				
Evaluation Times							
			OK				
			Cancel				
Times for Calculatio	n (years):						
2DD							
1 10	100 1	000 10000	100000				
Remove	Add	1) .25					
<u>ne</u> move	Au	∠」5 3) 75					
– Time Integration —							
		5 125					
Convergence criteri	on 0.0001	<u>6</u> <u>1.5</u>					
Maximum number of points 513 V							
Building Paramet	ers	_					
	r or Hooms jo		Air				
Deposi	ition Velocity 0.0	0039 m/	s Flow				
Resus	pension Rate 0.0	000005 17	s				

Number of Rooms	T										
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area		36	36	36	36	36	36	36	36	36	\mathbf{m}^2
Volume		90	90	90	90	90	90	90	90	90	m³
Resuspension rate		5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
Air flow from outdoors to		72	72	72	72	72	72	72	72	72	m³/hr
Air flow from room 1 to	72]	72	72	72	72	72	72	72	72	m³/hr
Air flow from room 2 to	72	72]	72	72	72	72	72	72	72	m³/hr
Air flow from room 3 to	72	72	72]	72	72	72	72	72	72	m³/hr
Air flow from room 4 to	72	72	72	72]	72	72	72	72	72	m³/hr
Air flow from room 5 to	72	72	72	72	72]	72	72	72	72	m³/hr
Air flow from room 6 to	72	72	72	72	72	72]	72	72	72	m³/hr
Air flow from room 7 to	72	72	72	72	72	72	72]	72	72	m³/hr
Air flow from room 8 to	72	72	72	72	72	72	72	72]	72	m³/hr
Air flow from room 9 to	72	72	72	72	72	72	72	72	72]	m³/hr
Efficiency of Vacuuming 0 Vacuum once every 366 days											
Analytical Solution w	hen Possibl	e	Maximum	Time Step	0.08911	days					
DK Vite Intermediate Output Cancel											

Radiological Data	
Activity:	Dose:
p 🔻 Ci 🛛 💌	m ▼ rem ▼

Receptor Parameters	
Receptor # Room Time Fraction	1 • 1 • 1
Breathing Rate	18 m ³ /d
Ingestion Rate	0 m²/h
Location [m]	x: 1 y: 1 z: 1

Receptor Parameters	
Receptor # Room Time Fraction Breathing Rate Ingestion Rate Location [m]	3 • 6 • 0.3 • 25 m³/d 0.0002 m²/h x: 1 y: 1 z: 13.5
Receptor Parameters Receptor # Room Time Fraction Breathing Rate Ingestion Rate Location [m]	[4 ▼ 9 ▼ 1 1 15 m³/d 0.00015 m²/h x: 1 y: 1

Source Recept	tor 1	lable (x
Thickness, cm]	Source #	
Density, g/cm³]	1	
Haterial 🔻	1	0	
		2.4	
		Concrete 💌	
	2	0	
		2.4	
		Concrete 💌	
Receptor #	3	0	
		2.4	
		Concrete 💌	
	4	0	
		2.4	
		Concrete 💌	
		Save and Exit Cancel	
	-W.		

Source Paramete	rs							
Source #	1	•						
Room	1							
Туре	Volume	🗔 🛣 Details						
Direction	Z	•						
Location of centroid x: 0 y: 0 z: 0 of source [m]								

Details for Source # 1		
Geometry Circular Area [m2] 36	C Rectangular Length along (m): X 0 Y 0	Contamination Concentration pCi/g Radionuclide pCi/g CO-60 1.00E+00 CS-137 1.00E+00 PB-210 0.00E+00 PB-210 0.00E+00 Delete
-Release Air Fraction Direct Ingestion [g/h] Number of Wall Regions Material Type	0.1 0.01 1 -	RA-226 1.00E+00
Layer Region Pa	arameters	AC-227 v 1 <u>Add</u> Nuclide
ОК	Cancel	Save Source # 1 Data and Load Data for Source # 1

ち Layer Region Param	ieters
Regions	
Contaminated Thickness [cm]	1 ⊙ 15
Density [g/cm³]	2.4
Erosion [cm/d]	2.40E-03
Direction from inte to eroding surface	erior + Z 💌
Radon Paramet	ers
Diffusion [m2/s]	0.00002
Porosity	0.1
Emanation Fractio	n
Rn-220	
Rn-222	0
ОК	Cancel

- Run the code.
- After the calculations are completed, choose the menu option, View dose coefficient and slope factors.
- The aggregated dose and slope factors (including those of short-live progeny) used for the calculations should match the following.

	Dose and Slope External Dose Fact ICRP 60 Internal Dose Fact ICRP 72 (Adult)	Factors inc tors from tors from	luding contr:	lbution of Associated Rad Slope Factors fro FGR 13 Morbidity	ionuclides n 7	
Isotope	External	Inhalation	Ingestion	External	Inhalation	Ingestion
	(mrem/y) /(pCi/m ³)	mrem/pCi	mrem/pCi	risk/y /(pCi/m ³)	risk /pCi	risk /pCi
Ra-226	9.77E-03	3.53E-02	1.04E-03	7.87E-09	2.83E-08	5.15E-10
Pb-210	3.53E-05	2.11E-02	2.56E-03	9.04E-12	1.63E-08	1.19E-09
Po-210	4.54E-08	1.59E-02	4.44E-03	3.66E-14	1.45E-08	2.25E-09
Cs-137	2.98E-03	1.44E-04	4.81E-05	2.39E-09	1.12E-10	3.74E-11
Co-60	1.39E-02	1.15E-04	1.26E-05	1.12E-08	1.01E-10	2.23E-11

- Choose to view "Time Integrated Source Concentrations" and "Time Averaged Direct Ingestion" outputs for Source 1 or open the file "DirectTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged activity in the source and time-integrated direct ingestion of radionuclides) should match those listed as "from RRB" in the tab "RRB_DirectTimeIntegratedSource1" in the "Vol1_S=1.xlsx" Excel file.
- Open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB_AirRelrate1" in the "Vol1 S=1.xlsx" Excel file.
- Choose to view "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RRB" in the tab "RRB TimeIntegratedConcSource1" in the "Vol1 S=1.xlsx" Excel file.

- Choose to view "Component of dose and risk" outputs or open the file "Dose and risk components.rpt" in the directory where the code was installed to view. The outputs (for inhalation, external immersion, ingestion deposition, and ingestion source pathway doses and risks of each nuclide) should match those listed as "from RRB" in the tab "RRB DoseRiskComponents" in the "Vol1 S=1.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years

Pathway Detail of Doses

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	2.282+00	6.33E-01	1.902-04	7.16E-05	0.00E+00	1.30E-04	1.21E-02	2.922+00
2	1.742-01	1.602-01	4.272-05	1.632-05	3.402-04	6.292-05	0.00E+00	3.352-01
3	2.382-02	1.202-01	2.56E-05	9.78E-06	4.082-04	3.782-05	0.00E+00	1.452-01
4	3.292-02	2.412-01	8.53E-05	3.26E-05	1.022-03	1.262-04	0.00E+00	2.752-01
Total	2.512+00	1.15E+00	3.442-04	1.30E-04	1.772-03	3.562-04	1.212-02	3.682+00

Evaluation Time: 0.250000000 years

Pathway Detail of Doses

m	r	e	m	1

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	2.232+00	6.99E-01	2.752-04	7.72E-05	0.002+00	2.042-04	1.25E-02	2.942+00
2	1.70E-01	1.932-01	6.75I-05	1.91E-05	5.602-04	9.91E-05	0.002+00	3.632-01
3	2.332-02	1.442-01	4.052-05	1.152-05	6.72E-04	5.94E-05	0.002+00	1.682-01
4	3.222-02	2.892-01	1.35E-04	3.832-05	1.682-03	1.982-04	0.00E+00	3.232-01
Total	2.462+00	1.33E+00	5.18E-04	1.462-04	2.91E-03	5.60E-04	1.25E-02	3.80E+00

Evaluation Time: 0.50000000 years

Pathway Detail of Doses

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	2.182+00	7.09E-01	2.76E-04	7.652-05	0.002+00	2.11E-04	1.292-02	2.902+00
2	1.662-01	1.972-01	6.90E-05	1.912-05	6.02E-04	1.032-04	0.00E+00	3.632-01
3	2.272-02	1.482-01	4.14E-05	1.152-05	7.222-04	6.16E-05	0.002+00	1.712-01
4	3.14E-02	2.952-01	1.38E-04	3.822-05	1.81E-03	2.05E-04	0.002+00	3.292-01
Total	2.402+00	1.35E+00	5.25E-04	1.452-04	3.132-03	5.80E-04	1.292-02	3.772+00

Evaluation Time: 0.750000000 years

- -

Pathway Detail of Doses

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air	repositoron		boulce	
1	2.132+00	7.152-01	2.72E-04	7.53E-05	0.002+00	2.11E-04	1.342-02	2.862+00
2	1.622-01	1.992-01	6.81E-05	1.882-05	6.272-04	1.03E-04	0.002+00	3.612-01
3	2.212-02	1.492-01	4.08E-05	1.132-05	7.522-04	6.18E-05	0.002+00	1.722-01
4	3.062-02	2.982-01	1.362-04	3.76E-05	1.882-03	2.062-04	0.002+00	3.312-01
Total	2.352+00	1.362+00	5.17E-04	1.432-04	3.26E-03	5.82E-04	1.342-02	3.732+00

Courses: 1

Pathway Detail of Doses

rem]	[mr
------	-----

bource. I	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.092+00	7.202-01	2.682-04	7.41E-05	0.002+00	2.11E-04	1.392-02	2.822+00
2	1.582-01	2.002-01	6.70E-05	1.852-05	6.51E-04	1.032-04	0.002+00	3.592-01
3	2.162-02	1.50E-01	4.022-05	1.11E-05	7.812-04	6.18E-05	0.002+00	1.722-01
4	2.992-02	3.00E-01	1.342-04	3.70E-05	1.952-03	2.062-04	0.002+00	3.322-01
Total	2.30E+00	1.37E+00	5.09E-04	1.412-04	3.39E-03	5.82E-04	1.39E-02	3.682+00

- -

Evaluation Time: 1.25000000 years

Pathway Detail of Doses

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	2.04E+00	7.252-01	2.642-04	7.282-05	0.002+00	2.112-04	1.442-02	2.782+00
2	1.542-01	2.012-01	6.59E-05	1.82E-05	6.76E-04	1.032-04	0.002+00	3.562-01
3	2.112-02	1.51E-01	3.95E-05	1.09E-05	8.11E-04	6.18E-05	0.002+00	1.732-01
4	2.922-02	3.02E-01	1.322-04	3.642-05	2.032-03	2.06E-04	0.00E+00	3.342-01
Total	2.252+00	1.382+00	5.01E-04	1.38E-04	3.51E-03	5.822-04	1.442-02	3.652+00

Evaluation Time: 1.50000000 years

Pathway Detail of Doses

	[mrem]	

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	2.002+00	7.302-01	2.592-04	7.172-05	0.002+00	2.112-04	1.502-02	2.742+00
2	1.502-01	2.032-01	6.49E-05	1.79E-05	7.01E-04	1.032-04	0.002+00	3.542-01
3	2.062-02	1.522-01	3.892-05	1.07E-05	8.41E-04	6.18E-05	0.002+00	1.742-01
4	2.852-02	3.042-01	1.302-04	3.58E-05	2.102-03	2.062-04	0.002+00	3.352-01
Total	2.202+00	1.392+00	4.932-04	1.36E-04	3.652-03	5.82E-04	1.50E-02	3.612+00

• Choose to view "last risk report," or open the file "RESRADB_r.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years Pathway Detail of Risks [Risk] Source: 1 External Inhalation External External Ingestion Radon Ingestion Total directly from from of of from Source Deposition Suspension Deposition on floor in air Source Receptor in air 5.772-11 1.322-11 7.892-12 0.002+00 5.082-07 1.432-10 6.35E-09 1 1.832-06 1.532-10 2.342-06 1.40E-07 1.91E-08 1.29E-07 9.65E-08 3.42E-11 2.05E-11 1.78E-10 2.13E-10 7.54E-11 5.65E-11 0.002+00 2.68E-07 1.16E-07 3 2.64I-08 2.01I-06 1.93E-07 9.26E-07 6.84E-11 2.76E-10 2.63E-11 1.05E-10 5.33E-10 9.24E-10 1.13E-10 3.88E-10 0.002+00 6.352-09 2.20E-07 2.95E-06 Total

Evaluation Time: 0.250000000 years

Pathway Detail of Risks [Risk]

Source: 1	-				_		-	-
	directly	Inhalation	from	from	of	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.79E-06	5.61E-07	2.20E-10	6.23E-11	0.002+00	2.242-10	6.51E-09	2.362-06
2	1.36E-07	1.54E-07	5.41E-11	1.542-11	2.922-10	1.19E-10	0.002+00	2.91E-07
3	1.872-08	1.16E-07	3.252-11	9.26E-12	3.50E-10	8.90E-11	0.002+00	1.35E-07
4	2.582-08	2.32E-07	1.08E-10	3.09E-11	8.75E-10	1.78E-10	0.002+00	2.592-07
Total	1.972-06	1.062-06	4.152-10	1.182-10	1.522-09	6.09E-10	6.51E-09	3.042-06

_ _ -

_

_

Evaluation Time: 0.500000000 years

Pathway Detail of Risks [Risk]

Source: 1 External Inhalation External External Ingestion Radon Ingestion Total directly from Source from from of Deposition Suspension Deposition of Source on floor 2.222-10 5.532-11 in air 6.172-11 1.542-11 Receptor
 Source
 on floor
 in air

 1.752-06
 5.652-07
 2.222-10
 6.172-11
 0.002+00

 1.332-07
 1.582-07
 5.532-11
 1.542-11
 3.132-10

 1.832-08
 1.182-07
 3.322-11
 5.252-12
 3.752-10

 2.522-08
 2.372-07
 1.112-10
 3.082-11
 5.382-00

 1.9332-06
 1.082-06
 4.212-10
 1.172-10
 1.632-05
 2.312-10 1.232-10 5.222-11 1.842-10 6.312-10 2.332-06 2.912-07 1.372-07 2.632-07 3.022-06 6.71E-09 0.00E+00 1 2 0.002+00 0.002+00 6.712-09 3 Total

Evaluation Time: 0.750000000 years

Pathway Detail of Risks [Risk]

[Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	1.712-06	5.73E-07	2.182-10	6.07E-11	0.002+00	2.322-10	6.942-09	2.292-06
2	1.302-07	1.59E-07	5.46E-11	1.522-11	3.242-10	1.232-10	0.002+00	2.892-07
3	1.782-08	1.19E-07	3.272-11	9.11Z-12	3.89E-10	9.25E-11	0.002+00	1.382-07
4	2.462-08	2.392-07	1.09E-10	3.042-11	9.73E-10	1.85E-10	0.002+00	2.652-07
Total	1.882-06	1.092-06	4.15E-10	1.152-10	1.692-09	6.33E-10	6.94E-09	2.982-06

Evaluation Time: 1.00000000 years

Pathway Detail of Risks

[Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.672-06	5.77 E -07	2.15E-10	5.97E-11	0.00E+00	2.32E-10	7.18E-09	2.262-06
2	1.27E-07	1.602-07	5.37E-11	1.492-11	3.36E-10	1.232-10	0.002+00	2.872-07
3	1.73E-08	1.20E-07	3.222-11	8.96E-12	4.03E-10	9.25E-11	0.00E+00	1.38E-07
4	2.402-08	2.41E-07	1.07E-10	2.99E-11	1.01E-09	1.85E-10	0.002+00	2.662-07
Total	1.842-06	1.102-06	4.08E-10	1.132-10	1.75E-09	6.33E-10	7.18E-09	2.952-06

Evaluation Time: 1.25000000 years

.

Pathway Detail of Risks

[Risk]

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.642-06	5.82E-07	2.11E-10	5.87E-11	0.002+00	2.322-10	7.442-09	2.232-06
2	1.24E-07	1.62E-07	5.282-11	1.472-11	3.482-10	1.232-10	0.002+00	2.862-07
3	1.692-08	1.21E-07	3.17E-11	8.81E-12	4.182-10	9.25E-11	0.00E+00	1.392-07
4	2.342-08	2.42E-07	1.06E-10	2.942-11	1.042-09	1.852-10	0.002+00	2.672-07
Total	1.802-06	1.112-06	4.022-10	1.122-10	1.81E-09	6.33E-10	7.442-09	2.922-06

Evaluation	Time: 1.5	0000000 ye	ars					
		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.602-06	5.86E-07	2.08E-10	5.78E-11	0.002+00	2.322-10	7.702-09	2.202-06
2	1.212-07	1.632-07	5.20E-11	1.442-11	3.60E-10	1.232-10	0.002+00	2.842-01
3	1.652-08	1.22E-07	3.122-11	8.672-12	4.32E-10	9.25E-11	0.00E+00	1.39E-01
4	2.282-08	2.442-07	1.042-10	2.892-11	1.08E-09	1.852-10	0.00±+00	2.682-01
Total	1.762-06	1.112-06	3.95E-10	1.102-10	1.87E-09	6.332-10	7.70E-09	2.892-04

Required Data Input file "Volume 1_S=1_EXP.BLD" and the verification Excel file "Vol1_S=1.xlsx."

ExpectedThe intermediate and final outputs should match those previously obtained (and verified)**Results**with the same input file or input selections/values.

TEST CASE 007-2

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-007-2
Requirements Tested	7, 8, 11, 13, 15, 16
Test Summary	Test the modeling of source release; transport of released particles; radionuclide concentrations in source, air, and floor (deposition); and radiation dose and risk from the inhalation, ingestion, and air submersion pathways.
	With an area source (in Room 3), a 9-room building which is vacuumed every 14 days, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases, the remaining nuclide inventory in the source, the air concentrations and floor deposition concentrations in different rooms, and the radiation dose and cancer risks received by each receptor over time.
Test Objective	Test and verify the modeling of concentrations in the source, the particulate releases to air (during different release phases), the air ventilation and transport (involving periodical vacuuming), and the dose and risk associated with the particulate inhalation, air submersion, and ingestion pathways, as required by the code requirements 7, 8, 11, 13, 15, and 16, respectively.
Procedure	Read in an input file that was used in previous code verification effort (the verification results were documented in the Excel file "Area $1_S=3_V=14.xlsx$ "), run the RESRAD-BUILD code to generate intermediate outputs and summary reports, and then compare the results in these outputs and reports with those previously obtained. The results obtained from the current run should match what were obtained previously.
	Steps:
	• Read in the input file "Area 1_S=3_V=14_exp.BLD."
	• Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.
	• Check to see the inputs match the following. If not, change the inputs to match.
	C ICRP 107 © ICRP 38 Transformations
	Internal Dose Library ICRP 72 (Adult)
	External Dose Library ICRP 60
	Risk Library FGR 13 Morbidity
	Location of DCF database files C:\RESRAD_Family\DCF\3.3
	Cut-off half life: 30 days

-Time Parameters ———		
	91.25	L
	51.25	Evaluation
Indoor fraction	0.5	Times

					OK
Times for Calculation (year	s):				Cancel
777					
10	100	1000		10000	10000
Remove	Add	1	1) 2)	.25	_
	Qua		2) 31	.5	
- Time Integration			ال ا ال	.75	
The Integration			9 5)	1 25	
Convergence criterion	0.001		6)	1.20	
			2	1.5	
Maximum number of points	513	-			
	,				

Building	Parameters			
Ð	Number of Rooms Deposition Velocity Resuspension Rate	9 <u></u> 0.00039 0.000005	▼ m/s 1/s	Air Flow

Number of Rooms	•										
(
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area		36	36	36	36	36	36	36	36	36	\mathbf{m}^2
Volume		90	90	90	90	90	90	90	90	90	m³
Resuspension rate		5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
Air flow from outdoors to		90	0	0	36	0	0	0	0	0	m³/h
Air flow from room 1 to 0)		72	0	36	0	0	0	0	0	m³/h
Air flow from room 2 to)	0		72	0	0	0	0	0	0	m³/h
Air flow from room 3 to 3	36	0	0		18	0	18	0	0	0	m³/h
Air flow from room 4 to 0)	0	0	0		36	0	54	0	0	m³/h
Air flow from room 5 to 0)	0	0	0	0]	36	0	18	0	m³/h
Air flow from room 6 to 0)	0	0	0	0	0]	0	0	54	m³/h
Air flow from room 7 to)	0	0	0	0	0	0		54	0	m³/hi
Air flow from room 8 to 0)	0	0	0	0	18	0	0		72	m³/hi
Air flow from room 9 to 9	90	18	0	0	0	0	0	0	18		m³/hi
Efficiency of Vacuuming	0.8 en Possible	e	Vacuum o Maximum	once every Time Step	14 0.08911	days days					
	OK		~	Write Inter	mediate Ou	tput	_	Cancel			

Radiological Data	
Activity:	Dose:
p Ci	m_rem_v

Receptor Parameters		
Receptor # Room Time Fraction	1 1 1	1
Breathing Rate Ingestion Rate Location [m]	18 0 x: 1 y: 1 z: 1	m ³ /d m ² /h

Receptor Parameters		
Receptor # Room Time Fraction	<mark>4</mark> 9 1	•
Breathing Rate Ingestion Rate Location [m]	15 0.00015 x: 1 y: 1 z: 2	m ³ /d m ² /h 1

5 Source Recept	or 1	able	×
Thickness, cm		Source #	
Density, g/cm³		1	
Material 💌	1	0	
		2.4	
		Concrete 💌	
	2	0	
		2.4	
		Concrete 💌	
Receptor #	3	0	
		Z.4	
	4	24	
		Concrete	
		Save and Exit Cancel	

Source Parame	ters							
Source #	1	•						
Room	3							
Туре	Area							
Direction	Z	-						
Location of centroid x: 0 y: 0 z: 0 of source [m]								

B Details f	or Source #	1						— ×	
Geome	trv —					-Contaminatio	n n		
•	Circular	0	C Rectan	gular		Radionuclide	Concentration pCi/m2		
		L	ength alon	g (m): 🛛		CO-60	1.00E+00		
	ea [m2]		XII			CS-137	1.00E+00		
3	6					PB-210	0.008+00		
			Y 0			PO-210	0.008+00	Delete	
-Timed I	Release -					PA-226	1 008+00	Nuclide	
Rador	Release Fi	action 1	<u>ו</u>	¬			1.002100		
Direct	Indestion [L/bl	- 	-					
Direct	ingestion [in l	J. UUUUUUU I						
				Released					
	Start time	End time	Fraction	as a Fraction of					
Phase	(days)	(days)	removed	removed					
1	0	30	0.1	0.5					
2	30	60	0.15	0.5					
3	60	100	0.25	0.5					
4	100	120	0.3	0.5					
5	120	200	0.1	0.5					
6	280	350	0.1	0.5					
7	365	365	0	0					
8	365	365	0	0					
9	365	365	0	0					
10	365	365	0	0					
						AC-227	, 1	<u>A</u> dd Nuclide	
	OK Cancel Save Source # 1 Data and Load Data for Source # 1								

- Run the code.
- After the calculations are completed, choose to view the "last intermediate output files."
- The dose and slope factors used for the calculations should match the following.

	Dose and Slope External Dose Fact ICRP 60 Internal Dose Fact ICRP 72 (Adult)	bution of Associated Rad: Slope Factors from FGR 13 Morbidity	n of Associated Radionuclides Slope Factors from FGR 13 Morbidity				
Isotope	External	Inhalation	Ingestion	External	Inhalation	Ingestion	
	(mrem/y) /(pCi/m ³)	mrem/pCi	mrem/pCi	risk/y /(pCi/m ³)	risk /pCi	risk /pCi	
Ra-226	9.77E-03	3.53E-02	1.04E-03	7.87E-09	2.83E-08	5.15E-10	
Pb-210	3.53E-05	2.11E-02	2.56E-03	9.04E-12	1.63E-08	1.19E-09	
Po-210	4.54E-08	1.59E-02	4.44E-03	3.66E-14	1.45E-08	2.25E-09	
Cs-137	2.98E-03	1.44E-04	4.81E-05	2.39E-09	1.12E-10	3.74E-11	
Co-60	1.39E-02	1.15E-04	1.26E-05	1.12E-08	1.01E-10	2.23E-11	

• Choose to view "Time integrated source concentrations" and "Time averaged direct ingestion" outputs for Source 1 or open the file "DirectTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged activity in the source and time-integrated direct ingestion of radionuclides) should match those listed as "from RRB" in the tab "RRB_DirectTimeIntegratedSource1" in the "Area1_S=3_V=14.xlsx" Excel file.

- Open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB_AirRelrate1" in the "Area1 S=3 V=14.xlsx" Excel file.
- Choose to view "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RBB" in the tab "RRB_TimeIntegratedConcSource1" in the "Area1 S=3 V=14.xlsx" Excel file.
- Choose to view "Component of dose and risk" outputs or open the file "Dose and risk components.rpt" in the directory where the code was installed to view. The outputs (for inhalation, external immersion, ingestion deposition, and ingestion source pathway doses and risks of each nuclide) should match those listed in the tab "RRB DoseRiskComponents" in the "Area1 S=3 V=14.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years

Pathway Detail of Doses

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.16E-05	1.29E-05	1.462-09	1.452-09	0.002+00	3.30E-08	0.002+00	2.452-05
2	6.482-07	5.55E-04	5.95E-08	5.642-08	4.742-07	9.56E-08	2.19E-07	5.562-04
3	8.77E-08	9.48E-05	7.962-09	7.71E-09	1.272-07	6.43E-08	0.002+00	9.51E-05
4	1.232-07	8.60Z-05	1.192-08	1.162-08	1.422-07	1.85E-07	0.002+00	8.652-05
Total	1.252-05	7.492-04	8.07E-08	7.722-08	7.422-07	3.78E-07	2.19E-07	7.632-04

Evaluation Time: 0.250000000 years

Pathway Detail of Doses

Source: Inhalation External External External Ingestion Radon Ingestion Total directly from from Deposition from Suspension of of Source Deposition Receptor Source on floor in air 3.372-06 1.422-05 1.902-09 1.582-09 0.007+00 4 137-08 0.003+00 1.763-05 1.882-07 5.602-04 7.192-08 5.59E-08 5.612-04 2 5.91E-07 1.172-07 2.25E-07 3 2.543-08 9.993-05 9.942-09 7.992-09 1.632-07 8.00E-08 0.002+00 1.002-04 9.34E-05 7.67E-04 .552-08 1.522-08 242-08 872-07 31E-07 0.002+00 9.39E-05 7.73E-04 39E-05 1.24E-08 7.79E-08 Total 3.622-06 9.89E-08 9.42E-07 4.702-07 2.252-07

Pathway Detail of Doses _ -[mrem]

	External directly	Inhalation	External from	External from	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air	Deposition		bource	
1	1.422-06	8.21E-07	1.252-10	8.932-11	0.002+00	2.612-09	0.002+00	2.252-06
2	7.922-08	2.922-05	4.342-09	2.86E-09	3.72E-08	7.242-09	4.362-08	2.942-05
3	1.072-08	5.462-06	6.25E-10	4.28E-10	1.072-08	5.01E-09	0.00E+00	5.492-06
4	1.502-08	5.272-06	9.81E-10	6.89E-10	1.26E-08	1.462-08	0.00E+00	5.322-06
Total	1.53E-06	4.07E-05	6.07E-09	4.07E-09	6.06E-08	2.942-08	4.362-08	4.242-05

Evaluation Time: 0.750000000 years

Pathway Detail of Doses _____ _____ [mrem]

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	6.19E-07	3.10E-06	3.57E-10	3.27E-10	0.002+00	8.27E-09	0.00E+00	3.732-06
2	3.452-08	1.282-04	1.402-08	1.222-08	1.292-07	2.372-08	1.852-07	1.292-04
3	4.662-09	2.242-05	1.91I-09	1.70E-09	3.51E-08	1.612-08	0.002+00	2.242-05
4	6.522-09	2.062-05	2.872-09	2.602-09	3.972-08	4.632-08	0.002+00	2.072-05
Total	6.642-07	1.75E-04	1.92E-08	1.682-08	2.042-07	9.442-08	1.85E-07	1.762-04

Evaluation Time: 1.00000000 years

Pathway Detail of Doses _____ [mrem]

Courses: 1								
Source. I	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	0.002+00	2.242-08	7.71E-12	2.322-12	0.002+00	1.052-10	0.002+00	2.252-08
2	0.002+00	1.482-07	1.16E-10	1.38E-11	1.102-09	2.202-10	0.002+00	1.50E-07
3	0.002+00	7.932-08	2.632-11	5.93E-12	4.992-10	1.842-10	0.002+00	8.01I-08
4	0.002+00	1.162-07	5.26E-11	1.452-11	7.502-10	5.682-10	0.002+00	1.172-07
Total	0.002+00	3.662-07	2.022-10	3.662-11	2.352-09	1.082-09	0.002+00	3.692-07

Evaluation Time: 1.25000000 years

Pathway Detail of Doses -[mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	0.002+00	4.232-13	1.932-16	4.292-17	0.002+00	1.462-15	0.002+00	4.252-13
2	0.002+00	8.09E-13	5.20E-16	7.39E-17	5.21E-15	1.712-15	0.002+00	8.17E-13
3	0.002+00	9.69E-13	3.572-16	7.08E-17	7.172-15	2.132-15	0.002+00	9.79E-13
4	0.002+00	1.87E-12	1.06E-15	2.272-16	1.602-14	7.32E-15	0.002+00	1.892-12
Total	0.002+00	4.07E-12	2.142-15	4.152-16	2.842-14	1.262-14	0.002+00	4.11E-12

Evaluation Time: 1.50000000 years

Pathway Detail of Doses [mrem]

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.00E+00	3.46E-18	1.692-21	3.432-22	0.00E+00	1.082-20	0.002+00	3.472-18
2	0.00E+00	4.20E-18	2.142-21	3.75E-22	2.262-20	1.102-20	0.002+00	4.242-18
3	0.002+00	6.87E-18	2.522-21	4.902-22	5.332-20	1.502-20	0.002+00	6.942-18
4	0.002+00	1.43E-17	8.56E-21	1.70E-21	1.362-19	5.272-20	0.002+00	1.452-17
Total	0.002+00	2.882-17	1.49E-20	2.91E-21	2.122-19	8.95X-20	0.002+00	2.922-17

Choose to view "last risk report," or open the file "RESRADB_r.rpt" in the ٠ directory where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values listed in the following tables.

_

- -

_

Evaluation	Time: 0.0	00000002+00	years	-				
		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
Receptor	Source		on floor	in air	Deposition		Source	
1	9.33E-12	1.032-11	1.17E-15	1.172-15	0.002+00	3.342-14	0.002+00	1.972-11
2	5.20E-13	4.452-10	4.772-14	4.552-14	2.472-13	1.132-13	1.142-13	4.462-10
3	9 847-14	6 907-11	6.381-15 9.517-15	9 407-15	7 407-14	9.122-14	0.002+00	6 937-11
Total	1.002-11	6.00E-10	6.482-14	6.222-14	3.882-13	3.942-13	1.142-13	6.11E-10
Evaluation	Time: 0.2	250000000 ye	ears					
		-						
		Decharge	Denvil a	D 4 - b -				
		Pathway	Detail of	KISKS				
			[Risk]					
Source: 1	Zatornal	Tubalation	Zytornal	Zetornal	Ingestion	Padon	Indestion	Total
	directly	innalation	from	from	of	Radon	of	IOCAL
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source	1 147 11	on floor	in air	0.007100	4 107 14	0.007100	1 407 11
2	1 507-13	4 497-10	5 767-14	4 517-14	3 087-13	4.182-14	1 177-13	4 507-10
3	2.032-14	8.012-11	7.972-15	6.442-15	8.52E-14	1.142-13	0.002+00	8.042-11
4	2.852-14	7.492-11	1.222-14	1.00E-14	9.76E-14	1.962-13	0.002+00	7.522-11
Total	2.902-12	6.152-10	7.932-14	6.292-14	4.912-13	4.902-13	1.172-13	6.192-10
Evaluation	Time: 0.8	500000000 ye Pathway	Detail of	Risks				
Evaluation	Time: 0.5	Pathway	Detail of [[Risk]	Risks				
Evaluation	Time: 0.5	Dathway	Detail of [[Risk]	Risks				
Evaluation Source: 1	Time: 0.5	Dethway	Detail of ([Risk] External	Risks	Ingestion	Radon	Ingestion	Total
Evaluation Source: 1	Time: 0.5 External directly	Dethway	Detail of ([Risk] External from	Risks External from	Ingestion of	Radon	Ingestion	Total
Evaluation Source: 1	Time: 0.5 External directly from	Dathway	Detail of ([Risk] External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Evaluation Source: 1 Receptor	Time: 0.5 External directly from Source	Pathway Inhalation	Petail of : [Risk] External from Deposition on floor	External from Suspension in air 7 207-12	Ingestion of Deposition	Radon	Ingestion of Source	Total
Evaluation Source: 1 Receptor 1 2	<pre>Time: 0.5 External directly from Source 1.142-12 6.352-14</pre>	Pathway Inhalation 6.582-13 2.342-11	Detail of : [Risk] External from Deposition on floor 1.012-15 3.482-15	External from Suspension in air 7.202-17 2.312-15	Ingestion of Deposition 0.002+00 1.932-14	Radon 2.642-15 8.572-15	Ingestion of Source 0.002+00 2.272-14	Total 1.802-12 2.352-11
Evaluation Source: 1 Receptor 1 2 3	External directly from Source 1.142-12 6.352-14 8.552-15	Pathway Inhalation 6.592-13 2.342-11 4.382-12	Detail of : [Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16	External from Suspension in air 7.202-17 2.312-15 3.452-16	Ingestion of Deposition 0.002+00 1.932-14 5.572-15	Radon 2.642-15 8.572-15 7.112-15	Ingestion of Source 0.002+00 2.272-14 0.002+00	Total 1.802-12 2.352-11 4.402-12
Evaluation Source: 1 Receptor 1 2 3 4	<pre>Time: 0.5 External directly from Source 1.142-12 6.352-14 8.592-14</pre>	Pathway Pathway Inhalation 6.592-13 2.342-11 4.392-12 4.232-12	Detail of [Risk] External from Deposition on floor 1.012-16 5.012-16 7.872-16	External from Suspension in air 7.202-17 2.312-15 3.452-16	Ingestion of Deposition 0.002+00 1.532-15 6.572-15	Radon 2.642-15 8.572-15 7.112-15 1.232-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 0.002+00	Total 1.80Z-12 2.35Z-11 4.40Z-12 4.26Z-12
Evaluation Source: 1 Receptor 1 2 3 4 Total	<pre>Time: 0.5 External directly from Source 1.142-12 6.352-14 8.552-15 1.202-14 1.222-12</pre>	Pathway Inhalation 6.592-13 2.342-11 4.332-12 3.272-11	Detail of : [Risk] External from Deposition on floor 1.012-16 3.402-15 5.012-16 4.872-15	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.252-16 3.252-15	Ingestion of Deposition 0.002+00 1.532-14 5.572-15 6.572-15 3.152-14	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 0.02+00 2.272-14	Total 1.802-12 2.352-11 4.402-12 4.262-12 3.402-11
Evaluation Source: 1 Receptor 1 2 3 4 Total	<pre>Time: 0.5 External directly from Source 1.142-12 6.352-14 8.592-14 1.202-14 1.202-14</pre>	Pathway Inhalation 6.502-13 2.342-11 4.382-12 3.272-11	Detail of [Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.252-15	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 6.572-15 3.152-14	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14	Total 1.80Z-12 2.35Z-11 4.40Z-12 4.26Z-12 3.40Z-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation	Time: 0.5 External directly from Source 1.142-12 6.352-14 8.552-15 1.202-14 1.222-12 Time: 0.7	Pathway Inhalation 6.502-13 2.342-11 4.383-12 3.272-11 750000000 y	External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15	External from Suspension in air 7.202-17 2.312-15 3.452-16 5.552-16 5.552-16	Ingestion of Deposition 0.002+00 1.532-14 5.572-15 3.152-14	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.022+00 2.272-14	Total 1.802-12 2.352-11 4.402-12 3.402-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation	Time: 0.5 External directly from Source 1.142-12 6.352-14 8.552-15 1.202-14 1.222-12 Time: 0.7	Pathway Inhalation 6.502-13 2.342-11 4.382-12 3.272-11 750000000 y Pathway	Detail of : [Risk] External from Deposition on floor 1.012-1 3.482-15 5.012-16 4.872-15 ears Detail of	External from Suspension in air 7.202-17 2.31Z-15 3.45Z-16 3.26Z-15 - -	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 6.572-15 3.152-14	Radon 2.642-15 6.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 0.002+00 2.272-14	Total 1.802-12 2.352-11 4.402-12 4.262-12 3.402-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation	Time: 0.5 External directly from Source 1.142-12 6.352-14 1.202-14 1.222-12 Time: 0.7	Pathway Inhalation 6.592-13 2.342-11 4.332-12 3.272-11 750000000 Pathway	Detail of : [Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15 ears Detail of	External from Suspension in air 7.202-17 2.31Z-15 3.45Z-16 3.28Z-15 - Risks	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 6.572-15 3.152-14	Radon 2.642-15 6.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 0.002+00 2.272-14	Total 1.802-12 2.352-11 4.402-12 4.262-12 3.402-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation	Time: 0.5 External directly from Source 1.14Z-12 6.35Z-14 8.55Z-15 1.20Z-14 1.22Z-12 Time: 0.7	Pathway Inhalation 6.592-13 2.342-11 4.332-12 3.272-11 750000000 yr Pathway	Detail of : [Risk] External from Deposition on floor 1.012-16 3.402-15 5.012-16 4.872-15 ears Detail of [Risk]	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.252-15 - -	Ingestion of Deposition 0.002+00 1.532-14 5.572-15 6.572-15 3.152-14	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 0.002+00 2.272-14	Total 1.802-12 2.352-11 4.402-12 4.262-12 3.402-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1	Time: 0.5 External directly from Source 1.147-12 6.352-14 1.202-14 1.222-12 Time: 0.7	Pathway Inhalation 6.592-13 2.342-11 4.332-12 3.272-11 750000000 Pathway Inhalation	Detail of : [Risk] External from Deposition on floor 1.012-16 3.462-15 5.012-16 4.872-15 ears Detail of [Risk] External	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.202-15 - Risks	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 6.572-15 3.152-14	Radon 2.642-15 6.572-15 7.112-15 1.232-14 3.062-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 0.002+00 2.272-14	Total 1.802-12 2.352-11 4.402-12 3.402-11 Total
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1	<pre>Time: 0.5 External directly from Source 1.14Z-12 6.35Z-14 8.55Z-15 1.20Z-14 1.22Z-12 Time: 0.7 External directly</pre>	Pathway Inhalation 6.502-13 2.342-11 4.382-12 3.272-11 750000000 y Pathway Inhalation	Detail of : [Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15 ears Detail of [Risk] External from	External from Suspension in air 7.202-17 2.312-15 3.452-16 5.552-16 5.552-16 5.552-16 7 Risks	Ingestion of Deposition 0.002400 1.932-14 5.572-15 3.152-14 Ingestion of	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14 Radon	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14 2.272-14	Total 1.802-12 2.352-11 4.402-12 3.402-11 3.402-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1	<pre>Time: 0.5 External directly from Source 1.142-12 6.352-14 0.592-14 1.222-12 Time: 0.7 External directly from</pre>	Pathway Inhalation 6.582-13 2.342-11 4.332-12 3.272-11 750000000 y Pathway Inhalation	Detail of ([Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15 ears Detail of [Risk] External from Deposition	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.452-16 3.252-15 - Risks External from Suspension	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 6.572-15 3.152-14 Ingestion of Deposition	Radon 2.642-15 6.572-15 1.232-14 3.062-14 	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14 Ingestion of Source	Total 1.802-12 2.352-11 4.402-12 4.262-12 3.402-11 Total
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1 Receptor	<pre>Time: 0.5 External directly from Source 1.14Z-12 6.35Z-14 8.55Z-15 1.20Z-14 1.22Z-12 Time: 0.7 External directly from Source</pre>	Pathway Inhalation 6.592-13 2.342-11 4.332-12 3.272-11 750000000 y. Pathway Inhalation	Detail of : [Risk] External from Deposition on floor 1.012-16 3.402-15 5.012-16 4.872-15 ears Detail of [Risk] External from Deposition on floor	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.252-16 3.252-15 - Risks External from Suspension in air	Ingestion of Deposition 0.002+00 1.532-14 5.572-15 6.572-15 3.152-14 Ingestion of Deposition	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14 Radon	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14 Ingestion of Source	Total 1.802-12 2.352-11 4.402-12 3.402-11 Total
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1 Receptor 1	<pre>Time: 0.5 External directly from Source 1.142-12 6.352-14 1.222-12 Time: 0.7 External directly from Source 4.562-13 2.762-12</pre>	Pathway Inhalation 6.592-13 2.342-11 4.332-12 3.272-11 750000000 Pathway Inhalation 2.492-12 1.0000000	Detail of : [Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15 ears Detail of [Risk] External from Deposition on floor 2.862-16 1.10	External from Suspension in air 7.202-17 3.452-16 3.202-15 - - Risks External from Suspension in air 2.642-16 6 000-16	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 3.152-14 Ingestion of Deposition 0.002+00 0.002+00	Radon 2.642-15 6.572-15 7.112-15 1.232-14 3.062-14 Radon 8.372-15 2.012-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14 Ingestion of Source 0.002+00 0.527-14	Total 1.802-12 2.352-11 4.402-12 3.402-11 Total 2.592-12
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1 Receptor 1 2 3	<pre>Time: 0.5 External directly from Source 1.14Z-12 6.35Z-14 8.55Z-15 1.20Z-14 1.22Z-12 Time: 0.7 External directly from Source 4.56Z-13 2.76Z-14 3.74Z-15</pre>	Dathway Inhalation 6.502-13 2.342-11 4.383-12 3.272-11 750000000 y Pathway Inhalation 2.342-11 4.383-12 3.272-11 750000000 y Pathway Inhalation 2.492-12 1.032-10 1.752-11	Detail of : [Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15 ears Detail of [Risk] External from Deposition on floor 2.862-16 1.132-14	External from Suspension in air 7.202-17 2.312-15 3.452-16 5.552-16 5.552-16 5.552-16 7 - Risks External from Suspension in air 2.642-16 5.332-15	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 3.152-14 Ingestion of Deposition 0.002+00 6.652-14	Radon 2.642-15 8.572-15 7.112-15 1.232-14 3.062-14 Radon 8.372-15 2.812-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14 .002+00 of Source 0.002+00 9.562-14	Total 1.802-12 2.352-11 4.402-12 3.402-12 3.402-11 Total 2.552-12 1.032-10 1.803-11
Evaluation Source: 1 Receptor 1 2 3 4 Total Evaluation Source: 1 Receptor 1 2 3 4	Time: 0.5 External directly from Source 1.142-12 6.352-14 0.552-14 1.222-12 Time: 0.7 External directly from Source 4.562-13 2.762-14 3.742-15 5.232-15	Pathway Inhalation 6.592-13 2.342-11 4.342-12 3.272-11 750000000 yr Pathway Inhalation 2.452-12 1.032-10 1.752-11 1.652-11	Detail of ([Risk] External from Deposition on floor 1.012-16 3.482-15 5.012-16 4.872-15 ears Detail of [Risk] External from Deposition on floor 2.862-16 1.132-14 1.532-15	External from Suspension in air 7.202-17 2.312-15 3.452-16 3.252-16 3.252-15 - - Risks External from Suspension in air 2.642-16 9.632-15 1.372-15	Ingestion of Deposition 0.002+00 1.932-14 5.572-15 6.572-15 3.152-14 Ingestion of Deposition 0.002+00 6.652-14 1.622-14 2.062-14	Radon 2.642-15 8.572-15 1.232-14 3.062-14 Radon 8.372-15 2.812-14 2.282-14	Ingestion of Source 0.002+00 2.272-14 0.002+00 2.272-14 - - - - - - - - - - - - - - - - - -	Total 1.802-12 2.352-11 4.402-12 4.262-12 3.402-11 Total 2.552-12 1.032-10 1.602-11 1.602-11

		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.002+00	1.792-14	6.18I-18	1.872-18	0.00E+00	1.072-16	0.002+00	1.812-14
2	0.002+00	1.192-13	9.29E-17	1.122-17	5.70I-16	2.592-16	0.002+00	1.20E-13
3	0.002+00	6.362-14	2.10E-17	4.78E-18	2.582-16	2.622-16	0.00E+00	6.42E-14
4	0.002+00	9.31E-14	4.21E-17	1.172-17	3.882-16	4.822-16	0.002+00	9.40E-14
Total	0.002+00	2.93E-13	1.622-16	2.95E-17	1.22E-15	1.112-15	0.002+00	2.962-13

		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.00E+00	3.39E-19	1.55E-22	3.46E-23	0.00E+00	1.492-21	0.002+00	3.41E-19
2	0.002+00	6.49E-19	4.17E-22	5.96E-23	2.692-21	1.97E-21	0.002+00	6.542-19
3	0.00E+00	7.772-19	2.862-22	5.71E-23	3.692-21	3.04E-21	0.002+00	7.852-19
4	0.002+00	1.502-18	8.53I-22	1.832-22	8.252-21	6.24E-21	0.002+00	1.512-18
Total	0.002+00	3.262-18	1.712-21	3.342-22	1.462-20	1.272-20	0.002+00	3.292-18

Evaluation Time: 1.50000000 years

Pathway Detail of Risks

[Risk]

2.792-24
3.402-24
5.56E-24
1.162-23
2.342-23

Required Data Input file "Area $1_S=3_V=14_EXP.BLD$ " and the verification Excel file "Area1_S=3_V=14.xlsx."

ExpectedThe intermediate and final outputs should match those previously obtained (and verified)**Results**with the same input file or input selections/values.

A-27

TEST CASE 008-1

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-008-1
Requirements Tested	8, 11
Test Summary	Test the modeling of source release over multiple phases and transport of the released particles, resulting in radionuclide concentrations in air and on floors.
	With a volume source (in Room 1), a 9-room building that is vacuumed every 30 days, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases and air concentrations and the floor deposition concentrations in different rooms as functions of time.
Test Objective	Test and verify the modeling of the particulate releases to air, the air ventilation and transport, and the air and deposition concentrations of source particles and radionuclides, as required by the code requirements 7 and 8.
Procedure	Read in an input file that was used in a previous code verification effort (the verification results were documented in the Excel file "Vol1_S=1_V=30.xlsx"), run the RESRAD-BUILD code to generate intermediate outputs and summary outputs, and then compare the results in these outputs with those previously obtained. The results obtained from the current run should match those that were obtained previously.

Steps:

- Read in the input file "Volume 1_S=1_V=30_EXP.BLD."
- Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.
- Check to see the inputs match the following. If not, change the inputs to match.

O ICRP 107 🛛 💿	ICRP 38 Transformations							
Internal Dose Library	ICRP 72 (Adult)							
External Dose Library	ICRP 60 💌							
Risk Library	FGR 13 Morbidity							
Location of DCF database files C:\RESRAD_Family\DCF\3.3 Cut-off half life: 30 days								
- Time Parameters - Exposure Duration	on (days) 91.25 0.5 Evaluation Times							

valuation Times						
						OK
Times for Calculation (yea	rs):				0	ancel
1 10	100	1000		10000		100000
		1	1)	.25		
R <u>e</u> move	Add		<u>2</u>]	.5		
		1	3)	.75		
- Time Integration			4)	1		
			5)	1.25		
Convergence criterion	0.0001		<u>6</u>)	1.5		
Maximum number of points	513	-				

Building	Parameters			
ð	Number of Rooms Deposition Velocity Resuspension Rate	9 0.00039 0.0000005	▼ m/s 1/s	Air Flo w

	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area		36	36	36	36	36	36	36	36	36	\mathbf{m}^2
Volume		90	90	90	90	90	90	90	90	90	m ³
Resuspension rate		5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
ir flow from outdoors to		72	72	72	72	72	72	72	72	72	m³/h
ir flow from room 1 to	72]	72	72	72	72	72	72	72	72	m³/h
ir flow from room 2 to	72	72]	72	72	72	72	72	72	72	m³/h
ir flow from room 3 to	72	72	72]	72	72	72	72	72	72	m³/h
ir flow from room 4 to	72	72	72	72]	72	72	72	72	72	m³/h
ir flow from room 5 to	72	72	72	72	72]	72	72	72	72	m³/h
ir flow from room 6 to	72	72	72	72	72	72]	72	72	72	m³/h
ir flow from room 7 to	72	72	72	72	72	72	72]	72	72	m³/h
ir flow from room 8 to	72	72	72	72	72	72	72	72]	72	m³/h
ir flow from room 9 to	72	72	72	72	72	72	72	72	72]	m³/h
Efficiency of Vacuuming	0.9		Vacuum o	once every	30	days					
Analytical Solution w	hen Possibl	е	Maximum	Time Step	0.08911	days					

Radiological Data	
Activity: p V Ci V	Dose:

Receptor Parameters	
Receptor # Room Time Fraction	1 • 1 • 1
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 1

Receptor Parameters	
Receptor # Room Time Fraction	3
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 13.5

Receptor Parameters	
Receptor #	<u>4</u>
Room	9
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ^c /h
Location [m]	x: 1 y: 1 z: 21

5 Source Recept	tor 1	able 🗾
Thickness, cm]	Source #
Density, g/cm ³]	1
Material 🔻	1	0
		2.4
		Concrete 💌
	2	0
		2.4
		Concrete 💌
Receptor #	3	0
		2.4
		Concrete -
	4	
		2.4
		Concrete 💌
		Save and Exit Cancel

Source Parameters							
Source #	1	•					
Room	1						
Туре	Volume						
Direction	Z	•					
Location of ce of source [m]	ntroid x: 0	y: 0 z: 0					

Details for Source # 1		
Geometry Circular Area [m2] 36	© Rectangular Length along (m): × 0 Y 0	Contamination Concentration pCi/g Radionuclide pCi/g CO-60 1.00E+00 CS-137 1.00E+00 PB-210 0.00E+00 PB-210 0.00E+00
Release Air Fraction Direct Ingestion [g/h] Number of Wall Regions Material Type	1 0 1 v	RA-226 1.00E+00
Layer Region P	arameters	AC-227 I Add Nuclide
OK	Cancel	Save Source # 1 Data and Load Data for Source # 1

ち Layer Region Param	neters 💌
Regions —	
Contaminated	1 ⊙
Density [g/cm ³]	2.4
Erosion [cm/d]	2.40E-03
Direction from inte to eroding surface	erior + Z 💌
Radon Paramet	ers
Diffusion [m2/s]	0.00002
Porosity	0.1
Emanation Fractio	'n
Rn-220	
Rn-222	0
ОК	Cancel

- Run the code.
- After the calculations are completed, open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB AirRelrate1" in the "Vol1 S=1 V=30.xlsx" Excel file.
- In the main interface of the code, choose the View -> "last intermediate output files" menu option. Then choose to view the "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RRB" in the tab "RRB_TimeIntegratedConcSource1" in the "Vol1_S=1_V=30.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation	Time: 0.0	00000002+00	years					
1		Pathway	Detail of	Doses				
			[mrem]					
Source: 1	External	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.282+00	5.81E+00	1.07E-03	6.57E-04	8.542-03	6.89E-04	0.002+00	8.102+00
2	3.48E-01	2.432+00	4.41E-04	2.75E-04	3.51E-03	6.642-04	0.002+00	2.782+00
3	7.942-02	2.432+00	4.41E-04	2.75E-04	3.51E-03	6.642-04	0.002+00	2.522+00
4	3.29E-02	2.432+00	4.412-04	2.752-04	3.51E-03	6.642-04	0.00E+00	2.472+00
Total	2.742+00	1.312+01	2.402-03	1.48E-03	1.91E-02	2.682-03	0.00E+00	1.592+01

Evaluation Time: 0.250000000 years

Pathway Detail of Doses [mrem]

Source: 1	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.232+00	5.87E+00	1.10E-03	6.49E-04	9.12E-03	7.19E-04	0.002+00	8.11E+00
2	3.402-01	2.47E+00	4.542-04	2.732-04	3.772-03	6.94E-04	0.002+00	2.812+00
3	7.752-02	2.472+00	4.542-04	2.732-04	3.772-03	6.942-04	0.002+00	2.552+00
4	3.222-02	2.472+00	4.542-04	2.732-04	3.772-03	6.942-04	0.002+00	2.512+00
Total	2.682+00	1.332+01	2.462-03	1.47E-03	2.042-02	2.802-03	0.002+00	1.602+01

Evaluation Time: 0.500000000 years

Pathway Detail of Doses [mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.18E+00	5.91E+00	1.08E-03	6.37E-04	9.45E-03	7.20E-04	0.00E+00	8.10E+00
2	3.32E-01	2.48E+00	4.472-04	2.682-04	3.90E-03	6.95E-04	0.002+00	2.822+00
3	7.562-02	2.482+00	4.472-04	2.682-04	3.90E-03	6.95E-04	0.002+00	2.572+00
4	3.142-02	2.482+00	4.472-04	2.682-04	3.90E-03	6.95E-04	0.002+00	2.522+00
Total	2.622+00	1.342+01	2.422-03	1.442-03	2.122-02	2.802-03	0.00E+00	1.602+01

- - -

Evaluation Time: 0.750000000 years

Pathway Detail of Doses

[mrem]

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	2.132+00	5.952+00	1.062-03	6.27E-04	9.79E-03	7.192-04	0.002+00	8.092+00
2	3.232-01	2.502+00	4.392-04	2.642-04	4.052-03	6.942-04	0.002+00	2.832+00
3	7.382-02	2.502+00	4.392-04	2.642-04	4.052-03	6.942-04	0.00E+00	2.582+00
4	3.062-02	2.502+00	4.392-04	2.642-04	4.052-03	6.942-04	0.002+00	2.542+00
Total	2.562+00	1.35E+01	2.38E-03	1.42E-03	2.192-02	2.80E-03	0.00E+00	1.602+01

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.092+00	5.99E+00	1.05E-03	6.162-04	1.022-02	7.222-04	0.002+00	8.092+00
2	3.16E-01	2.52E+00	4.342-04	2.59E-04	4.21E-03	6.96E-04	0.002+00	2.842+00
3	7.202-02	2.52E+00	4.342-04	2.59E-04	4.21E-03	6.96E-04	0.002+00	2.602+00
4	2.992-02	2.522+00	4.342-04	2.592-04	4.212-03	6.96E-04	0.002+00	2.562+00
Total	2.50E+00	1.362+01	2.352-03	1.39E-03	2.282-02	2.81E-03	0.00E+00	1.612+01

Evaluation	Time: 1.2	5000000 ye	ars	-			-	
		Pathway	Detail of 1	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.042+00	6.03E+00	1.03I-03	6.06E-04	1.06E-02	7.23E-04	0.002+00	8.09E+00
2	3.08E-01	2.542+00	4.272-04	2.55E-04	4.38E-03	6.97E-04	0.00E+00	2.852+00
3	7.03E-02	2.542+00	4.272-04	2.552-04	4.38E-03	6.97E-04	0.002+00	2.612+00
4	2.922-02	2.542+00	4.272-04	2.55E-04	4.38E-03	6.97E-04	0.002+00	2.572+00
Total	2.452+00	1.362+01	2.32E-03	1.37E-03	2.37E-02	2.81E-03	0.00E+00	1.612+01
		Pathway	Detail of	Doses				
			[mrem]					
Source: 1	_		_		_	-	_	_
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.002+00	6.08E+00	1.022-03	5.96E-04	1.102-02	7.222-04	0.002+00	8.09E+00
2	3.012-01	2.562+00	4.202-04	2.512-04	4.542-03	6.972-04	0.002+00	2.862+00
3	6.86 <u>2</u> -02	2.562+00	4.202-04	2.512-04	4.542-03	6.972-04	0.002+00	2.632+00
4	2.852-02	2.562+00	4.202-04	2.512-04	4.542-03	6.972-04	0.002+00	2.592+00
Total	2.402+00	1.372+01	2.282-03	1.352-03	2.462-02	2.812-03	0.002+00	1.622+01

-

- -

_

Choose to view "last risk report," or open the file "RESRADB_r.rpt" in the directory ٠ where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years

		Pathway	Detail of	Risks				
			[Risk]					
ource: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.832-06	4.662-06	8.62E-10	5.30E-10	4.462-09	7.612-10	0.002+00	6.492-06
2	2.792-07	1.952-06	3.54E-10	2.22E-10	1.83E-09	7.16E-10	0.002+00	2.232-06
3	6.372-08	1.952-06	3.54E-10	2.22E-10	1.832-09	7.16E-10	0.002+00	2.022-06
4	2.642-08	1.952-06	3.542-10	2.222-10	1.832-09	7.16E-10	0.002+00	1.982-06
Total	2.202-06	1.052-05	1.922-09	1.192-09	9.962-09	2.912-09	0.002+00	1.272-05

Evaluation Time: 0.250000000 years

Pathway Detail of Risks

[Risk]

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.792-06	4.71E-06	8.80E-10	5.23E-10	4.75E-09	7.942-10	0.002+00	6.502-06
2	2.722-07	1.982-06	3.64E-10	2.202-10	1.96E-09	7.47E-10	0.00E+00	2.262-06
3	6.222-08	1.982-06	3.64E-10	2.20E-10	1.962-09	7.472-10	0.00E+00	2.052-06
4	2.582-08	1.982-06	3.64E-10	2.20E-10	1.96E-09	7.472-10	0.00E+00	2.012-06
Total	2.152-06	1.06E-05	1.972-09	1.18E-09	1.06E-08	3.04E-09	0.002+00	1.282-05

- - -

- -

- -

_

Pathway Detail of Risks

-

[Risk]

Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	1.752-06	4.742-06	8.672-10	5.14E-10	4.912-09	7.952-10	0.002+00	6.502-06
2	2.662-07	1.992-06	3.58E-10	2.16E-10	2.032-09	7.482-10	0.002+00	2.262-06
3	6.07E-08	1.992-06	3.58E-10	2.16E-10	2.032-09	7.48E-10	0.00E+00	2.062-06
4	2.522-08	1.992-06	3.58E-10	2.162-10	2.032-09	7.482-10	0.002+00	2.022-06
Total	2.102-06	1.07E-05	1.942-09	1.162-09	1.102-08	3.042-09	0.002+00	1.282-05

Evaluation Time: 0.750000000 years

Pathway Detail of Risks [Risk]

 Source: 1

 External Inhalation External External Ingestion of from of from of from Deposition Suspension Deposition
 Radon Ingestion Total

 Addon from Of Source
 Total

 Receptor Source on floor in air
 Source Source
 Total

 1
 1.712-06
 4.772-06
 5.622-10
 5.052-10
 5.072-05
 7.942-10
 0.002+00
 6.452-06

 2
 2.552-07
 2.012-06
 3.522-10
 2.122-10
 2.052-05
 7.482-10
 0.002+00
 2.272-06

 3
 5.522-08
 2.012-06
 3.522-10
 2.122-10
 2.052-05
 7.482-10
 0.002+00
 2.072-06

 4
 2.462-08
 2.012-06
 3.522-10
 2.122-10
 2.052-05
 7.482-10
 0.002+00
 2.032-06

 Total
 2.052-06
 1.082-05
 1.512-05
 1.142-05
 1.142-08
 3.042-05
 0.002+00
 1.252-05

-

Evaluation Time: 1.00000000 years

Pathway Detail of Risks [Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.672-06	4.81E-06	8.41E-10	4.97E-10	5.27E-09	7.97E-10	0.002+00	6.492-06
2	2.532-07	2.02E-06	3.482-10	2.092-10	2.18E-09	7.50E-10	0.00E+00	2.282-06
3	5.772-08	2.022-06	3.482-10	2.09E-10	2.18E-09	7.50E-10	0.002+00	2.082-06
4	2.402-08	2.022-06	3.482-10	2.092-10	2.18E-09	7.50E-10	0.002+00	2.052-06
Total	2.012-06	1.09E-05	1.88I-09	1.122-09	1.182-08	3.05E-09	0.00E+00	1.292-05

Evaluation Time: 1.25000000 years

Pathway Detail of Risks [Risk]

	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
Pecentor	from		Deposition	Suspension	Deposition		Source	
1	1.642-06	4.842-06	8.29E-10	4.892-10	5.462-09	7.98E-10	0.002+00	6.492-06
2	2.472-07	2.042-06	3.42E-10	2.06E-10	2.26E-09	7.51E-10	0.00E+00	2.292-06
3	5.642-08	2.042-06	3.42E-10	2.06E-10	2.262-09	7.51E-10	0.002+00	2.102-06
4	2.342-08	2.042-06	3.42E-10	2.062-10	2.262-09	7.51E-10	0.002+00	2.062-06
Total	1.96E-06	1.102-05	1.862-09	1.11E-09	1.222-08	3.05E-09	0.00E+00	1.292-05

		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.602-06	4.882-06	8.15E-10	4.812-10	5.652-09	7.972-10	0.002+00	6.492-06
2	2.41E-07	2.052-06	3.37E-10	2.022-10	2.332-09	7.51E-10	0.00E+00	2.302-06
3	5.50E-08	2.052-06	3.37E-10	2.022-10	2.332-09	7.51E-10	0.002+00	2.11E-06
4	2.282-08	2.052-06	3.37E-10	2.022-10	2.332-09	7.51E-10	0.002+00	2.082-06
Total	1.922-06	1.102-05	1.83E-09	1.092-09	1.262-08	3.052-09	0.002+00	1.302-05

Required Data Input file "Volume 1_S=1_V=30_EXP.BLD" and the verification Excel file "Vol1_S=1_V=30.xlsx."

ExpectedThe intermediate and final outputs should match those previously obtained (and verified) with
the same input file or input selections/values.

TEST CASE 008-2

Project **RESRAD-BUILD** Test Case ID **RESBLD-TEST-008-2 Requirements** 8, 11 Tested **Test Summary** Test the modeling of source release over multiple phases and transport of the released particles, resulting in radionuclide concentrations in air and on floors. With a volume source (in Room 2), a 9-room building, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases and air concentrations and the floor deposition concentrations in different rooms as functions of time. **Test Objective** Test and verify the modeling of the particulate releases to air, the air ventilation and transport, and the air and deposition concentrations of source particles and radionuclides, as required by the code requirements 8 and 11. Procedure Read in an input file that was used in a previous code verification effort (the verification results were documented in the Excel file "Vol2 S=2.xlsx"), run the RESRAD-BUILD code to generate intermediate outputs and summary outputs, and then compare the results in these outputs with those previously obtained. The results obtained from the current run should match those that were obtained previously.

Steps:

- Read in the input file "Volume 2 S=2 EXP.BLD."
- Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.
- Check to see the inputs match the following. If not, change the inputs to match.

O ICRP 107 📀	ICRP 38	Transformations
Internal Dose Library	ICRP 72 (Ad	ult) 💌
External Dose Library	ICRP 60	-
Risk Library	FGR 13 Mort	oidity 💌
Location of DCF databa C:\RESRAD_Family\D	ise files)CF\3.3	
Cut-off half life: 30		▼ days

-Time Paramet Exposure [Indoor frac	ters Ouration (day Stion	s) 91.2 0.5	5	E	valuation Times
F Evaluation Times					
Times for Calculation ()	vears):				OK Cancel
1 10	100	1000	1	0000	100000
Remove Time Integration Convergence criterion	<u>A</u> dd		1) 2) 3) 4) 5)	.25 .5 .75 1 1.25	
Maximum number of po	ints 513	•	5	1.5]

Building l	Parameters			
ð	Number of Rooms Deposition Velocity Resuspension Rate	9 0.00039 0.0000005	▼ 	Air Flow

🖧 - Room Air Flow and Particulates					×						
Number of Rooms	-										
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area	ı	36	36	36	36	36	36	36	36	36	m^2
Volume		90	90	90	90	90	90	90	90	90	m ³
Resuspension rate	,	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
Air flow from outdoors to		90	0	0	36	0	0	0	0	0	m³/hr
Air flow from room 1 to	0]	72	0	36	0	0	0	0	0	m³/hr
Air flow from room 2 to	0	0]	72	0	0	0	0	0	0	m³/hr
Air flow from room 3 to	36	0	0]	18	0	18	0	0	0	m³/hr
Air flow from room 4 to	0	0	0	0]	36	0	54	0	0	m³/hr
Air flow from room 5 to	0	0	0	0	0]	36	0	18	0	m³/hr
Air flow from room 6 to	0	0	0	0	0	0]	0	0	54	m³/hr
Air flow from room 7 to	0	0	0	0	0	0	0]	54	0	m³/hr
Air flow from room 8 to	0	0	0	0	0	18	0	0]	72	m³/hr
Air flow from room 9 to	90	18	0	0	0	0	0	0	18]	m³/hr
Efficiency of Vacuuming O Vacuum				once every	366	days					
✓ Analytical Solution when Possible Maximum Time Step 0.08911 days											
			Write Inter	mediate Ou	itput		Cancel				

Radiological Data		
Activity: p Ci	Dose:	
Receptor Parameters		
----------------------------------	--------------------------	-------------------
Receptor # Room Time Fraction	1 1 1	• •
Ingestion Rate	0.0001 x: 1 y: 1 z: 1	m ² /h

Receptor Parameters	
Receptor #	3
Room 📲	6
Time Fraction	1
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 13.5

Receptor Parameters		Ì
Receptor # Room i	<mark>4</mark> 9	•
Breathing Rate	18	m ³ /d 2
Ingestion Rate Location [m]	0.0001 x: 1 y: 1 z: 2	m ⁻ 7h 1

B Source Receptor	Table 🗾
Thickness, cm	Source #
Density, g/cm³	1
Material 💌 1	0
	2.4
	Concrete -
2	0
	2.4
	Concrete 💌
Receptor # 3	0
	2.4
	Concrete 💌
4	0
	2.4
	Concrete 💌
	Save and Exit Cancel

Source Parameter	s	
Source #	1	
Room	2	
Type/Dir	Volume	▼ Z
Location of cer of source [m]	ntroid x: 0	y: 0 z: 0

Details for Source # 1		
Geometry Circular Area [m2] 36	© Rectangular Length along (m): X 0 Y 0	Contamination Concentration Radionuclide pCi/g CO-60 1.00E+00 CS-137 1.00E+00 PB-210 0.00E+00 PO-210 0.00E+00
Release Air Fraction Direct Ingestion [g/h] Number of Wall Regions Material Type	1 0 1 v Concrete v	RA-226 1.00E+00
Layer Region P	arameters	AC-227 T
ОК	Cancel	Save Source # 1 Data and Load Data for Source # 1

ち Layer Region Param	neters 💽
Regions —	
	1
Contaminated	•
Thickness [cm]	15
Density [g/cm ³]	2.4
Erosion [cm/d]	2.40E-03
Direction from inte to eroding surface	erior + Z 💌
Radon Paramet	ers
Diffusion [m2/s]	0.00002
Porosity	0.1
Emanation Fractio	n
Rn-220	
Rn-222	0
OK	Cancel

- Run the code.
- After the calculations are completed, open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB AirRelrate1" in the "Vol2 S=2.xlsx" Excel file.
- In the main interface of the code, choose the View -> "last intermediate output files" menu option. Then choose to view the "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RRB" in the tab "RRB_TimeIntegratedConcSource1" in the "Vol2_S=2.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation	Time: 0.0	00000002+00	years	-				
		Pathway	Detail of	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.282+00	6.24E-01	1.622-04	7.032-05	1.30E-03	3.492-03	0.002+00	2.912+00
2	3.482-01	2.482+01	7.10E-03	2.802-03	5.672-02	2.782-02	0.002+00	2.522+01
3	7.942-02	7.81E+00	2.13E-03	8.80E-04	1.70E-02	2.342-02	0.00E+00	7.932+00
4	3.29E-02	4.38E+00	1.16E-03	4.942-04	9.27E-03	1.962-02	0.00E+00	4.452+00
Total	2.742+00	3.76E+01	1.06E-02	4.242-03	8.43E-02	7.442-02	0.00E+00	4.05E+01

Evaluation Time: 0.250000000 years

Pathway Detail of Doses [mrem]

	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
-	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air		-		
1	2.232+00	1.52±+00	5.281-04	1.681-04	4.402-03	7.732-03	0.001100	3.77±+00
2	3.40E-01	3.49E+01	1.33E-02	3.862-03	1.102-01	4.96E-02	0.002+00	3.542+01
3	7.75E-02	1.472+01	5.31E-03	1.622-03	4.412-02	4.83E-02	0.00E+00	1.482+01
4	3.222-02	9.69E+00	3.42E-03	1.07E-03	2.842-02	4.242-02	0.002+00	9.802+00
Total	2.682+00	6.08E+01	2.252-02	6.71E-03	1.87E-01	1.482-01	0.002+00	6.38E+01

Evaluation Time: 0.500000000 years

Pathway Detail of Doses [mrem]

S	ource: 1	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
		from		Deposition	Suspension	Deposition		Source	
	Receptor	Source		on floor	in air				
	1	2.182+00	1.98E+00	7.362-04	2.132-04	6.432-03	9.35E-03	0.002+00	4.17E+00
	2	3.32E-01	3.71E+01	1.43E-02	4.00E-03	1.25E-01	5.43E-02	0.002+00	3.762+01
	3	7.56E-02	1.732+01	6.54E-03	1.86E-03	5.71E-02	5.642-02	0.00E+00	1.742+01
	4	3.142-02	1.212+01	4.542-03	1.31E-03	3.972-02	5.06E-02	0.00E+00	1.222+01
	Total	2.622+00	6.842+01	2.622-02	7.382-03	2.282-01	1.712-01	0.002+00	7.152+01

_ _ _

Evaluation Time: 0.750000000 years

Pathway Detail of Doses [mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	from		Deposition on floor	Suspension in air	Deposition		Source	
1	2.132+00	2.15E+00	8.09E-04	2.27E-04	7.452-03	9.90E-03	0.00E+00	4.31E+00
2	3.232-01	3.782+01	1.442-02	3.98E-03	1.32E-01	5.56E-02	0.00E+00	3.832+01
3	7.382-02	1.82E+01	6.87E-03	1.92E-03	6.33E-02	5.90E-02	0.002+00	1.842+01
4	3.062-02	1.302+01	4.90E-03	1.37E-03	4.51E-02	5.32E-02	0.002+00	1.322+01
Total	2.562+00	7.122+01	2.692-02	7.50E-03	2.482-01	1.782-01	0.00E+00	7.422+01

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.092+00	2.222+00	8.24E-04	2.292-04	8.01E-03	1.01E-02	0.002+00	4.332+00
2	3.16E-01	3.82E+01	1.42E-02	3.93E-03	1.382-01	5.59E-02	0.00E+00	3.872+01
3	7.202-02	1.862+01	6.89E-03	1.91E-03	6.70E-02	5.98E-02	0.002+00	1.882+01
4	2.992-02	1.34E+01	4.96E-03	1.38E-03	4.822-02	5.41E-02	0.002+00	1.352+01
Total	2.502+00	7.242+01	2.692-02	7.442-03	2.612-01	1.802-01	0.002+00	7.532+01

		-						
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.042+00	2.262+00	8.202-04	2.272-04	8.41E-03	1.01E-02	0.002+00	4.322+00
2	3.08E-01	3.85E+01	1.402-02	3.87E-03	1.442-01	5.60E-02	0.002+00	3.902+01
3	7.032-02	1.882+01	6.822-03	1.892-03	7.00E-02	6.00E-02	0.002+00	1.902+01
4	2.923-02	1.362+01	4.922-03	1.36E-03	5.052-02	5.432-02	0.002+00	1.372+01
Total	2.45E+00	7.31E+01	2.662-02	7.34E-03	2.72E-01	1.80E-01	0.002+00	7.602+01
Evaluation	n Time: 1.5	50000000 ye	ars	-				
Evaluation	n Time: 1.5	Pathway	ars Detail of	Doses				
Evaluation	n Time: 1.5	Pathway	Detail of [mrem]	Doses				
Evaluation	n Time: 1.5	Pathway	Detail of [mrem]	Doses				
Evaluation	n Time: 1.5 External	Pathway	ars Detail of [mrem] External	Doses External	Ingestion	Radon	Ingestion	Total
Evaluation	Time: 1.5 External directly	Pathway	Detail of [mrem] External from	Doses 	Ingestion	Radon	Ingestion	Total
Evaluation	Time: 1.5 External directly from	Pathway	Detail of [mrem] External from Deposition	Doses External from Suspension	Ingestion of Deposition		Ingestion of Source	Total
Evaluation Source: 1 Receptor	External directly from Source	Pathway Inhalation	Detail of [mrem] External from Deposition on floor	External from Suspension in air	Ingestion of Deposition		Ingestion of Source	Total
Evaluation Source: 1 Receptor 1	External directly from Source 2.002+00	Pathway Inhalation 2.282+00	Detail of [mrem] External from Deposition on floor 8.102-04	External from Suspension in air 2.242-04	Ingestion of Deposition 8.752-03	Radon	Ingestion of Source 0.003+00	Total 4.302+00
Evaluation Source: 1 Receptor 1 2	External directly from Source 2.002+00 3.012-01	Pathway Inhalation 2.282+00 3.882+01	Detail of [mrem] External from Deposition on floor 8.102-04 1.382-02	External from Suspension in air 2.242-04 3.812-03	Ingestion of Deposition 8.752-03 1.452-01	Radon 1.012-02 5.612-02	Ingestion of Source 0.002+00 0.002+00	Total 4.302+00 3.932+01
Evaluation Source: 1 Receptor 1 2 3	External directly from Source 2.002400 3.012-01 6.862-02	Pathway Pathway Inhalation 2.282+00 3.882+01 1.892+01	ars Detail of [mrem] External from Deposition on floor 8.102-04 1.382-02 6.732-03	External from Suspension in air 2.242-04 3.812-03 1.852-03	Ingestion of Deposition 8.752-03 1.452-01 7.272-02	Radon 1.012-02 5.612-02 6.012-02	Ingestion of Source 0.002+00 0.002+00 0.002+00	Total 4.302400 3.932401 1.912401
Evaluation Source: 1 Receptor 1 2 3 4	Internal directly from Source 2.002400 3.012-01 6.862-02 2.852-02	Pathway Inhalation 2.282+00 3.882+01 1.852+01 1.372+01	Detail of [mrem] External from Deposition on floor 8.102-04 1.302-02 6.732-03 4.862-03	External from Suspension in air 2.242-04 3.812-03 1.862-03 1.342-03	Ingestion of Deposition 8.752-03 1.452-01 7.272-02 5.252-02	Radon 1.01Z-02 5.61Z-02 6.01Z-02 5.44Z-02	Ingestion of Source 0.002+00 0.002+00 0.002+00 0.002+00	Total 4.302+00 3.932+01 1.912+01 1.382+01

- -

_

• Choose to view "last risk report," or open the file "RESRADB_r.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years

Evaluation Time: 1.25000000 years

Pathway Detail of Risks

r	714	- 1-	÷
Ł	K1	55	1

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	1.83E-06	5.01E-07	1.30E-10	5.67E-11	6.77E-10	3.53E-09	0.002+00	2.332-06
2	2.792-07	1.992-05	5.70E-09	2.262-09	2.962-08	2.882-08	0.002+00	2.022-05
3	6.372-08	6.262-06	1.71E-09	7.10E-10	8.89E-09	2.382-08	0.002+00	6.36E-06
4	2.642-08	3.51I-06	9.30E-10	3.98E-10	4.842-09	1.992-08	0.00E+00	3.572-06
Total	2.202-06	3.01E-05	8.46E-09	3.42E-09	4.40E-08	7.61E-08	0.00E+00	3.25E-05

Evaluation Time: 0.250000000 years

Pathway Detail of Risks

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Contract (1997)	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.792-06	1.222-06	4.242-10	1.362-10	2.292-09	7.85E-09	0.002+00	3.022-06
2	2.722-07	2.802-05	1.06E-08	3.11E-09	5.74E-08	5.15E-08	0.00±+00	2.842-05
3	6.222-08	1.182-05	4.25E-09	1.30E-09	2.302-08	4.92E-08	0.002+00	1.192-05
4	2.582-08	7.772-06	2.742-09	8.632-10	1.482-08	4.31E-08	0.002+00	7.862-06
Total	2.152-06	4.87E-05	1.812-08	5.41E-09	9.75E-08	1.52E-07	0.002+00	5.12E-05

Evaluation Time: 0.500000000 years

Pathway Detail of Risks [Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.752-06	1.58E-06	5.90E-10	1.72E-10	3.34E-09	9.50E-09	0.002+00	3.35E-06
2	2.662-07	2.982-05	1.15E-08	3.232-09	6.50E-08	5.642-08	0.002+00	3.02E-05
3	6.072-08	1.382-05	5.24E-09	1.50E-09	2.972-08	5.76I-08	0.002+00	1.402-05
4	2.522-08	9.71E-06	3.642-09	1.052-09	2.062-08	5.14E-08	0.002+00	9.812-06
Total	2.102-06	5.49E-05	2.102-08	5.95E-09	1.19E-07	1.75E-07	0.00E+00	5.73E-05

Evaluation Time: 0.750000000 years

Pathway Detail of Risks [Risk]

	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air	-			
1	1.712-06	1.732-06	6.48E-10	1.832-10	3.86E-09	1.01E-08	0.002+00	3.452-06
2	2.592-07	3.032-05	1.15E-08	3.21E-09	6.85I-08	5.772-08	0.002+00	3.072-05
3	5.922-08	1.462-05	5.51E-09	1.542-09	3.272-08	6.022-08	0.002+00	1.472-05
4	2.462-08	1.042-05	3.932-09	1.112-09	2.342-08	5.422-08	0.002+00	1.052-05
Total	2.052-06	5.71E-05	2.162-08	6.05E-09	1.282-07	1.822-07	0.002+00	5.95E-05

_ _ _

Evaluation Time: 1.00000000 years

Pathway Detail of Risks [Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.672-06	1.782-06	6.612-10	1.85E-10	4.14E-09	1.022-08	0.00E+00	3.472-06
2	2.53E-07	3.06E-05	1.142-08	3.17E-09	7.13E-08	5.80E-08	0.00E+00	3.10E-05
3	5.77E-08	1.492-05	5.53E-09	1.54E-09	3.46E-08	6.10E-08	0.00E+00	1.512-05
4	2.402-08	1.07E-05	3.98E-09	1.11E-09	2.492-08	5.50E-08	0.00E+00	1.082-05
Total	2.012-06	5.80I-05	2.162-08	6.00E-09	1.35E-07	1.842-07	0.00E+00	6.042-05

Evaluation Time: 1.25000000 years

Pathway Detail of Risks -

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.642-06	1.81E-06	6.57E-10	1.83E-10	4.332-09	1.03E-08	0.002+00	3.472-06
2	2.472-07	3.09E-05	1.12E-08	3.12E-09	7.392-08	5.81E-08	0.002+00	3.13E-05
3	5.642-08	1.51E-05	5.47E-09	1.52E-09	3.602-08	6.13E-08	0.002+00	1.52E-05
4	2.342-08	1.09E-05	3.952-09	1.10E-09	2.602-08	5.53E-08	0.00E+00	1.102-05
Total	1.962-06	5.86E-05	2.132-08	5.922-09	1.402-07	1.85E-07	0.002+00	6.10E-05

Evaluation	Time: 1.5	0000000 ye	ars	-				
		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.602-06	1.832-06	6.49E-10	1.80E-10	4.502-09	1.032-08	0.002+00	3.452-06
2	2.41E-07	3.11E-05	1.10E-08	3.07E-09	7.652-08	5.82X-08	0.00E+00	3.15E-05
3	5.50E-08	1.52E-05	5.39E-09	1.50E-09	3.742-08	6.13E-08	0.00E+00	1.542-05
4	2.282-08	1.102-05	3.892-09	1.082-09	2.702-08	5.542-08	0.002+00	1.112-05
Total	1.922-06	5.91E-05	2.102-08	5.832-09	1.452-07	1.852-07	0.00E+00	6.142-05

Required Data Input file "Volume 2_S=2_EXP.BLD" and the verification Excel file "Vol2_S=2.xlsx."

Expected
ResultsThe intermediate and final outputs should match those previously obtained (and verified)
with the same input file or input selections/values.

TEST CASE 008-3

Project	RESRAD-BUILD						
Test Case ID	RESBLD-TEST-008-3						
Requirements Tested	8, 11						
Test Summary	Test the modeling of source release over multiple phases and transport of the released particles, resulting in radionuclide concentrations in air and on floors.						
	With a volume source (in Room 2), a 9-room building that is vacuumed every 14 days, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases and air concentrations and the floor deposition concentrations in different rooms as functions of time.						
Test Objective	Test and verify the modeling of the particulate releases to air, the air ventilation and transport, and the air and deposition concentrations of source particles and radionuclides, as required by the code requirements 8 and 11.						
Procedure	Read in an input file that was used in previous code verification effort (the verification results were documented in the Excel file "Vol2_S=2_V=14.xlsx"), run the RESRAD-BUILD code to generate intermediate outputs and summary outputs, and then compare the results in these outputs with those previously obtained. The results obtained from the current run should match those that were obtained previously.						
	Steps:						
	• Read in the input file "Volume 2_S=2_V=14_EXP.BLD."						
	• Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.						
	• Check to see the inputs match the following. If not, change the inputs to match.						
	O ICRP 107 ICRP 38 Transformations Internal Dose Library ICRP 72 (Adult)						

Internal Dose Library	ICRP 72 (Adult)
External Dose Library	ICRP 60 🔹
Risk Library	FGR 13 Morbidity 💌
Location of DCF databa C:\RESRAD_Family\ Cut-off half life: 30	ase files DCF\3.3 days
-Time Parameters - Exposure Duration	on (days) 91.25 0.5 Times

valuation Times						
					. (эк
Times for Calculation (years):				Ca	ncel
TI						
10	100	1000		10000	1	00000
			1)	.25		
R <u>e</u> move	Add		<u>2</u>]	.5		
			3)	.75		
Time Integration			4)	1		
			5)	1.25		
Convergence criterion	0.0001		<u>6</u>)	1.5		
Maximum number of points	513	-				

Building	Parameters			
ð	Number of Rooms Deposition Velocity Resuspension Rate	9 0.00039 0.0000005	▼ m/s 1/s	Air Flo w

Number of Rooms	-										
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area		36	36	36	36	36	36	36	36	36	m^2
Volume		90	90	90	90	90	90	90	90	90	m³
Resuspension rate		5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
ir flow from outdoors to		90	0	0	36	0	0	0	0	0	m³/h
ir flow from room 1 to	0]	72	0	36	0	0	0	0	0	m³/h
ir flow from room 2 to	0	0]	72	0	0	0	0	0	0	m³/h
ir flow from room 3 to	36	0	0]	18	0	18	0	0	0	m³/h
air flow from room 4 to	0	0	0	0]	36	0	54	0	0	m³/h
ir flow from room 5 to	0	0	0	0	0]	36	0	18	0	m³/h
ir flow from room 6 to	0	0	0	0	0	0]	0	0	54	m³/h
ir flow from room 7 to	0	0	0	0	0	0	0]	54	0	m³/h
ir flow from room 8 to	0	0	0	0	0	18	0	0]	72	m³/h
ir flow from room 9 to	90	18	0	0	0	0	0	0	18]	m³/h
Efficiency of Vacuuming	0.8		Vacuum (once every	14	days					
✓ Analytical Solution w	nen Possibl	e	Maximum	rime Step	0.08911	aays					

Radiological Data	
Activity:	Dose:
p 💌 Ci 🔍	m_rem

Receptor Parameters	
Receptor # Room Time Fraction	
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 1

Receptor Parameters	
Receptor # Room Time Fraction	3▼ 6▼
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 13.5

Receptor Parameters		
Receptor #	<mark>4</mark> ▼ 9	
Time Fraction	1	
Breathing Rate	18 m ³ /d	
Ingestion Rate	0.0001 m ² /h	
Location [m]	x: 1 y: 1 z: 21	

Source Receptor	Table
Thickness, cm	Source #
Density, g/cm³	1
Material 🗾 1	0
	2.4
	Concrete 💌
2	0
	2.4
	Concrete 💌
Receptor # 3	0
	2.4
	Concrete 💌
4	
	2.4
	Concrete 💌
	Save and Exit Cancel

Source #	1		otaile
Room	2	- L	etalis
Type/Dir	Volume	▼ Z	•

🔁 Details for Source # 1		
Geometry Circular Area [m2] 36 Release Air Fraction Direct Ingestion [g/h] Number of Wall Regions Material Type	C Rectangular Length along (m): X 0 Y 0 1 0 1 ▼	Contamination Radionuclide Concentration pCi/g CO-60 1.00E+00 CS-137 1.00E+00 PB-210 0.00E+00 PO-210 0.00E+00 RA-226 1.00E+00
Layer Region F	Cancel	AC-227 • 1 Add Nuclide Save Source # 1 Data and Load Data for Source # 1

ち Layer Region Param	ieters 💌
Regions —	
Cashaniaatad	1
Contaminated	•
I hickness [cm]	15
Density [g/cm³]	2.4
Erosion [cm/d]	2.40E-03
Direction from inte to eroding surface	erior + Z 💌
Radon Paramet	ers
Diffusion [m2/s]	0.00002
Porosity	0.1
Emanation Fractio	'n
Rn-220	
Rn-222	0
ОК	Cancel

- Run the code.
- After the calculations are completed, open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB AirRelrate1" in the "Vol2 S=2 V=14.xlsx" Excel file.
- In the main interface of the code, choose the View -> "last intermediate output files" menu option. Then choose to view the "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RRB" in the tab "RRB_TimeIntegratedConcSource1" in the "Vol2_S=2_V=14.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation	Time: 0.0	00000002+00	years	-				
		Pathway	Detail of	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.282+00	2.05E-01	2.38E-05	2.322-05	1.892-04	8.57E-04	0.00E+00	2.482+00
2	3.482-01	1.582+01	1.91E-03	1.79E-03	1.522-02	8.30E-03	0.00E+00	1.622+01
3	7.942-02	3.622+00	4.28E-04	4.092-04	3.402-03	6.16E-03	0.00E+00	3.71E+00
4	3.292-02	1.642+00	1.922-04	1.862-04	1.532-03	4.942-03	0.00E+00	1.682+00
Total	2.742+00	2.132+01	2.55E-03	2.41E-03	2.032-02	2.032-02	0.00E+00	2.412+01

- - - -

_ _ _ _

Pathway Detail of Doses

[mrem]

Source: 1	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	from		Deposition	Suspension	of Deposition		Source	
Receptor	Source		on floor	in air	-			
1	2.232+00	2.202-01	2.70E-05	2.43E-05	2.242-04	9.57E-04	0.00E+00	2.452+00
2	3.402-01	1.632+01	2.09E-03	1.80E-03	1.74E-02	9.17E-03	0.002+00	1.672+01
3	7.752-02	3.802+00	4.762-04	4.192-04	3.95E-03	6.85E-03	0.002+00	3.892+00
4	3.222-02	1.75E+00	2.16E-04	1.932-04	1.79E-03	5.51I-03	0.002+00	1.792+00
Total	2.682+00	2.212+01	2.81E-03	2.44E-03	2.332-02	2.252-02	0.00E+00	2.482+01

Evaluation Time: 0.500000000 years

Pathway Detail of Doses [mrem]

Source: 1	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.182+00	2.16E-01	2.552-05	2.34E-05	2.212-04	9.18E-04	0.00E+00	2.402+00
2	3.32E-01	1.63E+01	1.97E-03	1.75E-03	1.72E-02	8.81E-03	0.00E+00	1.662+01
3	7.56E-02	3.76E+00	4.482-04	4.062-04	3.922-03	6.57I-03	0.002+00	3.852+00
4	3.142-02	1.722+00	2.042-04	1.862-04	1.782-03	5.292-03	0.002+00	1.762+00
Total	2.622+00	2.202+01	2.652-03	2.37E-03	2.312-02	2.162-02	0.002+00	2.462+01

Evaluation Time: 0.750000000 years

Pathway Detail of Doses

[mrem]

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	2.132+00	2.222-01	2.602-05	2.34E-05	2.392-04	9.52E-04	0.00E+00	2.362+00
2	3.232-01	1.652+01	2.01E-03	1.74E-03	1.85E-02	9.13E-03	0.002+00	1.692+01
3	7.381-02	3.842+00	4.582-04	4.052-04	4.222-03	6.822-03	0.002+00	3.932+00
4	3.062-02	1.772+00	2.08E-04	1.862-04	1.92E-03	5.48E-03	0.002+00	1.812+00
Total	2.562+00	2.232+01	2.70E-03	2.35E-03	2.492-02	2.242-02	0.00E+00	2.50E+01

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
_	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.092+00	2.202-01	2.472-05	2.262-05	2.402-04	9.232-04	0.002+00	2.312+00
2	3.162-01	1.652+01	1.92E-03	1.70I-03	1.872-02	8.86E-03	0.002+00	1.682+01
3	7.202-02	3.82E+00	4.36E-04	3.932-04	4.242-03	6.61E-03	0.00E+00	3.902+00
4	2.992-02	1.75E+00	1.98E-04	1.802-04	1.92E-03	5.32E-03	0.00E+00	1.792+00
Total	2.502+00	2.232+01	2.582-03	2.292-03	2.512-02	2.172-02	0.002+00	2.482+01

Evaluatio	n Time: 1.2	5000000 ye	ars	-				
		Pathway	Detail of	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.042+00	2.25E-01	2.502-05	2.262-05	2.572-04	9.48E-04	0.00E+00	2.272+0
2	3.08E-01	1.672+01	1.94E-03	1.682-03	1.992-02	9.09E-03	0.002+00	1.712+0
3	7.032-02	3.892+00	4.422-04	3.91E-04	4.532-03	6.79E-03	0.002+00	3.972+0
4	2.922-02	1.792+00	2.01E-04	1.802-04	2.062-03	5.46E-03	0.002+00	1.832+0
Total	2.452+00	2.262+01	2.61E-03	2.27E-03	2.672-02	2.232-02	0.002+00	2.51E+0
		Pathway	Detail of	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.002+00	2.242-01	2.402-05	2.192-05	2.59E-04	9.262-04	0.002+00	2.222+0
2	3.01E-01	1.672+01	1.862-03	1.642-03	2.022-02	8.892-03	0.002+00	1.712+0
3	6.86E-02	3.882+00	4.242-04	3.81E-04	4.58E-03	6.632-03	0.002+00	3.962+0
4	2.852-02	1.782+00	1.922-04	1.752-04	2.082-03	5.332-03	0.002+00	1.822+0
Total	2.40E+00	2.262+01	2.50E-03	2.22E-03	2.71E-02	2.182-02	0.002+00	2.51E+0

Choose to view "last risk report," or open the file "RESRADB r.rpt" in the directory • where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values shown in the following tables.

		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.83I-06	1.652-07	1.912-11	1.87E-11	9.87E-11	8.65E-10	0.00E+00	1.992-06
2	2.792-07	1.272-05	1.532-09	1.442-09	7.932-09	8.592-09	0.002+00	1.302-05
3	6.37E-08	2.902-06	3.432-10	3.30Z-10	1.782-09	6.25E-09	0.00Z+00	2.972-06
4	2.642-08	1.322-06	1.542-10	1.50E-10	7.972-10	5.00Z-09	0.002+00	1.352-06
Total	2.202-06	1 713-05	2.052-09	1 947-09	1 067-08	2 077-08	0.002+00	1.932-05

Evaluation Time: 0.250000000 years

Pathway Detail of Risks [Risk]

Source: 1 External Inhalation External External Ingestion Radon Ingestion Total directly from from of of Deposition Suspension Deposition on floor in air 2.162-11 1.962-11 1.172-10 from Source Source 1.792-06 Receptor 1.762-07 0.002+00 9.662-10 1.972-06 1 2.72E-07 6.22E-08 1.31E-05 3.05E-06 1.68E-09 3.82E-10 1.45E-09 3.38E-10 9.04E-09 2.06E-09 9.50E-09 6.95E-09 0.002+00 0.002+00 1.34E-05 3.12E-06 2 3 2.58E-08 2.15E-06 1.40E-06 1.77E-05 1.73E-10 2.25E-09 1.56E-10 1.97E-09 9.35E-10 1.21E-08 5.57E-09 2.30E-08 0.002+00 0.002+00 1.43E-06 1.99E-05 4 Total

Evaluation Time: 0.500000000 years

Pathway Detail of Risks [Risk]

	External directly	Inhalation	External from	External from	Ingestion of Deposition	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	1.752-06	1.742-07	2.042-11	1.89E-11	1.152-10	9.27E-10	0.002+00	1.922-06
2	2.662-07	1.302-05	1.58E-09	1.41E-09	8.942-09	9.12E-09	0.002+00	1.332-05
3	6.072-08	3.022-06	3.602-10	3.272-10	2.032-09	6.672-09	0.002+00	3.092-06
4	2.522-08	1.382-06	1.642-10	1.50E-10	9.22E-10	5.34E-09	0.002+00	1.412-06
Total	2.102-06	1.76E-05	2.122-09	1.912-09	1.20E-08	2.212-08	0.00E+00	1.972-05

- - - -

- - - -

Evaluation Time: 0.750000000 years

Pathway Detail of Risks [Risk]

Source: 1	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	1.712-06	1.782-07	2.08E-11	1.892-11	1.242-10	9.612-10	0.002+00	1.892-06
2	2.592-07	1.322-05	1.612-09	1.402-09	9.59E-09	9.45E-09	0.00E+00	1.352-05
3	5.922-08	3.082-06	3.672-10	3.262-10	2.182-09	6.922-09	0.002+00	3.152-06
4	2.462-08	1.422-06	1.672-10	1.502-10	9.92E-10	5.542-09	0.002+00	1.452-06
Total	2.052-06	1.792-05	2.172-09	1.902-09	1.292-08	2.292-08	0.002+00	2.002-05

Evaluation Time: 1.00000000 years

Pathway Detail of Risks

[Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.672-06	1.76E-07	1.982-11	1.822-11	1.242-10	9.32E-10	0.002+00	1.852-06
2	2.532-07	1.32E-05	1.542-09	1.37E-09	9.632-09	9.17E-09	0.002+00	1.352-05
3	5.772-08	3.062-06	3.50E-10	3.17E-10	2.192-09	6.71E-09	0.002+00	3.132-06
4	2.402-08	1.412-06	1.592-10	1.452-10	9.93E-10	5.372-09	0.002+00	1.442-06
Total	2.012-06	1.79E-05	2.072-09	1.85E-09	1.292-08	2.222-08	0.00E+00	1.99E-05

Evaluation Time: 1.25000000 years

Pathway Detail of Risks [Risk] _

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	1.642-06	1.81E-07	2.012-11	1.822-11	1.322-10	9.57E-10	0.002+00	1.822-06
2	2.472-07	1.342-05	1.552-09	1.362-09	1.022-08	9.41E-09	0.002+00	1.372-05
3	5.642-08	3.122-06	3.542-10	3.152-10	2.332-09	6.89E-09	0.002+00	3.192-06
4	2.341-08	1.442-06	1.612-10	1.452-10	1.06E-09	5.52E-09	0.002+00	1.472-06
Total	1.962-06	1.82E-05	2.09E-09	1.83E-09	1.382-08	2.282-08	0.00Z+00	2.022-05

		Pathway	Detail of	Risks				
			[Risk]					
Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Tota
Receptor	Source		on floor	in air				
1	1.602-06	1.79E-07	1.922-11	1.772-11	1.33E-10	9.34E-10	0.002+00	1.78E-
2	2.41E-07	1.342-05	1.49E-09	1.332-09	1.04E-08	9.20E-09	0.00E+00	1.37E-
3	5.502-08	3.11E-06	3.40E-10	3.07E-10	2.352-09	6.73E-09	0.002+00	3.182-
4	2.282-08	1.432-06	1.54E-10	1.41E-10	1.072-09	5.39E-09	0.002+00	1.462-
Total	1 927-06	1.822-05	2 017-09	1 797-09	1 397-08	2 237-08	0.007+00	2 017-

Required Data Input file "Volume 2_S=2_V=14_EXP.BLD" and the verification Excel file "Vol2_S=2_V=14.xlsx."

ExpectedThe intermediate and final outputs should match those previously obtained (and verified)**Results**with the same input file or input selections/values.

TEST CASE 008-4

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-008-4
Requirements Tested	8, 11
Test Summary	Test the modeling of source release over multiple phases and transport of the released particles, resulting in radionuclide concentrations in air and on floors.
	With an area source (in Room 2) that is subjected to 7 release phases with different release rates, a 9-room building, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases and air concentrations and the floor deposition concentrations in different rooms as functions of time.
Test Objective	Test and verify the modeling of the particulate releases to air, the air ventilation and transport, and the air and deposition concentrations of source particles and radionuclides, as required by the code requirements 8 and 11.
Procedure	Read in an input file that was used in a previous code verification effort (the verification results were documented in the Excel file "Area1_S=3.xlsx"), run the RESRAD-BUILD code to generate intermediate outputs and summary outputs, and then compare the results in these outputs with those previously obtained. The results obtained from the current run should match those that were obtained previously.
	Steps:

• Read in the input file "Area 1_S=3_EXP.BLD."

- Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.
- Check to see the inputs match the followings If not, change the inputs to match.

O ICRP 107	ICRP 38	Transformations
Internal Dose Library	ICRP 72 (Ad	ult) 💌
External Dose Library	ICRP 60	-
Risk Library	FGR 13 Mort	oidity 💌
Location of DCF databa C:\RESRAD_Family\D Cut-off half life: 30	ase files DCF\3.3	▼ days
-Time Parameters -		
Exposure Duration	on (days) 91.2 0.5	5 Evaluation Times

valuation Times					
					OK
Times for Calculation (v	ears):				Cancel
	,-				
W					
10	100	1000		10000	100000
-			1)	.25	
R <u>e</u> move	Add		<u>2</u>]	.5	
			3)	.75	
Time Integration			<u>4</u>)	1	
Convergence criterion	0.0001		5)	1.25	
convergence citerion	0.0001		<u>6</u>)	1.5	
Maximum number of poi	nts 513	•			

Building	Parameters			
Ð	Number of Rooms Deposition Velocity Resuspension Rate	9 . 0.00039 0.000005	m/s 1/s	Air Flo w

	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area		36	36	36	36	36	36	36	36	36	m^2
Volume		90	90	90	90	90	90	90	90	90	m³
Resuspension rate		5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
Air flow from outdoors to		90	0	0	36	0	0	0	0	0	m³/h
Air flow from room 1 to	0]	72	0	36	0	0	0	0	0	m³/h
Air flow from room 2 to	0	0]	72	0	0	0	0	0	0	m³/h
Air flow from room 3 to	36	0	0]	18	0	18	0	0	0	m³/h
Air flow from room 4 to	0	0	0	0]	36	0	54	0	0	m³/hi
Air flow from room 5 to	0	0	0	0	0]	36	0	18	0	m³/hi
Air flow from room 6 to	0	0	0	0	0	0]	0	0	54	m³/hi
Air flow from room 7 to	0	0	0	0	0	0	0]	54	0	m³/hi
Air flow from room 8 to	0	0	0	0	0	18	0	0]	72	m³/hi
Air flow from room 9 to	90	18	0	0	0	0	0	0	18]	m³/hi
Efficiency of Vacuuming	9 0		Vacuum o	once every	365	days					
Analytical Solution w	hen Possibl	e	Maximum	l ime Step	0.08911	days					

Radiological Data	
Activity:	Dose:
p 💌 Ci 🗨	m_rem

Receptor Parameters	
Receptor # Room Time Fraction	
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 1

Receptor Parameters	
Receptor # 👖	3 ▼ 6 ▼
Time Fraction	1
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 13.5

Receptor Parameters		
Receptor # Room	4 9	•
Time Fraction	1	2
Breathing Rate	18	m³/d 2,,
Ingestion Hate	0.0001	m /h
Location [M]	x. 1 y. 1 Z. 2	

Source Receptor	r Table
Thickness, cm	Source #
Density, g/cm³	1
Material 🔻	0
	2.4
	Concrete 💌
2	, 0
	2.4
	Concrete 💌
Receptor #	0
	2.4
	Concrete 💌
4	
	2.4
	Concrete 💌
	Save and Exit Cancel

Source Parame	ters		
Source #	1		ilc
Room	3		115
Type/Dir	Area	▼ Z	-
Location of a of source [m	centroid)]	y: 0 z: 0	

🔁 Details f	or Source #	1						
Geome	trv —				- Co	ntaminati	on	
•	Circular	0	© Rectangular		Ra	adionuclide	Concentration pCi/m2	
		L	ength alon	g (m):	CO	-60	1.00E+00	
	ea [m2]		XII		CS	-137	1.00E+00	
3	6				PB	-210	0 008+00	
			Y O		PO	-210	0.008+00	Delete
	Roloaco -	1				-226	1 008+00	Nuclide
Rador	Release Fi	action [n	\neg	1	220	1.001100	
Direct	Indestion I	ИЛ	<u> </u>	-				
	ingestion [U					
				<u>.</u>				
				Heleased				
	Start time	End time	Fraction	Eraction of				
Phase	(days)	(days)	removed	removed				
1	0	30	0.1	1				
2	30	60	0.15	1				
3	60	100	0.25	1				
4	100	120	0.3	1				
5	120	200	0.1	1				
6	280	350	0.1	1				
7	365	365	0	0				
8	365	365	0	0				
9	365	365	0	0				
10	365	365	0	0				
		31		11	A	C-227	• 1	<u>A</u> dd Nuclide
		IK	Can	cel	Sa	ve Source Load Data	# 1 Data and for Source # 1	•

- Run the code.
- After the calculations are completed, open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB_AirRelrate1" in the "Area1_S=3.xlsx" Excel file.
- In the main interface of the code, choose the View -> "last intermediate output files" menu option. Then choose to view the "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RRB" in the tab "RRB_TimeIntegratedConcSource1" in the "Area1_S=3.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years

Pathway Detail of Doses [mrem]

	-			
	-	-	-	-

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.162-05	5.98I-05	1.51E-08	6.74E-09	1.21E-07	2.38E-07	0.002+00	7.192-05
2	1.302-06	2.472-03	6.83E-07	2.78E-07	5.462-06	1.162-06	0.002+00	2.482-03
3	2.923-07	7.622-04	2.022-07	8.59E-08	1.612-06	1.452-06	0.002+00	7.662-04
4	1.232-07	4.232-04	1.09E-07	4.76E-08	8.70E-07	1.302-06	0.002+00	4.252-04
Total	1.34E-05	3.71E-03	1.012-06	4.182-07	8.06E-06	4.152-06	0.002+00	3.74E-03

Evaluation Time: 0.250000000 years

Pathway Detail of Doses [mrem]

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	3.372-06	1.652-04	5.91I-08	1.822-08	4.922-07	6.84E-07	0.002+00	1.692-04
2	3.75E-07	3.28E-03	1.432-06	3.632-07	1.192-05	2.702-06	0.002+00	3.292-03
3	8.462-08	1.51E-03	5.89E-07	1.672-07	4.892-06	3.902-06	0.002+00	1.522-03
4	3.552-08	1.032-03	3.822-07	1.142-07	3.172-06	3.652-06	0.002+00	1.042-03
Total	3.862-06	5.99E-03	2.462-06	6.632-07	2.042-05	1.092-05	0.002+00	6.032-03

Evaluation Time: 0.500000000 years

Pathway Detail of Doses [mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	from		Deposition on floor	Suspension in air	Deposition		Source	
1	1.422-06	9.88E-05	4.622-08	1.072-08	4.03E-07	3.632-07	0.002+00	1.012-04
2	1.582-07	5.40E-04	3.692-07	5.852-08	3.202-06	9.70E-07	0.002+00	5.452-04
3	3.572-08	5.962-04	3.10E-07	6.452-08	2.692-06	1.832-06	0.00E+00	6.01E-04
4	1.502-08	5.38E-04	2.612-07	5.81I-08	2.272-06	1.842-06	0.002+00	5.422-04
Total	1.632-06	1.77E-03	9.85E-07	1.922-07	8.56E-06	5.012-06	0.00E+00	1.79E-03

_

_ _ _

Evaluation Time: 0.750000000 years

Pathway Detail of Doses

[mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	from Source		Deposition on floor	Suspension in air	Deposition		Source	
1	6.19E-07	5.39I-05	2.332-08	5.682-09	2.14E-07	1.89E-07	0.002+00	5.492-05
2	6.892-08	6.932-04	2.38E-07	7.302-08	2.202-06	5.76E-07	0.002+00	6.962-04
3	1.552-08	3.83E-04	1.542-07	4.042-08	1.422-06	9.79E-07	0.00E+00	3.86E-04
4	6.52E-09	3.03E-04	1.28E-07	3.19E-08	1.182-06	9.65E-07	0.00E+00	3.05E-04
Total	7.102-07	1.43E-03	5.442-07	1.51E-07	5.022-06	2.71E-06	0.00E+00	1.442-03

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.002+00	2.871-05	1.33E-08	2.962-09	1.292-07	1.02E-07	0.002+00	2.902-05
2	0.002+00	1.23E-04	9.36E-08	1.272-08	9.03E-07	2.672-07	0.00E+00	1.252-04
3	0.002+00	1.642-04	8.37E-08	1.692-08	8.10E-07	5.10E-07	0.002+00	1.652-04
4	0.00E+00	1.52E-04	7.272-08	1.572-08	7.042-07	5.15E-07	0.002+00	1.542-04
Total	0.002+00	4.682-04	2.632-07	4.83E-08	2.552-06	1.392-06	0.002+00	4.732-04

Evaluation	Time: 1.2	5000000 ye	ars	-				
		Pathway	Detail of 1	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.00E+00	1.05E-05	5.20E-09	1.06E-09	5.31E-08	3.372-08	0.00E+00	1.06E-05
2	0.00E+00	2.54E-05	1.54E-08	2.55E-09	1.572-07	7.05E-08	0.00E+00	2.56E-05
3	0.00E+00	5.14E-05	2.662-08	5.18E-09	2.71E-07	1.57E-07	0.00E+00	5.192-05
4	0.00E+00	5.27E-05	2.652-08	5.30Z-09	2.702-07	1.642-07	0.00E+00	5.31E-05
Total	0.00E+00	1.402-04	7.36E-08	1.412-08	7.51E-07	4.262-07	0.00E+00	1.412-04
Ivaluation	11me. 1.5	Pathway	Detail of	Doses				
		-	[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.002+00	3.442-06	1.72E-09	3.39E-10	1.852-08	1.052-08	0.002+00	3.472-06
2	0.002+00	7.062-06	3.72E-09	6.95E-10	4.00E-08	2.12E-08	0.002+00	7.132-06
3	0.002+00	1.602-05	8.10E-09	1.572-09	8.72I-08	4.85E-08	0.002+00	1.612-05
4	0.002+00	1.672-05	8.442-09	1.652-09	9.08E-08	5.09E-08	0.002+00	1.692-05
Total	0.002+00	4.32E-05	2.202-08	4.25E-09	2.362-07	1.31E-07	0.002+00	4.362-05

Choose to view "last risk report," or open the file "RESRADB r.rpt" in the directory • where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.00000002+00 years

Pathway Detail of Risks [Risk] Source: 1 External Inhalation External External Ingestion Radon Ingestion directly from from of of Deposition Supension Deposition on floor in air 1.212-14 5.442-15 6.322-14 Source from Source Receptor 4.802-11 1.982-09 6.112-10 1 2 3 9.33E-12 2.412-13 0.002+00 5.762-11 1.04E-12 2.34E-13 5.48Z-13 1.62Z-13 2.24E-13 6.93E-14 2.85E-12 8.42E-13 1.23E-12 1.49E-12 0.002+00 0.002+00 1.98E-09 6.14E-10 9.84E-14 1.07E-11 3.39E-10 2.98E-09 8.72E-14 8.09E-13 3.84E-14 3.38E-13 4.54E-13 4.21E-12 1.33E-12 4.28E-12 0.002+00 0.002+00 3.41E-10 3.00E-09

_

Total

_

Evaluation Time: 0.250000000 years

4 Total

Pathway Detail of Risks

Source:	1								
		External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Recep	tor	from		Deposition on floor	Suspension in air	Deposition		Source	
1		2.702-12	1.322-10	4.742-14	1.472-14	2.562-13	6.95I-13	0.002+00	1.362-10
2		3.01E-13	2.632-09	1.152-12	2.932-13	6.18E-12	2.862-12	0.002+00	2.642-09
3		6.78E-14	1.21E-09	4.732-13	1.35E-13	2.552-12	3.992-12	0.002+00	1.222-09
4		2.85E-14	8.29E-10	3.06E-13	9.22E-14	1.652-12	3.72E-12	0.002+00	8.352-10
Total		3.10E-12	4.80E-09	1.98E-12	5.35E-13	1.06E-11	1.132-11	0.00E+00	4.832-09

Pathway Detail of Risks

[Risk]

bource. I	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.142-12	7.932-11	3.71E-14	8.612-15	2.09E-13	3.71E-13	0.00E+00	8.10E-11
2	1.272-13	4.33E-10	2.96E-13	4.722-14	1.662-12	1.01E-12	0.00E+00	4.362-10
3	2.862-14	4.78E-10	2.48E-13	5.20E-14	1.40E-12	1.88E-12	0.00E+00	4.822-10
4	1.202-14	4.31E-10	2.09E-13	4.69E-14	1.182-12	1.89E-12	0.00E+00	4.352-10
Total	1.312-12	1.42E-09	7.90E-13	1.55E-13	4.45E-12	5.15E-12	0.00E+00	1.432-09

Evaluation Time: 0.750000000 years

.

Pathway Detail of Risks

[Risk]

	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	4.962-13	4.322-11	1.872-14	4.58E-15	1.112-13	1.932-13	0.002+00	4.402-11
2	5.532-14	5.56E-10	1.912-13	5.89E-14	1.142-12	6.05I-13	0.002+00	5.582-10
3	1.252-14	3.072-10	1.242-13	3.262-14	7.342-13	1.00E-12	0.002+00	3.092-10
4	5.232-15	2.432-10	1.032-13	2.572-14	6.11E-13	9.87E-13	0.002+00	2.442-10
Total	5.69E-13	1.152-09	4.36E-13	1.222-13	2.602-12	2.792-12	0.00E+00	1.162-09

Evaluation Time: 1.00000000 years

Pathway Detail of Risks

[Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion	Total
Receptor	Source		on floor	Suspension in air	Deposition		Source	
1	0.002+00	2.30E-11	1.072-14	2.392-15	6.67E-14	1.042-13	0.00E+00	2.322-11
2	0.002+00	9.89E-11	7.51E-14	1.03E-14	4.662-13	2.79E-13	0.00E+00	9.98E-11
3	0.002+00	1.32E-10	6.71E-14	1.362-14	4.182-13	5.24E-13	0.002+00	1.332-10
4	0.002+00	1.222-10	5.83E-14	1.272-14	3.64E-13	5.27E-13	0.002+00	1.232-10
Total	0.00E+00	3.76E-10	2.11E-13	3.89E-14	1.31E-12	1.432-12	0.00E+00	3.79E-10

Evaluation Time: 1.25000000 years

Pathway Detail of Risks _____ [Risk]

	External directly	Inhalation	External from	External from	Ingestion of Deposition	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	0.002+00	8.45E-12	4.172-15	8.55E-16	2.732-14	3.45E-14	0.002+00	8.52E-12
2	0.002+00	2.03E-11	1.232-14	2.06E-15	8.06E-14	7.262-14	0.002+00	2.05E-11
3	0.002+00	4.132-11	2.132-14	4.18E-15	1.40E-13	1.62E-13	0.002+00	4.162-11
4	0.002+00	4.232-11	2.122-14	4.28E-15	1.392-13	1.69E-13	0.002+00	4.262-11
Total	0.002+00	1.122-10	5.90E-14	1.142-14	3.87E-13	4.37E-13	0.00E+00	1.13E-10

Evaluation Time: 1.50000000 years

Pathway Detail of Risks

[Risk]

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	0.002+00	2.76E-12	1.38E-15	2.732-16	9.50Z-15	1.082-14	0.002+00	2.782-12
2	0.002+00	5.67E-12	2.98E-15	5.602-16	2.062-14	2.182-14	0.00±+00	5.72E-12
3	0.00E+00	1.282-11	6.50Z-15	1.272-15	4.482-14	4.982-14	0.002+00	1.292-11
4	0.002+00	1.342-11	6.76E-15	1.33E-15	4.662-14	5.222-14	0.002+00	1.352-11
Total	0.00E+00	3.472-11	1.762-14	3.43E-15	1.212-13	1.352-13	0.00E+00	3.50E-11

- - -

Required Data Input file "Area 1_S=3_EXP.BLD" and the verification Excel file "Area1_S=3.xlsx."

ExpectedThe intermediate and final outputs should match those previously obtained (and verified)**Results**with the same input file or input selections/values.

TEST CASE 008-5

Project **RESRAD-BUILD Test Case ID RESBLD-TEST-008-5 Requirements** 8, 11 Tested **Test Summary** Test the modeling of source release over multiple phases and transport of the released particles, resulting in radionuclide concentrations in air and on floors. With an area source (in Room 5) that is subjected to 7 release phases with different release rates, a 9-room building that is vacuumed every 14 days, and 4 receptors in different rooms, this test case tests and verifies the contaminant releases and air concentrations and the floor deposition concentrations in different rooms as functions of time. **Test Objective** Test and verify the modeling of the particulate releases to air, the air ventilation and transport, and the air and deposition concentrations of source particles and radionuclides, as required by the code requirements 8 and 11. **Procedure** Read in an input file that was used in a previous code verification effort (the verification results were documented in the Excel file "Area2 S=5 V=14.xlsx"), run the RESRAD-BUILD code to generate intermediate outputs and summary outputs, and then compare the results in these outputs with those previously obtained. The results obtained from the current run should match those that were obtained previously. Steps:

- Read in the input file "Area 2_S=5_V=14_EXP.BLD."
- Check to see the "new appearance" and "write intermediate output" features are selected and the number of receptors is 4. If not, change the input selections to match.
- Check to see the inputs match the following. If not, change the inputs to match.

Activity: Dose: p ▼ Ci ▼ m ▼ rem ▼
○ ICRP 107
Internal Dose Library ICRP 72 (Adult)
External Dose Library ICRP 60
Risk Library FGR 13 Morbidity 💌
Location of DCF database files C:\RESRAD_Family\DCF\3.3
Cut-off half life: 30 - days
- Time Parameters
Indoor fraction [days] 91.25 Evaluation 0.5 Evaluation

valuation Times					
					OK
					Cancel
Times for Calculation (year	s):				Calicer
200					
1 10	100	1000		10000	10000
	100	1000	11	25	
Remove	Add		21	5	_
	_		31	75	_
- Time Integration				.13	_
The integration			9 9	1	
Convergence criterion	0.0001		อ	1.25	
_			6	1.5	
Maximum number of points					
Maximum number of points	513	–			

Building	Parameters			
ð	Number of Rooms Deposition Velocity Resuspension Rate	9 <u> </u>	m/s 1/s	Air Flo w

B • Room Air Flow and Particul	ates										×
Number of Rooms	•										
	Outdoors	Room 1	Room 2	Room 3	Room 4	Room 5	Room 6	Room 7	Room 8	Room 9	
Area		36	36	36	36	36	36	36	36	36	m^2
Volume		90	90	90	90	90	90	90	90	90	m3
Resuspension rate		5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	5.E-7	1/s
Air flow from outdoors to		90	0	0	36	0	0	0	0	0	m³/hr
Air flow from room 1 to	0]	72	0	36	0	0	0	0	0	m³/hr
Air flow from room 2 to	0	0]	72	0	0	0	0	0	0	m³/hr
Air flow from room 3 to	36	0	0]	18	0	18	0	0	0	m³/hr
Air flow from room 4 to	0	0	0	0]	36	0	54	0	0	m³/hr
Air flow from room 5 to	0	0	0	0	0]	36	0	18	0	m³/hr
Air flow from room 6 to	0	0	0	0	0	0]	0	0	54	m³/hr
Air flow from room 7 to	0	0	0	0	0	0	0]	54	0	m³/hr
Air flow from room 8 to	0	0	0	0	0	18	0	0]	72	m³/hr
Air flow from room 9 to	90	18	0	0	0	0	0	0	18]	m³/hr
Efficiency of Vacuuming	9 0.8		Vacuum (once every	14	days					
Analytical Solution w	hen Possibl	le	Maximum	Time Step	0.08911	days					
	OK		V	Write Inter	mediate Ou	tput		Cancel			

Radiological Data	
Activity:	Dose:
p Ci	m 💌 rem 🔍

Receptor Parameters		
Receptor # Room f Time Fraction	1 1 1	•
Breathing Rate	18	m ³ /d
Ingestion Rate	0.0001	m ² /h
Location [m]	x: 1 y: 1 z: 1	

Receptor Parameters	
Receptor #	3
Room	6 🔹
Time Fraction	1
Breathing Rate	18 m ³ /d
Ingestion Rate	0.0001 m ² /h
Location [m]	x: 1 y: 1 z: 13.5

Receptor Parameters		Ì
Receptor # Room i	<mark>4</mark> 9	•
Breathing Rate	18	m ³ /d 2
Ingestion Rate Location [m]	0.0001 x: 1 y: 1 z: 2	m ⁻ 7h 1

B Source Receptor	Table
Thickness, cm	Source #
Density, g/cm³	1
Material 🗾 1	0
	2.4
2	0
_	2.4
	Concrete •
Receptor # 3	2.4
	Concrete -
4	
	Concrete V
	Save and Exit Cancel

Source Parame	ers
Source #	
Room	
Type/Dir	Area 🗸 Z
Location of (of source [n	:entroid] x: 0 y: 0 z: 0

Details f	for Source #	1					×
Geome	trv —				Contaminatio	nn — — — — — — — — — — — — — — — — — —	
• •	Circular	0) Rectan	gular	Radionuclide	Concentration pCi/m2	
	(1	.ength alon	g (m):	CO-60	1.00E+00	
	ea [m2]		X 0		CS-137	1.00E+00	
3	6				PB-210	0.00E+00	
			Y O		PO-210	0.00E+00	Delete
⊤Timed I	Release -	I			RA-226	1.00E+00	Nuciide
Rador	n Release Fi	raction 🛛	D	ן ר			
Direct	Ingestion [17h]	n	-			
			<i>.</i>				
				Palazaad			
				as a			
Dhase	Start time	End time	Fraction	Fraction of			
Fnase	(days)	(days)	removed	removed			
1	0	60	0.1	1			
2	60	120	0.15	1			
3	120	200	0.25	1			
4	200	240	0.3	1			
5	240	400	0.1	1			
6	400	560	0.05	1			
7	560	700	0.05	1			
8	1000	1100	0	0			
9	1100	1200	0	0			
10	1200	1500	0	0			
			JL				
					AC-227	· 1	Aad Nuclide
	() к	Can	cel	Save Source #	1 Data and 👝	
					Load Data I	for Source # 1	-

- Run the code.
- After the calculations are completed, open the file "AirRelRate1.out" in the directory where the code was installed to view. The intermediate outputs (for release rate of source material) should match those obtained from the code previously in the tab "RRB_AirRelrate1" in the "Area2_S=5_V=14.xlsx" Excel file.
- In the main interface of the code, choose the View -> "last intermediate output files" menu option. Then choose to view the "Time averaged concentrations of radionuclides on particulates suspended in air and deposited on floor" outputs for Source 1 or open the file "AirRelTimeIntegratedConcSource1.out" in the directory where the code was installed to view. The intermediate outputs (for time-averaged nuclide concentrations in the air and on the floor) should match those listed as "from RRB" in the tab "RRB_TimeIntegratedConcSource1" in the "Area2 S=5 V=14.xlsx" Excel file.
- Choose to view "last report," or open the file "RESRADB.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway doses for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.00000000E+00 years

Pathway Detail of Doses

[mrem]

Inhalation	External from	External	Ingestion	Radon	Ingestion	Total
		11010	of		of	TOPAT
	Deposition on floor	Suspension in air	Deposition		Source	
2.612-05	3.002-09	2.952-09	2.392-08	5.022-08	0.002+00	3.952-05
1.152-05	1.292-09	1.30E-09	1.032-08	5.722-08	0.002+00	1.302-05
5.392-06	6.03E-10	6.08E-10	4.802-09	3.492-08	0.002+00	5.672-06
2.102-04	2.432-08	2.372-08	1.932-07	2.752-07	0.002+00	2.102-04
2.532-04	2.922-08	2.852-08	2.32E-07	4.172-07	0.002+00	2.682-04
	5 2.61Z-05 6 1.15Z-05 7 5.39Z-06 7 2.10Z-04 5 2.53Z-04	Deposition on floor 5 2.612-05 3.002-09 6 1.152-05 1.252-09 7 5.352-06 6.032-10 7 2.102-04 2.432-08 5 2.532-04 2.522-08	Deposition Suspension on floor 0 floor 5 2.612-05 3.002-09 2.952-05 6 1.152-05 1.292-09 1.302-05 7 5.392-06 6 2.432-08 7 2.102-04 2.522-08 2.852-08 2.522-08 2.852-08	Deposition Suspension Deposition on floor in air 5 2.612-05 3.002-05 2.952-05 2.352-08 6 1.152-05 1.292-05 1.302-05 1.032-08 7 5.352-06 6.032-10 6.082-10 4.802-09 7 2.102-04 2.432-08 2.372-08 1.932-07 5 2.532-04 2.922-08 2.852-06 2.322-07	Deposition Suspension Deposition on floor in air 5 2.612-05 3.002-09 2.552-05 2.352-08 5.022-08 6 1.152-05 1.252-09 1.302-09 1.032-08 5.722-08 7 5.352-06 6.032-10 6.082-10 4.802-09 3.452-08 7 2.102-04 2.432-08 2.372-08 1.532-07 2.752-07 5 2.532-04 2.552-08 2.322-07 4.172-07	Deposition Suspension Deposition Source on floor in air Source Source 5 2.612-05 3.002-09 2.552-05 2.352-08 5.022-08 0.002400 6 1.152-05 1.252-09 1.302-09 1.032-08 5.722-08 0.002400 7 5.352-06 6.032-10 6.082-10 4.802-09 3.452-08 0.002400 7 2.102-04 2.432-08 2.372-08 1.532-07 2.752-07 0.002400 5 2.532-04 2.552-08 2.322-07 4.172-07 0.002400

_ _ _ _

Evaluation Time: 0.250000000 years

Pathway Detail of Doses [mrem]

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	9.842-06	4.15E-05	5.09E-09	4.582-09	4.232-08	8.48E-08	0.002+00	5.15E-05
2	1.102-06	1.872-05	2.242-09	2.062-09	1.862-08	9.70E-08	0.002+00	1.992-05
3	1.772-07	8.832-06	1.05E-09	9.74E-10	8.76E-09	5.92E-08	0.002+00	9.072-06
4	1.042-07	3.302-04	4.092-08	3.642-08	3.40E-07	4.632-07	0.00E+00	3.31E-04
Total	1.12E-05	3.99E-04	4.932-08	4.402-08	4.09E-07	7.042-07	0.00E+00	4.11E-04

Evaluation Time: 0.500000000 years

Pathway Detail of Doses ____

[mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	4.522-06	5.96E-05	7.35E-09	6.442-09	6.40E-08	1.23E-07	0.00E+00	6.432-05
2	5.04E-07	2.71E-05	3.272-09	2.922-09	2.852-08	1.41E-07	0.002+00	2.772-05
3	8.16E-08	1.282-05	1.54E-09	1.38E-09	1.34E-08	8.61E-08	0.002+00	1.302-05
4	4.772-08	4.72E-04	5.88E-08	5.10E-08	5.12E-07	6.71E-07	0.002+00	4.732-04
Total	5.162-06	5.71E-04	7.092-08	6.18E-08	6.18E-07	1.02E-06	0.00E+00	5.78E-04

Evaluation Time: 0.750000000 years

Pathway Detail of Doses

[mrem]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Source	
1	2.062-06	9.132-06	1.11E-09	9.61E-10	1.022-08	1.872-08	0.002+00	1.122-05
2	2.292-07	4.162-06	4.982-10	4.382-10	4.582-09	2.152-08	0.002+00	4.422-06
3	3.712-08	1.972-06	2.36E-10	2.082-10	2.17E-09	1.31E-08	0.002+00	2.022-06
4	2.172-08	7.222-05	8.81I-09	7.61E-09	8.11E-08	1.022-07	0.002+00	7.252-05
Total	2.352-06	8.751-05	1.06E-08	9.22E-09	9.80E-08	1.552-07	0.002+00	9.01E-05

_ -

Evaluation Time: 1.00000000 years

Pathway Detail of Doses

[mrem]

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.332-06	6.40E-06	7.652-10	6.59E-10	7.41E-09	1.32E-08	0.002+00	7.752-06
2	1.482-07	2.922-06	3.42E-10	3.01E-10	3.31E-09	1.51E-08	0.002+00	3.082-06
3	2.402-08	1.382-06	1.612-10	1.42E-10	1.56E-09	9.24E-09	0.00E+00	1.422-06
4	1.402-08	5.06E-05	6.11E-09	5.22E-09	5.91E-08	7.202-08	0.00E+00	5.082-05
Total	1.522-06	6.132-05	7.38E-09	6.32E-09	7.14E-08	1.10E-07	0.002+00	6.30E-05

Evaluation Time: 1.25000000 years

		Pathway	Detail of	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	9.03E-07	4.582-06	5.18E-10	4.602-10	5.31E-09	9.17E-09	0.00E+00	5.50E-0
2	1.01E-07	2.07E-06	2.29E-10	2.08E-10	2.352-09	1.052-08	0.00E+00	2.18E-0
3	1.632-08	9.78E-07	1.082-10	9.832-11	1.11E-09	6.41E-09	0.002+00	1.002-0
4	9.52E-09	3.642-05	4.15E-09	3.652-09	4.262-08	5.01E-08	0.00E+00	3.65E-0
Total	1.032-06	4.402-05	5.01Z-09	4.422-09	5.142-08	7.622-08	0.00E+00	4.51E-0
Evaluation	Time: 1.50	Pathway	Detail of D	oses				
			[mrem]					
Source: 1								
	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				

-								
1	4.962-07	5.11E-06	5.51E-10	5.01E-10	5.96E-09	9.97E-09	0.002+00	5.622-06
2	5.53E-08	2.292-06	2.432-10	2.25E-10	2.632-09	1.142-08	0.002+00	2.362-06
3	8.96E-09	1.082-06	1.142-10	1.06E-10	1.24E-09	6.962-09	0.002+00	1.102-06
4	5.242-09	4.072-05	4.432-09	3.99E-09	4.792-08	5.452-08	0.00E+00	4.082-05
Total	5.662-07	4.912-05	5.33E-09	4.822-09	5.772-08	8.282-08	0.002+00	4.992-05

• Choose to view "last risk report," or open the file "RESRADB_r.rpt" in the directory where the code was installed to view. The immersion, inhalation, and ingestion pathway risks for the 4 receptors at different time periods should match the values shown in the following tables.

Evaluation Time: 0.000000002+00 years

Pathway Detail of Risks
[Risk]

	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air				
1	1.062-11	2.09E-11	2.40E-15	2.38E-15	1.25E-14	5.09E-14	0.00E+00	3.16E-1
2	1.182-12	9.20E-12	1.03E-15	1.042-15	5.36E-15	5.77E-14	0.002+00	1.052-1
3	1.922-13	4.322-12	4.842-16	4.912-16	2.512-15	3.52E-14	0.002+00	4.552-1
4	1.122-13	1.68E-10	1.95E-14	1.912-14	1.01Z-13	2.80E-13	0.00E+00	1.692-1
Total	1.212-11	2.032-10	2.342-14	2.30E-14	1.212-13	4.242-13	0.00E+00	2.152-10

Evaluation Time: 0.250000000 years

Pathway Detail of Risks

Source: 1								
	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	7.89E-12	3.332-11	4.08E-15	3.70E-15	2.20E-14	8.60E-14	0.00E+00	4.132-11
2	8.79E-13	1.50E-11	1.80I-15	1.662-15	9.70E-15	9.79E-14	0.002+00	1.602-11
3	1.42E-13	7.08E-12	8.452-16	7.862-16	4.56E-15	5.97E-14	0.002+00	7.292-12
4	8.32E-14	2.652-10	3.28E-14	2.942-14	1.772-13	4.712-13	0.002+00	2.652-10
Total	9.00E-12	3.20E-10	3.952-14	3.552-14	2.132-13	7.152-13	0.002+00	3.302-10

Evaluation Time: 0.500000000 years

Pathway Detail of Risks [Risk]

	External directly	Inhalation	External from	External from	Ingestion of Deposition	Radon	Ingestion of	Total
Receptor	Source		on floor	in air	Deposition		Dource	
1	3.632-12	4.78E-11	5.90I-15	5.19Z-15	3.33E-14	1.252-13	0.002+00	5.16E-11
2	4.042-13	2.172-11	2.622-15	2.362-15	1.482-14	1.422-13	0.00E+00	2.232-11
3	6.542-14	1.032-11	1.242-15	1.122-15	6.98E-15	8.68E-14	0.00E+00	1.042-11
4	3.822-14	3.78E-10	4.712-14	4.122-14	2.662-13	6.84E-13	0.002+00	3.802-10
Total	4.132-12	4.58E-10	5.692-14	4.982-14	3.21E-13	1.042-12	0.002+00	4.642-10

Evaluation Time: 0.750000000 years

Pathway Detail of Risks [Risk]

	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.652-12	7.32E-12	8.86E-16	7.75E-16	5.27E-15	1.90E-14	0.00E+00	9.00E-12
2	1.842-13	3.34E-12	4.002-16	3.54E-16	2.37E-15	2.172-14	0.00E+00	3.55E-12
3	2.982-14	1.58E-12	1.892-16	1.672-16	1.12E-15	1.322-14	0.002+00	1.632-12
4	1.742-14	5.79E-11	7.06E-15	6.14E-15	4.20E-14	1.04E-13	0.00E+00	5.81E-11
Total	1.882-12	7.022-11	8.54E-15	7.43E-15	5.07E-14	1.58E-13	0.00E+00	7.232-11

Evaluation Time: 1.00000000 years

Pathway Detail of Risks [Risk]

Source: 1	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion	Total
Pecentor	from		Deposition on floor	Suspension	Deposition		Source	
Receptor	1 077-12	5 127-12	6 147-16	5 227-16	2 927-15	1 247-14	0.007+00	6 227-12
2	1.192-13	2.342-12	2.742-16	2.422-16	1.712-15	1.532-14	0.002+00	2.482-12
3	1.922-14	1.112-12	1.292-16	1.152-16	8.072-16	9.31E-15	0.00E+00	1.142-12
4	1.122-14	4.062-11	4.902-15	4.212-15	3.05E-14	7.33E-14	0.00E+00	4.072-11
Total	1.222-12	4.922-11	5.92E-15	5.09E-15	3.69E-14	1.112-13	0.00E+00	5.05E-11

Evaluation Time: 1.25000000 years

Pathway Detail of Risks

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	7.242-13	3.68E-12	4.15E-16	3.712-16	2.742-15	9.30I-15	0.00E+00	4.412-12
2	8.07E-14	1.662-12	1.842-16	1.682-16	1.212-15	1.06E-14	0.00E+00	1.75E-12
3	1.312-14	7.85E-13	8.662-17	7.932-17	5.702-16	6.46E-15	0.002+00	8.052-13
4	7.632-15	2.922-11	3.33E-15	2.95E-15	2.192-14	5.10E-14	0.002+00	2.932-11
Total	8.25E-13	3.532-11	4.01E-15	3.56E-15	2.642-14	7.732-14	0.002+00	3.622-11

Evaluation	Time: 1.5	0000000 ye	ars					
		Pathway	Detail of	Risks				
			[Risk]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	3.982-13	4.10E-12	4.422-16	4.042-16	3.06E-15	1.012-14	0.002+00	4.512-12
2	4.432-14	1.842-12	1.95E-16	1.822-16	1.352-15	1.152-14	0.002+00	1.902-12
3	7.182-15	8.692-13	9.16E-17	8.57E-17	6.352-16	7.01E-15	0.002+00	8.842-13
4	4.202-15	3.262-11	3.55E-15	3.222-15	2.462-14	5.542-14	0.002+00	3.272-11
Total	4.542-13	3.942-11	4.28E-15	3.89E-15	2.962-14	8.40E-14	0.002+00	4.00E-11

Required Data Input file "Area 2_S=5_V=14_EXP.BLD" and the verification Excel file "Area2_S=5_V=14.xlsx."

ExpectedThe intermediate and final outputs should match those previously obtained (and verified)**Results**with the same input file or input selections/values.

TEST CASE 009

Project	RESRAD-BUILD					
Test Case ID	RESBLD-TEST-009					
Requirements Tested	9					
Test Summary	Test tritium concentrations from release of volume sources.					
Test Objective	Test tritium concentration from volume source.					
Procedure	1. Run file "Reqts_9_H3_Vol.bld."					
	 Compare with results in "View Intermediate Time Averaged Concentrations of Tritium in Air" below. 					
	View Intermediate Output for the Last Run					

		Dose coef	ficients and slo	ope factors Re	port					Close
Component of Dose and Risk Component of Dos			se and Risk-Summed over Progeny			Component of Dose and Risk - Summed over Nuclides				
Time integrated Source Concentrations and Time averaged Direct Ingestion	Source	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Time Averaged Concentrations of Radionuclides on Particulates Suspended in Air and Deposited on Floor	Source 1	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Time Averaged Concentrations of Tritium in Air	Source 1	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Details of Radon Exposure Distances and Densities for External Exposure										
Temporal Concentrations of Particulates Suspended in Air and Deposited on Floor	Source	Source 2	Source	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Temporal Concentrations of Source Moisture in Air	Source	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Eigen Values to the System of Equations for Particulates	E	igen Vectors to I	he System of	Equations for F	Particulates	Matirx	to Determine	the Coefficien	s of the Eigen	Vectors
Matrix of the Coefficients of the System of Equations for Particulats VEW. ANB/dTimeIntegratedConcSourceLout File Edit View For: Matrix of the Coefficients of the System of Equations for Particulats File Edit View										
Rate of Release of Particulates from Source to Air	Source 1	Source 2	-Numerica	lly Time A	veraged Co	ncentratio				
Rate of Release of Moisture from Source to Air	Source	Source 2	pCi per iSr iRo 1 1 1 H - 1 1 2 H	cubic mete om iTime P -3 H-3 -3 H-3	r of air arent prog Air 16 Air 0.	<pre>& pCi per eny Media .088893962 00000000000</pre>	square me Concentrat 45561 000002+00	ter of flo ion	or	

Required Data NA

Expected The expected results are shown below (as verified in "reqts_9_H3_vol.xlsx"). **Results**

IVIEW - AH3RelTimeIntegratedConcSource1.out

File Edit View

Font: MS LineDraw - 7.4 -	<i>a</i> : • •	Page: 🚺 🔽 🗶

TEST CASE 010

Project	RESRAD-BUILD						
Test Case ID	RESBLD-TEST-010						
Requirements Tested	10, 14						
Test Summary	Test modeling of radon release and radon dose.						
Test Objective	Test radon release and radon dose.						
Procedure	1. Run file Reqts_10_14_rn_pt.bld.						
	2. Generate "RadonAndProgeny.out" from "View Intermediate" results.						
	3. Compare file with verified file "RadonAndProgeny_Verified.out."						
Required Data	NA						
Expected Results	The two files should be the same. The verification is in "radon dose.xlsx."						
Project	RESRAD-BUILD						
-----------------------	---						
Test Case ID	RESBLD-TEST-012-1						
Requirement Tested	12						
Test Summary	Test the modeling of direct external dose and risk from different types of sources.						
Test Objective	Test and verify the direct external pathway dose/risk from a point source at different receptor locations with and without shielding.						
Procedure	Open the "point-source-verification.bld" RESRAD-BUILD input file that was used in the code verification effort (the verification results are in the EXCEL file "FGR12 Point Source Dose Calculations for few radionuclides-ver4.xlsx"). Run the RESRAD-BUILD code, open the "RESRADB.RPT" dose report and "RESRADB_R.RPT" risk report, and compare the results in these reports with those previously obtained. The verification details are in the "Verification of Point Source Dose Calculations.docx" file.						
Required Data	Input file "point-source-verification.bld" and "Verification of Point Source Dose Calculations.docx."						
Expected Results	The outputs in the RESRAD-BUILD dose report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 1. The outputs in the RESRAD-BUILD risk report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 2.						

Evaluatio	n Time: O	.00000002	+00 years							
		Nucl	ide Detail	of Doses						
			[mrem]							
Source: 1										
Nuclide	Receptor	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Receptor 6	Receptor 7	Receptor	Receptor 9	Total
C-14	3.172-11	4.042-11	4.722-11	3.362-14	1.872-11	7.132-13	2.772-31	1.012-09	6.41E-12	1.152-09
Co-60	1.312-06	1.292-06	1.222-06	2.772-07	1.262-06	1.052-06	1.392-08	4.362-05	2.442-07	5.032-05
Mn-54	3.36E-07	3.322-07	3.182-07	5.792-08	3.26E-07	2.702-07	1.462-09	1.132-05	6.282-08	1.302-05
Nb-94	9.282-07	9.18E-07	8.812-07	1.552-07	9.01E-07	7.46E-07	3.572-09	3.10I-05	1.732-07	3.572-05
Tc-99	1.012-10	1.182-10	1.662-10	4.242-12	1.122-10	5.662-11	3.962-18	3.312-09	1.972-11	3.892-09

Evaluation	n Time: O	.00000003	+00 years							
		Nucl	ide Detail	of Risks						
			[Risk]							
Source: 1										
Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Receptor 6	Receptor 7	Receptor 8	Receptor 9	Total
C-14	1.852-17	2.352-17	2.752-17	1.962-20	1.09E-17	4.152-19	1.612-37	5.852-16	3.732-18	6.702-16
Co-60	9.99E-13	9.852-13	9.32E-13	2.112-13	9.63E-13	8.012-13	1.062-14	3.342-11	1.872-13	3.852-11
Mn-54	2.542-13	2.512-13	2.402-13	4.372-14	2.462-13	2.042-13	1.102-15	8.49E-12	4.742-14	9.77 Z -12
Nb-94	6.992-13	6.912-13	6.642-13	1.172-13	6.792-13	5.62E-13	2.69E-15	2.342-11	1.312-13	2.692-11
Tc-99	6.562-17	7.642-17	1.082-16	2.752-18	7.292-17	3.67E-17	2.572-24	2.152-15	1.282-17	2.522-15

Figure 2 Risk Results from RESRAD-BUILD Code for Different Receptors

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-012-2
Requirement Tested:	12
Test Summary	Test the modeling of direct external dose and risk from different types of sources.
Test Objective	Test and verify the direct external pathway dose/risk from a line source at different receptor locations with and without shielding.
Procedure	Open the "line-source-verification.bld" RESRAD-BUILD input file that was used in the code verification effort (the verification results are in the EXCEL file "FGR12 Line Source Dose Calculations for few radionuclides-ver4.xlsx"). Run the RESRAD-BUILD code, open the "RESRADB.RPT" dose report and "RESRADB_R.RPT" risk report, and compare the results in these reports with those previously obtained. The verification details are in the "Verification of Line Source Dose Calculations.docx" file.
Required Data	Input file "line-source-verification.bld" and "Verification of Line Source Dose Calculations.docx."
Expected Results	The outputs in the RESRAD-BUILD dose report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 1. The outputs in thew RESRAD-BUILD risk report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 2.

Evaluation	n Time: 0	.00000003	+00 years							
		Nucl	ide Detail	or Doses						
			[mrem]							
Source: 1										
Nuclide	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Total
100 - 100 C	1	2	3	4	5	6	7	8	9	
C-14	3.202-11	4.072-11	4.762-11	3.392-14	1.892-11	7.182-13	2.792-31	6.202-10	6.382-12	7.672-10
Co-60	1.322-06	1.302-06	1.232-06	2.792-07	1.272-06	1.062-06	1.402-08	2.702-05	2.43E-07	3.372-05
Mn-54	3.392-07	3.352-07	3.202-07	5.832-08	3.282-07	2.722-07	1.472-09	6.952-06	6.252-08	8.672-06
Nb-94	9.352-07	9.252-07	8.882-07	1.572-07	9.082-07	7.522-07	3.602-09	1.922-05	1.732-07	2.392-05
Tc-99	1.022-10	1.192-10	1.67E-10	4.27E-12	1.132-10	5.702-11	3.99E-18	2.042-09	1.962-11	2.622-09

Evaluatio	n Time: O	.000000003	+00 years							
		Nucl	ide Detail	of Risks						
			[Risk]							
Source: 1										
Nuclide	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Total
6-14	1	2 277-17	3	4	5	6	7	8	9 2 717-19	4 467-16
0-14	1.062-1/	2.3/1-1/	2.//1-1/	1.9/1-20	1.101-17	4.102-19	1.621-37	3.611-16	3./11-10	4.461-16
Co-60	1.012-12	9.932-13	9.392-13	2.132-13	9.71E-13	8.07E-13	1.072-14	2.062-11	1.862-13	2.572-11
Mn-54	2.562-13	2.532-13	2.422-13	4.402-14	2.482-13	2.052-13	1.112-15	5.242-12	4.722-14	6.542-12
Nb-94	7.042-13	6.972-13	6.692-13	1.182-13	6.842-13	5.662-13	2.712-15	1.442-11	1.302-13	1.802-11
Tc-99	6.612-17	7.692-17	1.082-16	2.772-18	7.352-17	3.702-17	2.592-24	1.322-15	1.272-17	1.702-15

Figure 2 Risk Results from RESRAD-BUILD Code for Different Receptors

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-012-3
Requirement Tested	12
Test Summary	Test the modeling of direct external dose and risk from different types of sources.
Test Objective	Test and verify the direct external pathway dose/risk from deposited source contamination.
Procedure	Open the "deposition-1.bld" RESRAD-BUILD input file that was used in the code verification effort (the verification results are in EXCEL files "FGR12 Deposition Dose Calculations for few radionuclides-ver4.xlsx" and "Deposition-Testing.xlsx"). Run the RESRAD-BUILD code, open the "RESRADB.RPT" dose report and "RESRADB_R.RPT" risk report, and compare the results in these reports with those previously obtained. The verification details are in the "Verification of External Exposure Dose and Risk from Deposition.docx" file.
Required Data	Input file "deposition-1.bld" and "Verification of External Exposure Dose and Risk from Deposition-ver4.docx."
Expected Results	The outputs in the RESRAD-BUILD dose report for deposition should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 1. The outputs in the RESRAD-BUILD risk report for deposition should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 2.

Evaluation Time: 0.00000000E+00 years

Pathway	Detail	of	Doses
---------	--------	----	-------

[mrem]	

Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	5.302-06	1.37E-09	4.28E-13	2.62E-15	3.42E-09	0.002+00	0.002+00	5.30E-06
2	2.132-08	2.75E-10	1.492-13	5.24E-16	6.62E-10	0.002+00	0.002+00	2.222-08
3	4.132-09	1.76E-10	1.33I-13	3.352-16	4.16E-10	0.00E+00	0.00E+00	4.72E-09
4	5.81E-11	2.732-11	3.632-14	5.20E-17	6.36E-11	0.002+00	0.002+00	1.49E-10
Total	5.322-06	1.851-09	7.452-13	3.532-15	4.562-09	0.002+00	0.002+00	5.332-06
Source: 2								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.09E-07	6.85E-09	3.60E-08	7.442-10	6.93E-09	0.00E+00	0.00E+00	2.59E-07
2	6.772-06	1.292-09	1.15E-08	1.402-10	1.26E-09	0.00E+00	0.00E+00	6.79E-06
3	4.76E-07	8.04E-10	9.80E-09	8.72E-11	7.742-10	0.00E+00	0.00E+00	4-87E-07
4	9.492-09	1.22E-10	2.41E-09	1.322-11	1.162-10	0.002+00	0.002+00	1.212-08
Total	7.472-06	9.07E-09	5.972-08	9.84E-10	9.07E-09	0.002+00	0.00E+00	7.552-06
Source: 3								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air	-			
1	8.06E-08	6.85E-09	3.60E-08	7.44E-10	6.93E-09	0.00E+00	0.00E+00	1.31E-07
2	5.28E-07	1.29E-09	1.15E-08	1.402-10	1.26E-09	0.002+00	0.00E+00	5.42E-07
3	4.332-06	8.04E-10	9.80E-09	8.72E-11	7.742-10	0.002+00	0.00E+00	4.342-06
4	1.35E-08	1.222-10	2.412-09	1.32E-11	1.162-10	0.002+00	0.002+00	1.622-08
Total	4.952-06	9.071-09	5.972-08	9.84E-10	9.07I-09	0.002+00	0.002+00	5.032-06
Source: 4								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	3.30E-13	1.302-09	4.292-13	4.50E-15	5.69E-10	0.002+00	0.00E+00	1.872-09
2	4.672-13	2.602-10	1.482-13	9.01E-16	1.102-10	0.00E+00	0.002+00	3.71E-10
3	6.08E-13	1.66E-10	1.30E-13	5.76E-16	6.92E-11	0.00E+00	0.00E+00	2.36E-10
4	4.50E-10	2.582-11	3.462-14	8.942-17	1.06E-11	0.00E+00	0.002+00	4.872-10

Figure 1 Dose Results from RESRAD-BUILD Code for Different Receptors

Evaluation	Time: 0.0	00000002+00	years					
		Pathway	Detail of	Risks				
			Riskl					
			[atea]					
Source: 1		Tabalasias	7	7	Townships	Dedee	T	T
	directly	Innalation	from	from	ingestion	Radon	Ingestion	IOTAL
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air	Deposition		Source	
1	3.082-12	1.112-14	2.492-19	4.282-21	3.272-15	0.002+00	0.002+00	3.102-12
2	1.242-14	2.222-15	8.652-20	8.562-22	6.332-16	0.002+00	0.002+00	1.522-14
3	2.402-15	1.422-15	7.722-20	5.472-22	3.992-16	0.002+00	0.002+00	4.222-15
4	3.382-17	2,202-16	2.112-20	8.50E-23	6.08E-17	0.002+00	0.002+00	3.152-16
Total	3.102-12	1.502-14	4.342-19	5.772-21	4.372-15	0.002+00	0.002+00	3.122-12
Source: 2								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	1.58E-13	1.242-14	2.722-14	5.60Z-16	7.78E-15	0.00E+00	0.002+00	2.06E-13
2	5.11E-12	2.33E-15	8.69E-15	1.052-16	1.412-15	0.002+00	0.00E+00	5.122-12
3	3.59E-13	1.45E-15	7.392-15	6.57E-17	8.69E-16	0.00E+00	0.00E+00	3.692-13
4	7.16E-15	2.202-16	1.82E-15	9.98E-18	1.302-16	0.002+00	0.00E+00	9.34E-15
Total	5.632-12	1.642-14	4.512-14	7.422-16	1.022-14	0.002+00	0.002+00	5.712-12
Source: 3								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	6.08E-14	1.242-14	2.72E-14	5.60Z-16	7.78E-15	0.00E+00	0.00E+00	1.09Z-13
2	3.98E-13	2.33E-15	8.69E-15	1.05E-16	1.41E-15	0.002+00	0.00E+00	4.112-13
3	3.26E-12	1.45E-15	7.39E-15	6.57E-17	8.69E-16	0.00E+00	0.00E+00	3.27Z-12
4	1.02E-14	2.20E-16	1.82E-15	9.98E-18	1.30E-16	0.002+00	0.00E+00	1.242-14
Total	3.732-12	1.642-14	4.512-14	7.422-16	1.022-14	0.002+00	0.002+00	3.812-12
Source: 4								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	2.142-19	5.94E-15	2.792-19	1.03E-20	1.56E-15	0.00E+00	0.00E+00	7.50E-15
2	3.03E-19	1.192-15	9.58E-20	2.07E-21	3.01E-16	0.00E+00	0.002+00	1.492-15
3	3.942-19	7.622-16	8.44E-20	1.322-21	1.902-16	0.002+00	0.002+00	9.522-16
4	2.922-16	1.18E-16	2.25E-20	2.052-22	2.892-17	0.002+00	0.00E+00	4.39E-16

Figure 2 Risk Results from RESRAD-BUILD Code for Different Receptors

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-012-4
Requirement Tested	12
Test Summary	Test the modeling of direct external dose and risk from different types of sources.
Test Objective	Test and verify the direct external pathway dose/risk from circular area source contamination.
Procedure	Open the "area-source-verification.bld" RESRAD-BUILD input file that was used in the code verification effort (the verification results are in EXCEL file "FGR12 Area Source Dose Calculations for few radionuclides-ver4.xlsx"). Run the RESRAD-BUILD code, open the "RESRADB.RPT" dose report and "RESRADB_R.RPT" risk report, and compare the results in these reports with those previously obtained. The verification details are in the "Verification of Area Source Dose Calculations.docx" file.
Required Data	Input file "area-source-verification.bld" and "Verification of Area Source Dose Calculations.docx."
Expected Results	The outputs in the RESRAD-BUILD dose report for circular area sources should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 1. The outputs in the RESRAD-BUILD risk report for circular area sources should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 2.

Evaluation Time: 0.00000002+00 years

Nuclide Detail of Doses

[mrem] Source: 1 Nuclide Receptor Receptor Receptor Receptor Total C-14 1.582-09 2.812-12 8.542-11 1.962-09 1.132-09 4.762-09 Mn-54 4.802-05 9.872-06 2.492-05 6.252-05 3.132-05 1.772-04 Tc-99 6.50Z-09 1.23Z-10 1.10Z-09 8.12Z-09 4.61Z-09 2.05Z-08 Source: 2 Nuclide Receptor Receptor Receptor Receptor Total 5.832-10 2.812-12 8.532-11 9.522-10 1.982-10 1.822-09 C-14 Mn-54 2.102-05 9.752-06 1.762-05 3.552-05 6.582-06 9.042-05 Tc-99 2.412-09 1.232-10 9.972-10 3.992-09 7.882-10 8.312-09 Source: 3 Nuclide Receptor Receptor Receptor Receptor Total 1 2 3 4 5 4.11E-10 2.81E-12 8.17E-11 7.72E-10 9.56E-11 1.36E-09 C-14 Mn-54 1.52E-05 8.82E-06 1.32E-05 2.94E-05 3.25E-06 6.98E-05 Tc-99 1.72E-09 1.23E-10 8.08E-10 3.27E-09 3.84E-10 6.30E-09 Source: 4 Nuclide Receptor Receptor Receptor Receptor Total 1.042-09 2.812-12 8.542-11 1.422-09 6.002-10 3.152-09 C-14 Mn-54 3.462-05 5.872-06 2.422-05 4.522-05 1.822-05 1.362-04 Tc-99 4.192-09 1.232-10 1.102-09 5.802-09 2.342-09 1.362-08 Source: 5 Nuclide Receptor Receptor Receptor Total 2 3 4 5 2.292-10 2.812-12 6.352-11 5.622-10 3.172-11 8.892-10 C-14 Mn-54 8.652-06 6.112-06 7.652-06 2.172-05 1.092-06 4.522-05 Tc-99 9.66E-10 1.10E-10 4.91E-10 2.41E-09 1.28E-10 4.10E-09 Source: 6 Nuclide Receptor Receptor Receptor Receptor Total 1.302-10 2.632-12 4.232-11 4.222-10 1.342-11 6.112-10 C-14 Mn-54 4.972-06 3.802-06 4.432-06 1.652-05 4.612-07 3.012-05

Figure 1 Dose Results from RESRAD-BUILD Code for Different Receptors

5.532-10 8.252-11 2.872-10 1.812-09 5.392-11 2.792-09

Tc-99

Evaluation Time: 0.00000000E+00 years

Nuclide Detail of Risks						
			[Risk]			
Source: 1						
Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Total
C-14	9.222-16	1.642-18	4.972-17	1.142-15	6.572-16	2.771-15
Mn-54	3.622-11	7.442-12	1.882-11	4.722-11	2.362-11	1.332-10
Tc-99	4.222-15	7.952-17	7.122-16	5.272-15	2.992-15	1.332-14
Source: 2	Pecentor	Pecentor	Recentor	Pecentor	Receptor	Total
autilue aut	1	2	3	4	5	10041
0-14	3.391-16	1.641-18	4.9/1-1/	5.541-16	1.151-16	1.061-15
Mn-54	1.592-11	7.352-12	1.332-11	2.682-11	4.962-12	6.822-11
Tc-99	1.562-15	7.952-17	6.463-16	2.592-15	5.112-16	5.392-15
Source: 3 Nuclide	Receptor	Receptor	Receptor	Receptor	Receptor	Total
C-14	1 2.39 <u>2</u> -16	2 1.64 <u>2</u> -18	3 4.76Ξ-17	4 4.492-16	5 5.57 <u>2</u> -17	7.942-16
Mn-54	1.152-11	6.653-12	9.943-12	2.213-11	2.453-12	5.273-11
Tc-99	1 117-15	7 957-17	5 247-16	2 127-15	2 497-16	4 097-15
		/	0.212 10			11002 10
Nuclide	Receptor	Receptor	Receptor	Receptor	Receptor	Total
C-14	1 6.082-16	2 1.642-18	3 4.97E-17	4 8.262-16	5 3.49E-16	1.842-15
Mn-54	2.612-11	7.44 2- 12	1.822-11	3.71Ξ-11	1.372-11	1.032-10
Tc-99	2.722-15	7.952-17	7.122-16	3.762-15	1.522-15	8.792-15
a -						
Nuclide	Receptor	Receptor	Receptor	Receptor	Receptor	Total
C-14	1 1.33E-16	2 1.64E-18	3 3.69 <u>2</u> -17	4 3.27E-16	5 1.85E-17	5.182-16
Mn-54	6.522-12	4.612-12	5.77E-12	1.642-11	8.232-13	3.41E-11
Tc-99	6.272-16	7.162-17	3.192-16	1.562-15	8.302-17	2.662-15
Source: 6						
Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Total
C-14	7.592-17	1.532-18	2.462-17	2.462-16	7.772-18	3.552-16
Mn-54	3.752-12	2.862-12	3.342-12	1.242-11	3.472-13	2.272-11
Tc-99	3.582-16	5.352-17	1.862-16	1.182-15	3.502-17	1.812-15

Figure 2 Risk Results from RESRAD-BUILD Code for Different Receptors

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-012-5
Requirement Tested	12
Test Summary	Test the modeling of direct external dose and risk from different types of sources.
Test Objective	Test and verify the direct external pathway dose/risk from rectangular area source contamination.
Procedure	Open the "rectangle-area-source-verification.bld" RESRAD-BUILD input file that was used in the code verification effort (the verification results are in EXCEL file "FGR12 Rectangular Area Source Dose Calculations for few radionuclides.xlsx"). Run the RESRAD- BUILD code, open the "RESRADB.RPT" dose report and compare the results in this report with those previously obtained. The verification details are in the "Verification of Area Source Dose Calculations.docx" file.
Required Data	Input file "rectangle-area-source-verification.bld" and "Verification of Area Source Dose Calculations.docx."
Expected Results	The outputs in the RESRAD-BUILD dose report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 1.

Evaluation Time: 0.00000000E+00 years Nuclide Detail of Doses _ [mrem] Source: 1 Nuclide Receptor Total C-14 2.882-10 2.882-10 Source: 2 Nuclide Receptor Total 1 C-14 2.46E-10 2.46E-10 Source: 3 Nuclide Receptor Total 1 C-14 1.892-10 1.892-10 Source: 4 Nuclide Receptor Total 1 C-14 1.292-10 1.292-10 Source: 5 Nuclide Receptor Total 1 C-14 4.09E-10 4.09E-10 Source: 6 Nuclide Receptor Total 1 C-14 5.792-10 5.792-10

Figure 1 Dose Results from RESRAD-BUILD Code for Different Receptors

Project	RESRAD-BUILD			
Test Case ID	RESBLD-TEST-012-6			
Requirement Tested	12			
Test Summary	Test the modeling of direct external dose and risk from different types of sources.			
Test Objective	Test and verify the direct external pathway dose/risk from volume sources.			
Procedure	Open the "volume-source-verification.bld" RESRAD-BUILD input file that was used in the code verification effort. Run the RESRAD-BUILD code, open the "RESRADB.RPT" dose report and compare the results in this report with those previously obtained. The verification details are in the "Verification of Volume Source Dose Calculations.docx" file.			
Required Data	Input file "volume-source-verification.bld" and "Verification of Volume Source Dose Calculations.docx."			
Expected Results	The outputs in the RESRAD-BUILD dose report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 1. The outputs in the RESRAD-BUILD risk report should match those previously obtained by either comparing with the verified input file or with the results shown in Figure 2. The input file has two sources (one with Co-60 volumetric contamination and other with Mn-54 volumetric contamination) and 9 receptors at different locations with and without concrete shielding.			

					_	
		_			_	
		R	ESRAD-BUIL	D Dose Tables 🛛 🔤	-	
				_	-	
					-	
		Source	Contribut	ions to Receptor Doses		
				-		
				[mrem]		
		_	_			
		Source	Source	Total		
		1	2	1.4671110		
Receptor	1	1.171+10	2.841+09	1.461+10		
Receptor	2	9.881109	2.291109	1.222710		
Receptor	3	9.721109	2.062108	3.722703		
Receptor	-	3.451109	1 032409	6 467106		
Receptor	2	7.661+09	1.831+09	5.491709		
Receptor		4.412+09	9.472+08	5.351105		
Receptor		2.251+09	5.651+08	2.821109		
Receptor	8	2.14±+09	5.25±+08	2.661+09		
Receptor	9	1.532+09	3.502+08	1.882+09		
Total		5.28E+10	1.242+10	6.521+10		

Figure 1 Dose Results from RESRAD-BUILD Code for Different Receptors

		_			_
		R	ESRAD-BUIL	D Risk Tables	_
		_			_
		Source	Contribut	ions to Recept	or Risks
				[Risk]	
		Source	Source	Total	
		1	2		
Receptor	1	8.972+03	2.142+03	1.112+04	
Receptor	2	7.55E+03	1.732+03	9.28E+03	
Receptor	3	3.612+03	7.51E+02	4.362+03	
Receptor	4	6.49E+03	1.582+03	8.07E+03	
Receptor	5	5.85Z+03	1.38E+03	7.23E+03	
Receptor	6	3.37E+03	7.152+02	4.08E+03	
Receptor	7	1.722+03	4.262+02	2.152+03	
Receptor	8	1.632+03	3.962+02	2.032+03	
Receptor	9	1.172+03	2.642+02	1.442+03	
Total		4.042+04	9.382+03	4.982+04	

Figure 2 Risk Results from RESRAD-BUILD Code for Different Receptors

Project	RESRAD-BUILD			
Test Case ID	RESBLD-TEST-017			
Requirements Tested	17			
Test Summary	Test selecting, viewing, printing, and saving text reports.			
Test Objective	To test the result reporting functions as designed.			
Procedure	1. Launch the code, choose the Advanced – Traditional Appearance menu option and set up the analysis with the following input information:			
	a. Source 1, point source in Room 1; Receptor 1 in Room 1.			
	b. Source 2, line source in Room 2; Receptor 2 in Room 2.			
	c. Source 3, area source in Room 3; Receptor 3 in Room 3.			
	d. Source 4, volume source in Room 1; Receptor 4 in Room 1.			
	2. Save the inputs to the file "Input 017.bld" and run the code.			
	3. Check whether the summary report pops up upon the end of calculation. If so, close the summary report, and open it by clicking menu View -> Last Report.			
	4. Test the function of each menu available in the Report Viewer.			
	5. Check the content of the report, including input echo and calculated results, referring to User's Guide Section 6.2.			
	6. Open the risk report by clicking menu View -> Last Risk Report, and check the content, referring to User's Guide Section 6.2.			
	 Open each of the intermediate reports by clicking menu View -> Last Intermediate Output Files and check the content. 			
	 Switch to New Appearance by clicking menu Advanced -> New Appearance, change the location of Source 4 to Room 4, and save the input changes to the file "Input 017-1.bld." 			
	9. Run the code and repeat Steps 5–7.			
Required Data	The following files can be used as optional input and output for comparison: "Input 017.bld," "Test017.rpt," "Test017_r.rpt," and the files with ".out" as the extension in the V&V subfolder "Requirement 17\Tradition"; "Input 017-1.bld," "Test017-1.rpt," "Test017-1_r.rpt," and the files with ".out" as the extension in the V&V subfolder "Requirement 17\New."			
Expected Results	The Viewer for viewing text reports should function correctly, including the menu functions. The report should echo the input information correctly and display the result correctly.			

Project	RESRAD-BUILD			
Test Case ID	RESBLD-TEST-018			
Requirements Tested	18			
Test Summary	Test selecting, viewing, printing, and saving graphic results.			
Test Objective	To test the result graphics functions as designed.			
Procedure	ocedure 1. Launch the code and set up the model with the following information:			
	a. Source 1, point source in Room 1.			
	b. Source 2, line source in Room 2.			
	c. Source 3, area source in Room 3.			
	d. Source 4, volume source in Room 1.			
	2. Save the project as "Site018.bld" and run the code.			
	3. Open the deterministic graphics and check the plots of the output dose and risk results for the following options by referring to Section 6.3 of the User's Guide.			
	Dose:			
	a. Line Chart with different combinations of primary/secondary axis and data groupings.			
	b. Bar Chart with different combinations of primary/secondary axis and data groupings.			
	c. Stacked Chart with different combinations of primary/secondary axis and data groupings.			
	Risk:			
	a. Line Chart with different combinations of primary/secondary axis and data groupings.			
	b. Bar Chart with different combinations of primary/secondary axis and data groupings.			
	c. Stacked Chart with different combinations of primary/secondary axis and data groupings.			
Required Data	The following files can be used as optional input and output for comparison: "Input 018.bld," "Test018.ddb," "Test018_r.ddb, bld_g.fil," and "bld_g_r.fil" in the V&V subfolder "Requirement 18."			
Expected Results	The deterministic graphics viewer should retrieve and plot dose/risk results correctly and clearly.			

Project	RESRAD-BUILD		
Test Case ID	RESBLD-TEST-019		
Requirements Tested	19		
Test Summary	Test the functions of the DCF Editor for viewing, creating, editing, copying, and renaming a dose/risk coefficient library.		
Test Objective	To test the functionality of the DCF Editor.		
Procedure	 Launch DCF Editor by clicking DCF icon in the Toolbar from the main interfa The default DCF folder is in "c:\RESRAD_Family\DCF\3.3." 		
	2. The DCF Editor version number and creation date should display correctly.		
	3. The default of the main window should be the following:		
	 a. Radionuclides library: the same as the one identified in the RESRAD-BUILD main interface. b. Library option: Create a new DCF library. c. Base External DCF: the same as the one identified in the RESRAD-BUILD main interface. d. Base internal DCF: the same as the one identified in the RESRAD-BUILD main interface. e. Base risk library: the same as the one identified in the RESRAD-BUILD main interface. 4. Test the functions of DCF Editor following User's Guide Sections 5.1 and 5.2. a. View a Default Library (Read Only). b. Create a New DCF Library. c. Edit an Existing DCF Library. d. Rename an Existing DCF Library. e. Import and Export a DCF Library. 5. Click Help -> General Help on the menu bar and check whether the Help window pops up and whether the right panel presents the correct help contents according		
	to the clicked help topic in the list in the left panel.		
	6. Choose the View a Default Library (Read Only) library option and then click the Dose Factors Help button at the upper-right corner of the data window. Check whether the Help window pops up and works properly.		
	 Click the <- Back button, and the code should close the data window and return to the main interface of the DCF Editor. 		
	8. Click the F1 key on the keyboard when in the main DCF Editor interface and check whether the Help window pops up.		
Required Data	None.		
Expected Results	The functions described in User's Guide Sections 5.1 and 5.2 should work properly.		

Project	RESRAD-BUILD			
Test Case ID	RESBLD-TEST-020			
Requirements Tested	20			
Test Summary	Test the functions of performing sensitivity analysis and presenting the results.			
Test Objective	To test the functionality of the sensitivity analysis tool.			
Procedure	 Launch the code and select one of the following 4 groups of parameters for sensitivity analysis sequentially in each run. To activate sensitivity analysis, put the cursor on each input parameter and select the menu option Modify Sensitivity Analysis (or press F9 key). a. Exposure Duration, Indoor Time Fraction, Breath Rate, Room Exchange Rate, Area of Room, Height of Room, Volume of Room, Efficiency of Vacuuming, Day Between Vacuuming, Building Exchange Rate; b. Deposition velocity, Resuspension Rate, Time Fraction, Breathing Rate, Ingestion Rate, Receptor Location, Source Location, Source Area, Radon Release Fraction, Air Fraction; c. Removable Fraction, Source Lifetime, Direct Ingestion Rate, Volumetric Water Content, Total Porosity of Contaminated Material, Humidity, Water Fraction Available for Vaporization, Wet + Dry Zone Thickness, Dry Zone Thickness, Density of Material; and d. Source Length Along Y Axis, Region Density, Radon Porosity, Radon Diffusion, Region Thickness, Radon Emanation Fraction, Erosion Rate, Shielding Thickness, Shielding Density. Follow User's Guide Section 7.1 to set up sensitivity analysis for these parameters. Check the bottom-left corner of the main interface. The number of parameters for sensitivity analysis, the Fortran variable name of each parameter, and its multiplication/division factor should be listed. Save the input file of each run as "test020-1.bld," "test020-2.bld," "test020-3.bld," and "test020-4.bld," respectively. 			
	5. Use a text editor such as Notepad to open the input file and check the variable names included in "SENS_PARAM," their upper values in "HVAL_PARAM," and their lower values in "LVAL_PARAM." They should match the input values.			
	6. Run the code and check the graphics for sensitivity analysis in the deterministic graphics viewer.			
	7. Choose the five parameters in next group for sensitivity analysis and repeat Steps 2 to 6.			
Required Data	None.			
Expected Results	Sensitivity analysis can be properly set up for eligible input parameters through the interface; correct parameter values are specified for use in sensitivity analysis in the input file; and sensitivity analysis results are presented properly in the standard graphics viewer.			

Project	RESRAD-BUILD				
Test Case ID	RESBLD-TEST-021				
Requirements Tested	21				
Test Summary	Test the functions of performing probabilistic analysis and presenting the results.				
Test Objective	To test the functionality of the probabilistic/uncertainty module.				
Procedure	1. Follow User's Guide Section 7.2 to set up probabilistic/uncertainty analysis for one parameter, e.g., breathing rate.				
	 Save the inputs to "Test021.bld" and run the code. Using a text editor such as Notepad, open the saved input file and check the variables, "NUM_SAMPS" and "NUMVAR"; they should match with the input selections. 				
	3. Open the file "EXAMPLE1.UN6" and check to see whether the information in that file matches the input values.				
	4. Follow the User's Guide Section 7.2 to open the uncertainty graphics. Check the two tabs – Input Specifications and Parameter Statistics; the information displayed should match the input selection/values. Click the Results tab and its sub-tabs. The plots displayed should match the values in output file "Test021.BUO."				
	5. Follow the User's Guide Section 7.2 to make some changes to each input option for probabilistic analysis and run the code again.				
	6. Repeat Steps 2–4.				
	7. Set up a probabilistic (uncertainty) analysis for two parameters following the User's Guide.				
	8. Repeat Steps 2–4.				
Required Data	None.				
Expected Results	Probabilistic analysis can be properly set up for eligible input parameters through the interface; correct parameter distributions and values are specified for use in probabilistic analysis in the input file; and probabilistic analysis results are presented properly in the probabilistic graphics viewer.				

Project	RESRAD-BUILD RESBLD-TEST-022-1				
Test Case ID					
Requirements Tested	22				
Test Summary	Test the interface display, menu bar options, and file menu options.				
Test Objective	e Confirm that the RESRAD-BUILD interface display, menu bar options, and file menu options function correctly.				
Procedure	1. Launch RESRAD-BUILD.				
	 The interface shown in the figure titled "the Main Interface of RESRAD- BUILD" in Chapter 3 of the RESRAD-BUILD User's Guide displays (values shown in input fields may be different). 				
	2. In the Case section of the window, edit the Title to read "BUILD Test 022-001."				
	3. View the menu for each item on the menu bar (File, View, Modify, Advanced, Help).				
	 For each menu, check that the options match those shown in the "Main Menu and Submenus" figure in Chapter 3 of the User's Guide. 				
	4. Click File/Save As. Alternatively, click the Save File icon (see the "Toolbar" figure in Chapter 3 of the User's Guide) or press Ctrl+A.				
	• The Save As window displays.				
	5. Navigate to the "UserFiles" subfolder of the installation directory, enter the name "Test-022-001," then click Save.				
	6. Click File/New. Alternatively, in the Toolbar, click the Reset to Default icon (see the "Toolbar" figure in Chapter 3 of the User's Guide).				
	 In the Case section of the main window, the Title now shows Default Case for RESRAD-BUILD. 				
	 Click File/Open. Alternatively, in the Toolbar, click the Open a File icon (see the "Toolbar" figure in Chapter 3 of the User's Guide) or press Ctrl+O. 				
	• The Open window for selecting a file displays.				
	8. Navigate to the "UserFiles" subfolder of the installation directory, select the file named "Test-022-001," then open the file.				
	 In the Case section of the main window, the Title now displays BUILD Test 022-001. 				
	9. In the Case section of the window, revise the Title to "BUILD Test 022-001 step 9."				
	10. Click File/Save. Alternatively press Ctrl+S.				
	11. Click File/New.				
	 In the Case section of the main window, the Title now shows Default Case for RESRAD-BUILD. 				

- 12. Click File/Open. Navigate to the "UserFiles" subfolder of the installation directory, select the file created in Step 5 that was revised in Step 10, and open the file.
 - In the Case section of the main window, the Title now displays "BUILD Test 022-001 step 9."
- 13. Click File/Run. Alternatively, in the Toolbar, click the Perform Calculations icon (see the "Toolbar" figure in Chapter 3 of the User's Guide) or press Ctrl+R.
 - The Doing Calculations window displays briefly. After the Doing Calculations window disappears, the report viewer opens and displays results. The second line of the report displays "BUILD Test 022-001 step 9."
- 14. Click the X in the upper-right corner of the report viewer.
 - The report viewer closes.
- 15. Click File/DCF Editor.
 - The DCF Editor opens.
- 16. Exit the DCF Editor.
- 17. In RESRAD-BUILD, click File/Exit. Alternatively, click the X in the upper-right corner.
 - RESRAD-BUILD closes.

Required Data NA

Expected The test procedure is successfully completed with all actions being completed as described. **Results**

Project	RESRAD-BUILD					
Test Case ID	RESBLD-TEST-022-2					
Requirements Tested	22					
Test Summary	Test the menu bar options within the View, Modify, Advanced, and Help menus; hotkeys; and the Toolbar icon for launching the DCF Editor.					
Test Objective	Confirm that the View, Modify, Advanced, and Help menus in the menu bar (including relevant hotkeys) function as described in the RESRAD-BUILD User's Guide and that the Toolbar icon for the DCF Editor launches the DCF Editor.					
Procedure	1. Launch RESRAD-BUILD.					
	2. Click on the input field for a nonzero parameter that is eligible for uncertainty analysis (e.g., "Ingestion Rate"; see the "Inputs Eligible for Probabilistic Analysis" table in Chapter 7 of the RESRAD-BUILD User's Guide for the complete list) and press F8.					
	• The Uncertainty Analysis Input Summary window opens.					
	3. In the Uncertainty Analysis Input Summary window, select a value for Distribution and enter the required additional inputs. Optionally, change the sample specifications to reduce execution time.					
	4. Perform calculations. After calculations have finished, close the report viewer.					
	5. Test each item in the View, Modify, Advanced, and Help menus by following the descriptions in RESRAD-BUILD User's Guide Chapter 3. Also test the indicated hotkey (where applicable) for the items in the View, Modify, Advanced, and Help menus. When testing Sensitivity Analysis, please note that some inputs are not eligible for sensitivity analysis and clicking Modify>Sensitivity Analysis or pressing F9 will have no effect (to view all eligible inputs, refer to the "Inputs Eligible for Sensitivity Analysis" table in Chapter 7 of the User's Guide). Also note that to test toggling between Traditional Appearance and New Appearance, it is necessary to open a form with differences both before and after toggling. For example, see the two "Evaluation Times" form figures in Chapter 4 of the User's Guide for the expected layout of the Evaluation Times form for the Traditional and New Appearance.					
	• Each menu item performs the function described in the User's Guide.					
	 Click the DCF Editor icon in the Toolbar (see the "Toolbar" figure in Chapter 3 of the User's Guide). 					
	• The DCF Editor opens.					
	7. Close the DCF Editor by clicking the Exit Program button or the X in the upper- right corner of the DCF Editor.					
	• The DCF Editor closes.					
	8. Click File -> Exit. Alternatively, click the X in the upper-right corner of RESRAD- BUILD.					
	9. RESRAD-BUILD closes.					

Required Data NA

Expected
ResultsAll actions occur as described in the procedure and referenced sections of the RESRAD-
BUILD User's Guide.

Project	RESRAD-BUILD									
Test Case ID	RESBLD-TEST-022-3									
Requirements Tested	22, 23, 24									
Test Summary	'est the button commands for navigation and the form-level tools as well as the control- evel tools and properties for user entry of data.									
Test Objective	Confirm that the button commands for navigation, form-level tools for user entry of data, and control-level tools and properties for user entry of data function as described in the RESRAD-BUILD User's Guide.									
Procedure	 Launch RESRAD-BUILD. For each of the following forms, test various elements of the form based on the description in Chapter 4 of the RESRAD-BUILD User's Guide. Spot-check to ensure that buttons for launching another form work correctly — the tab key can be used to navigate the fields, Save/OK and Cancel buttons work as expected, field names and units are provided as appropriate, the F1 key launches context-specific help, an alert is given regarding invalid input, and sensitivity analysis and/or uncertainty analysis can be activated for applicable input fields (see tables in Chapter 7 of the User's Guide). Conduct testing using both Traditional Appearance and New Appearance. The Case form, including the Evaluation Times form. The Building Parameters form, including the Room Details form and the 									
	 Room Air Flow and Particulates form. c. The Radiological Data form. d. The Receptor Parameters form. e. The Shielding Parameters form, including the Source Receptor Table and the Copy Shielding screen. f. The Source Parameters form, including the Details for Source form and Layer Region Parameters form. 									
Required Data	NA									
Expected	The forms listed in Step 2 of the procedure perform the functionality described as									

Expected The forms listed in Step 2 of the procedure perform the functionality appropriate based on the RESRAD-BUILD User's Guide.

Project	RESRAD-BUILD							
Test Case ID	RESBLD-TEST-025							
Requirements Tested	25							
Test Summary	Fest the 3-D display of the source and receptor locations.							
Test Objective	o test the functionality of the 3-D display for the source and receptor locations.							
Procedure	 In the main interface of the code, choose the View-3D Display menu option. The 3-D display window will pop up. Check to see the receptor and source objects are displayed in the 3-D display window. 							
	2. Move the locations of the source and receptor in the 3D display window following instructions in User's Guide Section 4.7. Check the location changes in the Receptor Parameters and Source Parameters input forms in the main interface. The changes should reflect the moves in the 3D display.							
	3. Change the x-, y-, or/and z-coordinate value in the Receptor Parameters and Source Parameters input forms, respectively, in the main interface. The locations of the source and receptor in the 3-D display window should change accordingly.							
	4. Save the inputs to "TEST025.bld." Use a text editor such as Notepad to open the input file and check the location parameter values in the file. They should match the input values specified in the interface.							
	5. Add additional sources and receptors to make a total of 3 for each in the interface and see corresponding objects appear in the 3-D display window.							
	6. Repeat Steps 2 and 3.							
Required Data	None.							
Expected Results	The 3-D display window should reflect the location of sources and receptors correctly. The correspondence between the 3-D display window and the receptor and source parameters input form should be maintained.							

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-026
Requirements Tested	26
Test Summary	Test the help functions, including accessing general help, context-specific help, User's Manual, and User's Guide.
Test Objective	Verify that the RESRAD-BUILD provides information to help users develop scenarios and understand results.
Procedure	1. Launch RESRAD-BUILD.
	2. Click Help->User's Manual.
	• A PDF of the User's Manual for RESRAD-BUILD opens.
	3. Return to RESRAD-BUILD and click Help->User's Guide.
	• A PDF of the User's Guide opens.
	4. Return to RESRAD-BUILD and press F2 or click Help->General Help.
	• RESRAD-BUILD Help opens.
	 Return to RESRAD-BUILD, click on an input field (e.g., shielding density), and press F1 or click Help->Context Help.
	• RESRAD-BUILD Help relevant to the selected input field opens.
	6. Repeat Step 5 for a different input field.
	7. Return to RESRAD-BUILD and click Help->About.
	• The RESRAD-BUILD About screen opens.
Required Data	NA

Expected The actions will occur as described in the procedure. **Results**

Project	RESRAD-BUILD						
Test Case ID	RESBLD-TEST-027-1						
Requirements Tested	27						
Test Summary	Verify correct dose coefficients are used for dose calculations, including direct external, air submersion, inhalation, and ingestion coefficients.						
Test Objective	Tests DCFs based on ICRP26/ICRP30 methodology for ICRP38 transformation database.						
Procedure	1. Spot check based on PM scope request.						
	2. Start RESRAD-BUILD code and choose ICRP38 transformation database.						
	3. Select FGR11 as the Internal Dose Library in the code.						
	4. Set cutoff half-life = 0 days.						
	5. Select suggested few radionuclides in the source.						
	6. Run the code.						
	7. Verify by comparing data in the "Dose and Slope Factors.RPT" file and "DCF Individual.LIB" file.						
	8. Select cutoff half-life = 30 days.						
	9. Run the code.						
	10. Verify by comparing data in the "Dose and Slope Factors.RPT" file, and RESRAD- BUILD Manual Table C-7 for external dose coefficients and Table A-3 DCFs for air submersion, inhalation, and ingestion dose coefficients.						
	11. Further verification details are in the "RESRAD-BUILD-DCFs-Data- Verfication.docx" file.						
Required Data	Test-027-1.bld.						
Expected Results	The DCFs for selected radionuclides and their associated progeny radionuclides in the "Dose and Slope Factors.RPT" file matches with the "DCF Individual.LIB" file when the cutoff half-life was 0 days. The DCFs for selected radionuclides and their associated progeny radionuclides in the "Dose and Slope Factors.RPT" file matches the values listed in RESRAD-BUILD Manual Table C-7 for external dose coefficients and Table A-3 DCFs for air submersion, inhalation, and ingestion dose coefficients.						
	"DCF Individual.LIB" file for the cutoff half-life = 0 days when Co-60, Cs-137, Sr-90, and U-238 were selected radionuclides.						

Table 1 Results from "DCF Individual.LIB" file and "Dose and Slope Factors.RPT" file.

Data from	"DCF Individual.	LIB" file						
DCF I	ndividual - Noter	pad						_
The Lun		neip						
FGR 11	FGR 12 FGR	13 Morbidity						
FGR II	FUK 12 FUK	13 Morbidity	Tebalanc	TagastDC	Ev+VolcE	ExtTmmCE	Tabalace	ThreatE
Units	(mpem/y)	(mpem/y)	moom	Ingestoc	(1/vn)	(1/vp)	1	1 Ingestor
UNITES	(m cm/y) /(nCi/g)	(m em/y) /(nCi/m3)	/nCi	/nCi	(1/y) /(nCi/g)	(1/y) /(nCi/m3)	/nCi	/nCi
11-238	1.031E-04	3.980F-07	1.180E-01	2.550E-04	4.990F-11	1.938E-13	2.360E-08	8.660E-11
Th-234	2.410F-02	3.945E-05	3.500E-05	1.370E-05	1.630E-08	2.604E-11	3.070E-11	3.400E-11
Pa-234m	8.967E-02	8.391E-05	-2.00E+00	-2.00E+00	6.870E-08	6.866E-11	-2.00E+00	-2.00E+00
Pa-234	1.155E+01	1.090E-02	8.140E-07	2.160E-06	8.710E-06	8.197E-09	1.460E-12	3.700E-12
U-234	4.017E-04	8.905E-07	1.320E-01	2.830E-04	2.520E-10	5.103E-13	2.780E-08	9.550E-11
Th-230	1.209E-03	2.031E-06	3.260E-01	5.480E-04	8.190E-10	1.308E-12	3.400E-08	1.190E-10
Ra-226	3.176E-02	3.676E-05	8.580E-03	1.320E-03	2.290E-08	2.604E-11	2.820E-08	5.140E-10
Rn-222	2.354E-03	2.229E-06	0.000E+00	0.000E+00	1.740E-09	1.658E-12	0.000E+00	0.000E+00
Po-218	5.642E-05	5.228E-08	0.000E+00	0.000E+00	4.260E-11	3.947E-14	0.000E+00	0.000E+00
At-218	5.847E-03	1.389E-05	0.000E+00	0.000E+00	3.570E-09	8.337E-12	0.000E+00	0.000E+00
Pb-214	1.341E+00	1.377E-03	7.810E-06	6.250E-07	9.820E-07	1.006E-09	4.000E-11	4.850E-13
Bi-214	9.808E+00	8.928E-03	6.590E-06	2.830E-07	7.480E-06	6.831E-09	3.100E-11	2.650E-13
Po-214	5.138E-04	4.762E-07	0.000E+00	0.000E+00	3.860E-10	3.585E-13	0.000E+00	0.000E+00
T1-210	-1.00E+00	-1.00E+00	0.000E+00	0.000E+00	0.000E+00	-1.00E+00	0.000E+00	0.000E+00
Pb-210	2.447E-03	6.582E-06	1.360E-02	5.370E-03	1.410E-09	3.760E-12	1.580E-08	1.180E-09
Bi-210	3.606E-03	3.840E-06	1.960E-04	6.400E-06	2.760E-09	5.278E-12	4.550E-10	1.300E-11
Po-210	5.231E-05	4.855E-08	9.400E-03	1.900E-03	3.950E-11	3.655E-14	1.450E-08	2.250E-09
Cs-137	7.510E-04	9.033E-07	3.190E-05	5.000E-05	5.320E-10	1.600E-12	1.120E-10	3.740E-11
Ba-137m	3.606E+00	3.361E-03	-2.00E+00	-2.00E+00	2.690E-06	2.522E-09	-2.00E+00	-2.00E+00
Sr-90	7.043E-04	8./88E-07	1.300E-03	1.420E-04	4.820E-10	1.635E-12	4.250E-10	6.880E-11
1-90	2.391E-02	2.21/E-05	8.440E-06	1.080E-05	1.910E-08	2.289E-11	8.400E-12	2.6501-11
CO-60	1.0220+01	1.4/16-02	2.1905-04	2.0905-05	1.2405-05	1.1246-08	1.0105-10	2.2306-11

Data from "Dose and Slope Factors.RPT" file.

Individual Radionuclide Dose and Slope Factors

	Externa FGR 1 Interna FGR 1	1 Dose Fact 2 1 Dose Fact 1	ors from ors from		Slope F FGR 1	actors from 3 Morbidity			
Isotope	External	External	Inhalation	Ingestion	External	External	Inhalation	Ingestion	
	Volume	Air			Volume	Air			
	(mrem/y)	(mrem/y)	mrem/pCi	mrem/pCi	risk/y	risk/y	risk	risk	
	/(pCi/g)	/(pCi/m³)			/(pCi/g)	/(pCi/m³)	/pCi	/pCi	
U-238	1.03E-04	3.98E-07	1.18E-01	2.55E-04	4.99E-11	1.94E-13	2.36E-08	8.66E-11	
Th-234	2.41E-02	3.94E-05	3.50E-05	1.37E-05	1.63E-08	2.60E-11	3.07E-11	3.40E-11	
Pa-234m	8.97E-02	8.39E-05	*******	*******	6.87E-08	6.87E-11	*******	*******	
Pa-234	1.16E+01	1.09E-02	8.14E-07	2.16E-06	8.71E-06	8.20E-09	1.46E-12	3.70E-12	
U-234	4.02E-04	8.91E-07	1.32E-01	2.83E-04	2.52E-10	5.10E-13	2.78E-08	9.55E-11	
Th-230	1.21E-03	2.03E-06	3.26E-01	5.48E-04	8.19E-10	1.31E-12	3.40E-08	1.19E-10	
Ra-226	3.18E-02	3.68E-05	8.58E-03	1.32E-03	2.29E-08	2.60E-11	2.82E-08	5.14E-10	
Rn-222	2.35E-03	2.23E-06	0.00E+00	0.00E+00	1.74E-09	1.66E-12	0.00E+00	0.00E+00	
Po-218	5.64E-05	5.23E-08	0.00E+00	0.00E+00	4.26E-11	3.95E-14	0.00E+00	0.00E+00	
At-218	5.85E-03	1.39E-05	0.00E+00	0.00E+00	3.57E-09	8.34E-12	0.00E+00	0.00E+00	
Pb-214	1.34E+00	1.38E-03	7.81E-06	6.25E-07	9.82E-07	1.01E-09	4.00E-11	4.85E-13	
Bi-214	9.81E+00	8.93E-03	6.59E-06	2.83E-07	7.48E-06	6.83E-09	3.10E-11	2.65E-13	
Po-214	5.14E-04	4.76E-07	0.00E+00	0.00E+00	3.86E-10	3.59E-13	0.00E+00	0.00E+00	
T1-210	*******	*******	0.00E+00	0.00E+00	0.00E+00	*******	0.00E+00	0.00E+00	
Pb-210	2.45E-03	6.58E-06	1.36E-02	5.37E-03	1.41E-09	3.76E-12	1.58E-08	1.18E-09	
Bi-210	3.61E-03	3.84E-06	1.96E-04	6.40E-06	2.76E-09	5.28E-12	4.55E-10	1.30E-11	
Po-210	5.23E-05	4.85E-08	9.40E-03	1.90E-03	3.95E-11	3.66E-14	1.45E-08	2.25E-09	
Cs-137	7.51E-04	9.03E-07	3.19E-05	5.00E-05	5.32E-10	1.60E-12	1.12E-10	3.74E-11	
Ba-137m	3.61E+00	3.36E-03	*******	*******	2.69E-06	2.52E-09	*******	*******	
Sr-90	7.04E-04	8.79E-07	1.30E-03	1.42E-04	4.82E-10	1.63E-12	4.25E-10	6.88E-11	
Y-90	2.39E-02	2.22E-05	8.44E-06	1.08E-05	1.91E-08	2.29E-11	8.40E-12	2.65E-11	
Co-60	1.62E+01	1.47E-02	2.19E-04	2.69E-05	1.24E-05	1.12E-08	1.01E-10	2.23E-11	

2. The ratio between the external dose factor for volume sources and the external slope factors for volume sources are used to compute the external risk from all sources types and from deposited material.

3. The other dose and slope factors are used to compute the associated progeny integrated factors in the next table.

3.a. ******* indicates that the specified database file does not contain a value for this factor. A value of 0.0 is used to compute the integrated factors.

RESRAD-BUILD						
RESBLD-TEST-027-2						
27						
Verify correct dose coefficients are used for dose calculations, including direct external, air submersion, inhalation, and ingestion coefficients.						
Tests DCFs based on ICRP60 methodology for ICRP38 transformation database.						
 Spot check based on PM scope request. Start RESRAD-BUILD code and choose ICRP38 transformation database. Select ICRP72 Adult as the Internal Dose Library in the code. Set cutoff half-life = 0 days. Select suggested few radionuclides in the source. Run the code. Verify by comparing data in the "Dose and Slope Factors.RPT" file and "DCF Individual.LIB" file. Select cutoff half-life = 30 days. 						
 9. Run the code. 10. Verify by comparing data in the "Dose and Slope Factors.RPT" file and RESRAD-BUILD Manual Table C-8 for external dose coefficients and Table A-4 DCFs for air submersion, inhalation, and ingestion dose coefficients. 11. Further verification details are in the "RESRAD-BUILD-DCFs-Data-Verfication.docx" file. 						
Test-027-2.bld.						
The DCFs for selected radionuclides and their associated progeny radionuclides in the "Dose and Slope Factors.RPT" file matches with the "DCF Individual.LIB" file when the cutoff half-life was 0 days. The DCFs for selected radionuclides and their associated progeny radionuclides in the "Dose and Slope Factors.RPT" file matches with the values listed in RESRAD-BUILD Manual Table C-8 for external dose coefficients and Table A-4 DCFs for air submersion, inhalation, and ingestion dose coefficients.						

Table 1 below shows the DCFs and SFs from the "Dose and Slope Factors.RPT" file and "DCF Individual.LIB" file for the cutoff half-life = 0 days when Co-58, Pu-239, Ra-226, and Tc-99 were selected radionuclides.

Table 1 Results from "DCF Individual.LIB" file and "Dose and Slope Factors.RPT" file

CRP 72 (A CRP 72 (A	dult) ICRP 0 dult) ICRP 0	50 FGR 13 / 50 FGR 13 /	Morbidity Morbidity					
luclide	ExtVolDC	ExtImmDC	InhalaDC	IngestDC	ExtVolSF	ExtImmSF	InhalaSF	IngestSF
Units	(mrem/y)	(mrem/y)	mrem	mrem	(1/yr)	(1/yr)	1	1
	/(pCi/g)	/(pCi/m3)	/pCi	/pCi	/(pCi/g)	/(pCi/m3)	/pCi	/pCi
u-239	2.635E-04	4.063E-07	4.440E-01	9.250E-04	2.000E-10	2.989E-13	5.510E-08	1.740E-10
1-235	6.597E-01	7.543E-04	3.145E-02	1.739E-04	5.180E-07	5.943E-10	2.500E-08	9.440E-11
h-231	3.214E-02	5.348E-05	1.221E-06	1.258E-06	2.450E-08	3.923E-11	1.520E-12	3.240E-12
a-231	1.762E-01	1.833E-04	5.180E-01	2.627E-03	1.390E-07	1.448E-10	7.620E-08	2.260E-10
c-227	4.485E-04	5.978E-07	2.035E+00	4.070E-03	3.480E-10	4.624E-13	1.490E-07	2.450E-10
h-227	4.803E-01	5.173E-04	3.700E-02	3.256E-05	3.780E-07	4.087E-10	3.510E-08	6.920E-11
a-226	2.915E-02	3.316E-05	3.515E-02	1.036E-03	2.290E-08	2.604E-11	2.820E-08	5.140E-10
r-223	1.813E-01	2.569E-04	3.293E-06	8.880E-06	1.400E-07	1.833E-10	4.030E-11	1.000E-11
a-223	5.532E-01	6.387E-04	3.219E-02	3.700E-04	4.340E-07	5.021E-10	2.920E-08	3.390E-10
n-222	2.186E-03	2.067E-06	0.000E+00	0.000E+00	1.740E-09	1.658E-12	0.000E+00	0.000E+00
n-219	2.859E-01	2.872E-04	0.000E+00	0.000E+00	2.250E-07	2.289E-10	0.000E+00	0.000E+00
-218	5.326E-05	4.916E-08	0.000E+00	0.000E+00	4.260E-11	3.947E-14	0.000E+00	0.000E+00
t-218	4.878E-03	1.134E-05	0.000E+00	0.000E+00	3.570E-09	8.337E-12	0.000E+00	0.000E+00
5-215	9.456E-04	9.096E-07	0.000E+00	0.000E+00	7.480E-10	7.286E-13	0.000E+00	0.000E+00
0-214	1.243E+00	1.273E-03	5.550E-05	5.180E-07	9.820E-07	1.006E-09	4.000E-11	4.850E-13
i-214	9.325E+00	8.465E-03	5.180E-05	4.070E-07	7.480E-06	6.831E-09	3.100E-11	2.650E-13
0-214	4.840E-04	4.449E-07	0.000E+00	0.000E+00	3.860E-10	3.585E-13	0.000E+00	0.000E+00
b-211	2.915E-01	3.024E-04	4.440E-05	6.660E-07	2.290E-07	2.207E-10	4.030E-11	5.810E-13
i-211	2.373E-01	2.382E-04	0.000E+00	0.000E+00	1.880E-07	1.892E-10	0.000E+00	0.000E+00
0-211	4.485E-02	4.157E-05	0.000E+00	0.000E+00	3.580E-08	3.339E-11	0.000E+00	0.000E+00
1-210	1.661E+01	-1.00E+00	0.000E+00	0.000E+00	0.000E+00	-1.00E+00	0.000E+00	0.000E+00
b-210	1.981E-03	5.231E-06	2.072E-02	2.553E-03	1.410E-09	3.760E-12	1.580E-08	1.180E-09
i-210	5.476E-03	3.012E-05	3.441E-04	4.810E-06	2.760E-09	5.278E-12	4.550E-10	1.300E-11
o-210	4.934E-05	4.542E-08	1.591E-02	4.440E-03	3.950E-11	3.655E-14	1.450E-08	2.250E-09
1-207	2.299E-02	5.289E-05	0.000E+00	0.000E+00	1.520E-08	1.740E-11	0.000E+00	0.000E+00
c-99	1.086E-04	3.351E-06	4.810E-05	2.368E-06	8.140E-11	4.344E-13	3.810E-11	4.000E-12
o-58	5.606E+00	5.184E-03	7.770E-06	2.738E-06	4.480E-06	4.180E-09	7.960E-12	4.180E-12

Data from "Dose and Slope Factors.RPT" File

	Indi Externa ICRP Interna	vidual Rad 1 Dose Fact 60 1 Dose Fact	ionuclide Do tors from tors from	ose and Slope	Factors Slope F FGR 1	actors fro 3 Morbidit	= y						
	ICRP	72 (Adult)											
Isotope	External	External	Inhalation	Ingestion	External	External	Inhalation	Ingestion					
	Volume	Air			Volume	Air							
	(mrem/y)	(mrem/y)	<pre>mrem/pCi</pre>	mrem/pCi	risk/y	risk/y	risk	risk					
	/(pCi/g)	/(pCi/m³)			/(pCi/g)	/(pCi/m³)	/pCi	/pCi					
Pu-239	2.63E-04	4.06E-07	4.44E-01	9.25E-04	2.00E-10	2.99E-13	5.51E-08	1.74E-10					
U-235	6.60E-01	7.54E-04	3.14E-02	1.74E-04	5.18E-07	5.94E-10	2.50E-08	9.44E-11					
Th-231	3.21E-02	5.35E-05	1.22E-06	1.26E-06	2.45E-08	3.92E-11	1.52E-12	3.24E-12					
Pa-231	1.76E-01	1.83E-04	5.18E-01	2.63E-03	1.39E-07	1.45E-10	7.62E-08	2.26E-10					
Ac-227	4.49E-04	5.98E-07	2.04E+00	4.07E-03	3.48E-10	4.62E-13	1.49E-07	2.45E-10					
Th-227	4.80E-01	5.17E-04	3.70E-02	3.26E-05	3.78E-07	4.09E-10	3.51E-08	6.92E-11					
Ra-226	2.91E-02	3.32E-05	3.51E-02	1.04E-03	2.29E-08	2.60E-11	2.82E-08	5.14E-10					
Fr-223	1.81E-01	2.57E-04	3.29E-06	8.88E-06	1.40E-07	1.83E-10	4.03E-11	1.00E-11					
Ra-223	5.53E-01	6.39E-04	3.22E-02	3.70E-04	4.34E-07	5.02E-10	2.92E-08	3.39E-10					
Rn-222	2.19E-03	2.07E-06	0.00E+00	0.00E+00	1.74E-09	1.66E-12	0.00E+00	0.00E+00					
Rn-219	2.86E-01	2.87E-04	0.00E+00	0.00E+00	2.25E-07	2.29E-10	0.00E+00	0.00E+00					
Po-218	5.33E-05	4.92E-08	0.00E+00	0.00E+00	4.26E-11	3.95E-14	0.00E+00	0.00E+00					
At-218	4.88E-03	1.13E-05	0.00E+00	0.00E+00	3.57E-09	8.34E-12	0.00E+00	0.00E+00					
Po-215	9.46E-04	9.10E-07	0.00E+00	0.00E+00	7.48E-10	7.29E-13	0.00E+00	0.00E+00					
Pb-214	1.24E+00	1.27E-03	5.55E-05	5.18E-07	9.82E-07	1.01E-09	4.00E-11	4.85E-13					
Bi-214	9.32E+00	8.47E-03	5.18E-05	4.07E-07	7.48E-06	6.83E-09	3.10E-11	2.65E-13					
Po-214	4.84E-04	4.45E-07	0.00E+00	0.00E+00	3.86E-10	3.59E-13	0.00E+00	0.00E+00					
Pb-211	2.92E-01	3.02E-04	4.44E-05	6.66E-07	2.29E-07	2.21E-10	4.03E-11	5.81E-13					
Bi-211	2.37E-01	2.38E-04	0.00E+00	0.00E+00	1.88E-07	1.89E-10	0.00E+00	0.00E+00					
Po-211	4.48E-02	4.16E-05	0.00E+00	0.00E+00	3.58E-08	3.34E-11	0.00E+00	0.00E+00					
T1-210	1.66E+01	*******	0.00E+00	0.00E+00	0.00E+00	*******	0.00E+00	0.00E+00					
Pb-210	1.98E-03	5.23E-06	2.07E-02	2.55E-03	1.41E-09	3.76E-12	1.58E-08	1.18E-09					
Bi-210	5.48E-03	3.01E-05	3.44E-04	4.81E-06	2.76E-09	5.28E-12	4.55E-10	1.30E-11					
Po-210	4.93E-05	4.54E-08	1.59E-02	4.44E-03	3.95E-11	3.66E-14	1.45E-08	2.25E-09					
T1-207	2.30E-02	5.29E-05	0.00E+00	0.00E+00	1.52E-08	1.74E-11	0.00E+00	0.00E+00					
Tc-99	1.09E-04	3.35E-06	4.81E-05	2.37E-06	8.14E-11	4.34E-13	3.81E-11	4.00E-12					
Co-58	5.61E+00	5.18E-03	7.77E-06	2.74E-06	4.48E-06	4.18E-09	7.96E-12	4.18E-12					
1. The e	xternal dos	e factors	for volume :	sources are us	ed to compute	the direct	external do	ose from volum	sources, fro	m area source	es and from d	eposited ra	dionuclic
2. The r	atio betwee	n the exter	rnal dose fi	actor for volu	me sources and	the exter	nai siope fa	actors for vol	ime sources ar	e used to com	pute the ext	erai risk f	rom all :

The external dose factors for volume sources are used to compute the direct external dose from volume sources, from area sources and from deposited radionuclides.
 The ratio between the external actor for volume sources and the external slope factors for volume sources are used to compute the external slope factors for volume sources and the external slope factors for volume sources and the external dose from deposited material.
 The other dose and slope factors are used to compute the associated progeny integrated factors in the next table.
 The external dose factors are used to compute the dose not contain a value for this factor. A value of 0.0 is used to compute the integrated factors.

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-027-3
Requirements Tested	27
Test Summary	Verify correct dose coefficients are used for dose calculations, including direct external, air submersion, inhalation, and ingestion coefficients.
Test Objective	Tests DCFs based on ICRP60 methodology for ICRP107 transformation database
Procedure	1. Spot check based on PM scope request.
	2. Start RESRAD-BUILD code and choose ICRP107 transformation database.
	3. Select DCFPAK3.02 Adult as the Internal Dose Library in the code.
	4. Set cutoff half-life = 0 days.
	5. Select suggested few radionuclides in the source.
	6. Run the code.
	7. Verify by comparing data in the "Dose and Slope Factors.RPT" file and "DCF Individual.LIB" file.
	8. Select cutoff half-life = 30 days.
	9. Run the code.
	10. Verify by comparing data in the "Dose and Slope Factors.RPT" file and RESRAD- BUILD Manual Table C-9 for external dose coefficients and Table A-5 DCFs for air submersion, inhalation, and ingestion dose coefficients.
	11. Further verification details are in the "RESRAD-BUILD-DCFs-Data- Verfication.docx" file.
Required Data	Test-027-3.bld.
Expected Results	The DCFs for selected radionuclides and their associated progeny radionuclides in the "Dose and Slope Factors.RPT" file matches the "DCF Individual.LIB" file when the cutoff half-life was 0 days. The DCFs for selected radionuclides and their associated progeny radionuclides in the "Dose and Slope Factors.RPT" file matches the values listed in RESRAD-BUILD Manual Table C-9 for external dose coefficients and Table A-5 DCFs for air submersion, inhalation, and ingestion dose coefficients.

Table 1 below shows the DCFs and SFs from the "Dose and Slope Factors.RPT" file and "DCF Individual.LIB" file for the cutoff half-life = 0 days when Am-241, C-14, Cf-252, and Th-232 were selected radionuclides.

Table 1 Results from "DCF Individual.LIB" File and "Dose and Slope Factors.RPT" File

Data from "DCF Individual.LIB" file -

DCF In	ndividual - Note	pad						
File Edit	Format View	Help						
DCFPAK3.02	(Adult) DC	FPAK3.02	DCFPAK3.02 Morb	idity				
DCFPAK3.02	(Adult) DC	FPAK3.02	DCFPAK3.02 Morb	idity				
Nuclide	ExtVolDC	ExtImmDC	InhalaDC	IngestDC	ExtVolSF	ExtImmSF	InhalaSF	IngestSF
Units	(mrem/y)	(mrem/y)	mrem	mrem	(1/yr)	(1/yr)	1	1
	/(pCi/g)	/(pCi/m3)	/pCi	/pCi	/(pCi/g)	/(pCi/m3)	/pCi	/pCi
Cf-252	2.839E+00	2.604E-03	1.360E-01	3.349E-04	2.277E-06	2.090E-09	4.440E-08	1.824E-10
Cm-248	8.163E+00	7.485E-03	1.339E+00	2.868E-03	6.538E-06	6.025E-09	1.439E-07	5.956E-10
Pu-244	1.231E-01	1.133E-04	4.132E-01	8.806E-04	9.865E-08	9.096E-11	5.216E-08	1.879E-10
Am-241	3.717E-02	7.846E-05	3.566E-01	7.548E-04	2.767E-08	5.803E-11	3.774E-08	1.336E-10
U-240	1.494E-02	2.417E-05	2.067E-06	4.033E-06	1.155E-08	1.646E-11	3.089E-12	1.014E-11
Np-240m	1.834E+00	1.740E-03	-2.00E+00	-2.00E+00	1.459E-06	1.366E-09	-2.00E+00	-2.00E+00
Np-240	5.847E+00	5.523E-03	2.702E-07	2.683E-07	4.670E-06	4.425E-09	1.698E-13	2.723E-13
Pu-240	1.130E-04	3.842E-07	4.410E-01	9.287E-04	7.122E-11	2.522E-13	5.549E-08	1.743E-10
Np-237	6.706E-02	1.004E-04	1.839E-01	3.959E-04	5.172E-08	7.671E-11	2.867E-08	8.287E-11
U-236	1.758E-04	4.414E-07	3.211E-02	1.724E-04	1.238E-10	3.059E-13	2.568E-08	8.990E-11
Pa-233	1.018E+00	1.082E-03	1.532E-05	3.574E-06	8.032E-07	8.535E-10	1.528E-11	8.953E-12
U-233	9.191E-04	1.238E-06	3.549E-02	1.894E-04	7.110E-10	9.376E-13	2.830E-08	9.693E-11
Th-232	4.782E-04	9.224E-07	4.070E-01	8.547E-04	3.584E-10	6.807E-13	4.329E-08	1.332E-10
Th-229	2.877E-01	3.877E-04	8.831E-01	1.846E-03	2.242E-07	3.001E-10	1.746E-07	2.904E-10
Ra-228	6.575E-05	3.374E-07	5.938E-02	2.575E-03	3.432E-11	2.148E-13	4.366E-08	1.424E-09
Ac-228	5.044E+00	4.682E-03	5.416E-05	1.399E-06	4.040E-06	3.760E-09	4.920E-11	2.734E-12
Th-228	7.248E-03	9.633E-06	1.468E-01	2.664E-04	5.639E-09	7.449E-12	1.324E-07	1.480E-10
Ra-225	8.910E-03	2.884E-05	2.869E-02	3.685E-04	6.106E-09	1.845E-11	2.616E-08	1.535E-10
Ac-225	5.286E-02	6.609E-05	3.137E-02	1.428E-04	4.121E-08	5.149E-11	2.856E-08	2.716E-10
Ra-224	4.950E-02	5.266E-05	1.242E-02	2.390E-04	3.911E-08	4.168E-11	1.132E-08	2.383E-10
Fr-221	1.332E-01	1.460E-04	-2.00E+00	-2.00E+00	1.048E-07	1.152E-10	-2.00E+00	-2.00E+00
Rn-220	3.474E-03	3.281E-06	-2.00E+00	-2.00E+00	2.767E-09	2.627E-12	-2.00E+00	-2.00E+00
At-217	1.186E-03	1.238E-06	-2.00E+00	-2.00E+00	9.363E-10	9.761E-13	-2.00E+00	-2.00E+00
Po-216	8.873E-05	8.173E-08	-2.00E+00	-2.00E+00	7.098E-11	6.585E-14	-2.00E+00	-2.00E+00
Bi-213	6.874E-01	6.936E-04	1.183E-04	7.326E-07	5.429E-07	5.324E-10	7.399E-11	7.177E-13
Po-213	2.167E-04	1.997E-07	-2.00E+00	-2.00E+00	1.728E-10	1.611E-13	-2.00E+00	-2.00E+00
Pb-212	6.314E-01	7.134E-04	7.033E-04	2.220E-05	4.962E-07	5.570E-10	6.400E-10	3.566E-11
Bi-212	6.258E-01	6.037E-04	1.229E-04	9.657E-07	4.962E-07	4.612E-10	8.435E-11	1.010E-12
Po-212	0.000E+00	0.000E+00	-2.00E+00	-2.00E+00	0.000E+00	0.000E+00	-2.00E+00	-2.00E+00
T1-209	1.287E+01	1.191E-02	-2.00E+00	-2.00E+00	1.032E-05	9.575E-09	-2.00E+00	-2.00E+00
Pb-209	7.528E-04	1.168E-05	2.255E-07	2.098E-07	5.371E-10	1.705E-12	2.079E-13	3.485E-13
T1-208	2.167E+01	1.962E-02	-2.00E+00	-2.00E+00	1.751E-05	1.588E-08	-2.00E+00	-2.00E+00
C-14	1.106E-05	3.036E-07	2.120E-05	2.150E-06	7.857E-12	4.285E-14	1.694E-11	1.998E-12

Note: -2 and -1 ir	ndicate DCFs in the	source are not	available.
--------------------	---------------------	----------------	------------

Data from "Dose and Slope Factors.RPT" File

	Externa DCFPA Interna DCFPA	vidual Radio L Dose Facto (3.02 L Dose Facto (3.02 (Adul)	onuclide Do ors from ors from t)	ose and Slope	Factors Slope F DCFPA	actors fro K3.02 Morb	m idity		
Isotope	External	External :	Inhalation	Ingestion	External	External	Inhalation	Ingestion	
	(mrem/y)	(mrem/y)	mrem/pCi	mrem/pCi	risk/v	risk/v	risk	risk	
	/(pCi/g)	/(pCi/m3)			/(pCi/g)	/(pCi/m3)	/pCi	/pCi	
Cf-252	2.84E+00	2.60E-03	1.36E-01	3.35E-04	2.28E-06	2.09E-09	4.44E-08	1.82E-10	
Cm-248	8.16E+00	7.48E-03	1.34E+00	2.87E-03	6.54E-06	6.03E-09	1.44E-07	5.96E-10	
Pu-244	1.23E-01	1.13E-04	4.13E-01	8.81E-04	9.86E-08	9.10E-11	5.22E-08	1.88E-10	
Am-241	3.72E-02	7.85E-05	3.57E-01	7.55E-04	2.77E-08	5.80E-11	3.77E-08	1.34E-10	
U-240	1.49E-02	2.42E-05	2.07E-06	4.03E-06	1.16E-08	1.65E-11	3.09E-12	1.01E-11	
Np-240m	1.83E+00	1.74E-03	*******	*******	1.46E-06	1.37E-09	*******	*******	
Np-240	5.85E+00	5.52E-03	2.70E-07	2.68E-07	4.67E-06	4.42E-09	1.70E-13	2.72E-13	
Pu-240	1.13E-04	3.84E-07	4.41E-01	9.29E-04	7.12E-11	2.52E-13	5.55E-08	1.74E-10	
Np-237	6.71E-02	1.00E-04	1.84E-01	3.96E-04	5.17E-08	7.67E-11	2.87E-08	8.29E-11	
U-236	1.76E-04	4.41E-07	3.21E-02	1.72E-04	1.24E-10	3.06E-13	2.57E-08	8.99E-11	
Pa-233	1.02E+00	1.08E-03	1.53E-05	3.57E-06	8.03E-07	8.53E-10	1.53E-11	8.95E-12	
U-233	9.19E-04	1.24E-06	3.55E-02	1.89E-04	7.11E-10	9.38E-13	2.83E-08	9.69E-11	
Th-232	4.78E-04	9.22E-07	4.07E-01	8.55E-04	3.58E-10	6.81E-13	4.33E-08	1.33E-10	
Th-229	2.88E-01	3.88E-04	8.83E-01	1.85E-03	2.24E-07	3.00E-10	1.75E-07	2.90E-10	
Ra-228	6.57E-05	3.37E-07	5.94E-02	2.58E-03	3.43E-11	2.15E-13	4.37E-08	1.42E-09	
Ac-228	5.04E+00	4.68E-03	5.42E-05	1.40E-06	4.04E-06	3.76E-09	4.92E-11	2.73E-12	
Th-228	7.25E-03	9.63E-06	1.47E-01	2.66E-04	5.64E-09	7.45E-12	1.32E-07	1.48E-10	
Ra-225	8.91E-03	2.88E-05	2.87E-02	3.69E-04	6.11E-09	1.85E-11	2.62E-08	1.54E-10	
Ac-225	5.29E-02	6.61E-05	3.14E-02	1.43E-04	4.12E-08	5.15E-11	2.86E-08	2.72E-10	
Ra-224	4.95E-02	5.27E-05	1.24E-02	2.39E-04	3.91E-08	4.17E-11	1.13E-08	2.38E-10	
Fr-221	1.33E-01	1.46E-04	*******	*******	1.05E-07	1.15E-10	*******	*******	
Rn-220	3.47E-03	3.28E-06	•••••	*******	2.77E-09	2.63E-12	*******	•••••	
At-217	1.19E-03	1.24E-06	*******	*******	9.36E-10	9.76E-13	*******	*******	
Po-216	8.87E-05	8.17E-08	*******	*******	7.10E-11	6.59E-14	*******	*******	
Bi-213	6.87E-01	6.94E-04	1.18E-04	7.33E-07	5.43E-07	5.32E-10	7.40E-11	7.18E-13	
Po-213	2.17E-04	2.00E-07	*******	*******	1.73E-10	1.61E-13	*******	*******	
Pb-212	6.31E-01	7.13E-04	7.03E-04	2.22E-05	4.96E-07	5.57E-10	6.40E-10	3.57E-11	
Bi-212	6.26E-01	6.04E-04	1.23E-04	9.66E-07	4.96E-07	4.61E-10	8.43E-11	1.01E-12	
Po-212	0.00E+00	0.00E+00	*******	*******	0.00E+00	0.00E+00	*******	*******	
T1-209	1.29E+01	1.19E-02	*******	*******	1.03E-05	9.58E-09	*******	*******	
Pb-209	7.53E-04	1.17E-05	2.26E-07	2.10E-07	5.37E-10	1.70E-12	2.08E-13	3.49E-13	
T1-208	2.17E+01	1.96E-02	*******	*******	1.75E-05	1.59E-08	*******	*******	
	1 115-05	3.04E-07	2.12E-05	2.15E-06	7.86E-12	4.29E-14	1.69E-11	2.00E-12	

Project	RESRAD-BUILD									
Test Case ID	RESBLD-TEST-028									
Requirements Tested	28									
Test Summary	Verify risk coefficients in databases are the same as in referenced sources.									
	By choosing FGR13 for ICRP38 nuclides or DCFPAK3.02 for ICRP107 nuclides, the default slope factor values in these DCF libraries are used in the cancer risk calculations for the selected nuclides and their progenies by the code. The slope factor values the code retrieves from the DCF Editor are listed in the dose and risk factors report, which is opened after the calculations are completed. These listed slope factors are compared with the values in the source document to see whether they agree with each other, to confirm the RESRAD-BUILD code meets the code requirement No. 28.									
Test Objective	Test and verify the default slope factors in the FGR13 and DCFPAK3.02 libraries match the values in the source documents and are used in risk calculations by the code.									
Procedure	form several RESRAD-BUILD runs and open the dose and risk factors report generated the code. Compare the slope factor values listed in the report for each relevant nuclide in current run with those listed in the source document.									
	Steps:									
	1. Open the RESRAD-Build code.									
	2. Choose ICRP38 as the transformation database. Choose FGR13 morbidity factors to be used in cancer risk calculations.									
	3. Randomly select a few nuclides to be included in the source.									
	4. Open the DCF Editor to view the FGR13 morbidity slope factors of the relevant nuclides in the current run. Write down the default values for the external volume, external air, ingestion (of plant/meat), and inhalation pathways for each relevant nuclide.									
	5. Launch RESRAD-BUILD calculations.									
	6. In the directory where the code was installed, open the file "dose and slope factors.rpt." There are two sets of dose and slope factors in the report; the first set has values for individual nuclides that are taken from the database of the DCF Editor. Write down the external volume, external air, ingestion, and inhalation slope factor values for comparison.									
	7. Compare the written-down slope factor values in Steps 4 and 6 with those in the source FGR13 report.									

	8. Note: The slope factors listed under "total" and age "0-110" in the FGR13 report should be used for this comparison. Choose "soil layer" and "submersion" factors for comparison with the "external volume" and "external air"/"air submersion" factors in the DCF Editor and in the "dose and slope factors.rpt." For ingestion slope factors, the values listed under "dietary" in the FG13 report should be compared with the "ingestion plant/meat"/ "ingestion" factors in the DCF Editor and the "dose and slope factors.rpt." For inhalation slope factors, the maximum among different absorption classes (F, M, S) and different forms (solid, vapor, or gas) should be compared with the maximum "inhalation" factor in the DCF Editor and the "inhalation" factor in the "dose and slope factors.rpt."
	Choose "FGR13 mortality", then "DCFPAK 3.02 morbidity" and "DCFPAK3.02 mortality" with ICRP107 transformation data; repeat Steps 3–7.
Expected Results	The slope factors listed in the DCF Editor, "dose and slope factors.rpt" and the source document should agree.
	Note: In the source document, the external slope factors listed under "soil layer" have a unit of (risk/s per Bq/g) so they need to be multiplied by $3600 \times 24 \times 365 \times 1000$ to get values for (risk/yr per Bq/kg) for comparison. The external slope factors listed under "submersion" have a unit of (risk/s per Bq/m ³) so they need to be multiplied by $3600 \times 24 \times 365$ to get values for (risk/yr per Bq/m ³) for comparison.
Required Data	None.

TEST CASE 030-1

Project	RESRAD-BUILD								
Test Case ID	RESBLD-TEST-030-1								
Requirements Tested	30								
Test Summary	Check fitted parameters used with FGR12, FGR13, and DCFPAK 3.02 dose coefficients in external exposure modeling.								
Test Objective	Test parameters used in external exposure model.								
Procedure	1. Spot check based on PM scope request.								
	2. Start RESRAD-BUILD code and choose ICRP38 transformation database.								
	3. Select FGR11 as the Internal Dose Library in the code.								
	4. Set cutoff half-life = 0 days.								
	5. Select suggested few radionuclides in the source.								
	6. Run the code.								
	7. Verify by comparing data in DCF Editor with "coeff_bd.LIB" text files in the code's main directory.								
	8. Select cutoff half-life = 30 days.								
	9. Run the code.								
	10. Verify by comparing data for selected radionuclide in RESRAD-BUILD Manual Tables C.1 and C.4 with ""coeff_bd.LIB" files in the code's main directory for 30-day cutoff half-life radionuclides.								
	11. Further verification details are in the "RESRAD-BUILD-External-Model-Data- Verfication.docx" file.								
Required Data	NA								
Expected Results	The data in DCF editor for fitted parameters matches the data in the "coeff_bd.LIB" file when the cutoff half-life = 0 days. Table 1 shows the comparison for Co-60.								
	Make sure the "coeff_bd.LIB" file for fitting parameters for 30-day cutoff half-life radionuclides matches the values listed in RESRAD-BUILD Tables C.1 and C.4.								

۵	External Ground DCF A	Adjustment Fact	ors From Infinite Thicknes	ss and Infinite Lat	teral Extent				_		×
	Nuclide External DCF	Co-60 1.622E+1	(mrem/yr)/(pCi/g)	Sou	rce <mark>FG</mark>	R 12 Volur	ne				
	Depth and Cover Fit	ted Parameters –		-Area and Shape	Fitted Param	eters					
	СF_A 0.0 СF_B 0.9 СF_KA 1.2 СF_KB 0.0	176 124 188 cm² 178 cm²	`2/g `2/g	Npt EPT(1) EPT(2) EPT(3) EPT(4) FPT(1) FPT(2) FPT(3) FPT(4)	2 1.25286 0.0995272 0 0 1.9989 1.68329E -1 0 0	MeV MeV MeV MeV					
	<-Back										
File Nuclid Co-60	beff_bd - Notepad Edit Format View Help e Volume_DCF CF_A mrem.g/pCL/y 1.622E+01 0.076	CF_B 0.924	CF_KA CF_K8 cm2/g cm2/g 1.280E+00 7.800E-02	NPT EPT(1) (MeV) 2 1.25286E+00	EPT(2) (MeV) 9.85272E-02	EPT(3) (MeV) 0.00000E+00	EPT(4) (NeV) 0.00000E+00	FPT(1) 1.99890E+00	FPT(2) 1.68329E-03	FPT(3) 0.00000E+00	FPT(4) 0.00000E+00

Table 1 Comparison for Co-60

TEST CASE 030-2

Project	RESRAD-BUILD								
Test Case ID	RESBLD-TEST-030-2								
Requirements Tested	30								
Test Summary	Check fitted parameters used with FGR12, FGR13, and DCFPAK 3.02 dose coefficients in external exposure modeling.								
Test Objective	Test parameters used in external exposure model.								
Procedure	 Spot check based on PM scope request. Start RESRAD-BUILD code and choose ICRP38 transformation database. Select ICRP 72 (Adult) as the Internal Dose Library in the code. Set cutoff half-life = 0 days. Select suggested few radionuclides in the source. Run the code. Verify by comparing data in the DCE Editor with the "coeff hd LIB" file in the 								
	 Verify by comparing data in the DCF Earlor with the 'coeff_od.Eff intended code's main directory. Select cutoff half-life = 30 days. Run the code. Verify by comparing data for selected radionuclides in RESRAD-BUILD Manual Tables C.2 and C.4 with the "coeff_bd.LIB" file in the code's main directory for 30-day cutoff half-life radionuclides. Further verification details are in the "RESRAD-BUILD-External-Model-Data-Verfication.docx" file. 								
Required Data	NA								
Expected Results	The data in the DCF Editor for fitted parameters matches with the data in the "coeff_bd.LIB" file when the cutoff half-life = 0 days.								
	Make sure the "coeff_bd.LIB" file for the fitting parameters for 30-day cutoff half-life radionuclides matches the values listed in RESRAD-BUILD Tables C.2 and C.4. Table 1 compares the values for Cs-137 in the "coeff_bd.LIB" file with values in Table C.2.								
	Table 1 Comparison for Cs-137								

Coeff_t	bd - Notepad													
File Edit	Format View	Help												
Nuclide	Volume_DCF mcem.g/nCi/v	CF_A	CF_B	CF_KA cm2/g	CF_KB cm2/g	NPT	EPT(1) (NeV)	EPT(2) (NeV)	EPT(3) (MeV)	EPT(4) (MeV)	FPT(1)	FPT(2)	FPT(3)	FPT(4)
Cs-137	8.372E-04	0.700	0.300	1.625E-01	1.356E+01	2	4.24638E-01	1.73435E-01	0.00000E+00	0.00000E+00	4.02000E-04	2.86600E-03	0.00000E+00	0.00000E+00
Ba-137m	3.383E+00	0.916	0.084	9.375E-02	1.338E+00	2	6.61645E-01	3.29194E-02	0.00000E+00	0.00000E+00	8.97759E-01	7.49421E-02	0.00000E+00	0.00000E+00

 TABLE-C-2··Fitted·Parameters·A, ·B, ·K_A· and ·K_B for·at·least·30·Day·

 Cutoff·Half-life·Radionuclides·and·Their·Associated·Progeny·

 Determined·with·the·Dose·Coefficients·from·FGR-13x

		Fitted · Parameters ^a ¤									
Radionuclide¤	A¤	B¤	$K_A \cdot (cm^2/g)$ ¢	<i>K</i> _₿ ·(cm²/g)¤							
Ba-137m¤	9.16E-01¤	8.40E-02¤	9.38E-02¤	1.34E+00¤							
Cs-137¤	7.00E-01¤	3.00E-01¤	1.63E-01¤	1.36E+01#							

TEST CASE 030-3

Project	RESRAD-BUILD											
Test Case ID	RESBLD-TEST-030-3											
Requirements Tested	30											
Test Summary	Check fitted parameters used with FGR12, FGR13, and DCFPAK 3.02 dose coefficients in external exposure modeling.											
Test Objective	Test parameters used in external exposure model.											
Procedure	1. Spot check based on PM scope request.											
	2. Start RESRAD-BUILD code and choose ICRP107 transformation database.											
	3. Select DCFPAK3.02 (Adult) as the Internal Dose Library in the code.											
	4. Set cutoff half-life = 0 days.											
	5. Select suggested few radionuclides in the source.											
	6. Run the code.											
	7. Verify by comparing data in the DCF Editor with the "coeff_bd.LIB" file in the code's main directory.											
	8. Select cutoff half-life = 30 days.											
	9. Run the code.											
	10. Verify by comparing data for selected radionuclides in RESRAD-BUILD Manual Tables C.3 and C.5 with the "coeff_bd.LIB" file in the code's main directory for 30-day cutoff half-life radionuclides.											
	11. Further verification details are in the "RESRAD-BUILD-External-Model-Data- Verfication.docx" file.											
Required Data	NA											
Expected Results	The data in DCF editor for fitted parameters matches with the data in the "coeff_bd.LIB" file when the cutoff half-life = 0 days.											
	Make sure the "coeff_bd.LIB" file for the fitting parameters for 30-day cutoff half-life radionuclides matches the values listed in RESRAD-BUILD User's Manual Tables C.2 and C.4. Table 1 compares the values for Ac-227 in the "coeff_bd.LIB" file with values in Table C.3.											
	Table 1 Comparison for Ac-227											
	Coeff_bd - Notepad File Edit Format View Help											
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
	Fitted Parameters¤				ŝ							
---------------	--------------------	-----------	-------------	-------------	---							
Radionuclide¤	A¤	B¤	KA·(cm2/g)¤	KB·(cm2/g)¤	3							
Ac-227¤	1.65E-01¤	8.35E-01¤	5.57E+00¤	1.66E-01¤	ğ							
At-219¤	0.00E+00¤	1.00E+00¤	0.00E+00¤	0.00E+00¤	3							
Bi-211¤	8.30E-02¤	9.17E-01¤	1.38E+00¤	1.10E-01¤	}							
Bi-215¤	9.00E-02¤	9.10E-01¤	1.92E+00¤	9.75E-02¤	3							
Fr-223¤	1.38E-01¤	8.62E-01¤	2.90E+00¤	1.33E-01¤	3							
Pb-211¤	8.80E-02¤	9.12E-01¤	2.93E+00¤	9.40E-02¤	3							
Po-211¤	1.13E-01¤	8.87E-01¤	1.01E+00¤	8.51E-02¤	3							
Po-215¤	8.60E-02¤	9.14E-01¤	1.31E+00¤	1.03E-01¤	3							
Ra-223¤	9.20E-02¤	9.08E-01¤	1.49E+00¤	1.31E-01¤	}							
Rn-219¤	7.70E-02¤	9.23E-01¤	1.46E+00¤	1.13E-01¤	3							
Th-227¤	7.60E-02¤	9.24E-01¤	1.61E+00¤	1.25E-01¤	3							
Tl-207¤	2.62E-01¤	7.38E-01¤	1.02E+01¤	9.64E-02¤	3							

 $TABLE \cdot C-3 \cdot Fitted \cdot Parameters \cdot A, \cdot B, \cdot KA, \cdot and \cdot KB \cdot for \cdot at \cdot least \cdot 30 \cdot Day \cdot Cutoff \cdot Half-life \cdot Radionuclides \cdot and \cdot Their \cdot Associated \cdot Progeny \cdot Determined \cdot with \cdot the \cdot Dose \cdot Coefficients \cdot from \cdot DCFPAK3.02^{total}$

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-031
Requirements Tested	31
Test Summary	Check uncertainty analysis defaults for eligible input parameters.
Test Objective	Test uncertainty defaults.
Procedure	• Extract the uncertainty defaults from the installed mc_bld.mdb file as shown below.

• Compare this file with the file "BUILD Uncertainty Defaults.csv" in the BOX test folder.

🗄 5 d 🖞 🖡 🛊	mc bld : Database- C:\RESRAD Family\BUILD\4.0.5.1 beta\mc bld.mdb (Access 2000 file forr	nat) - Access
File Home Create External D	ata Database Tools 🗘 Tell me what you want to do	
Saved Linked Table Excel Access OC Imports Manager Import & Link	Text File Saved More -	
Tables	Export - Excel Spreadsheet Select the destination for the data you want to export	? ×
	Specify the destination file name and format. Elle name: CrUsers/lepoire'Documents/Monte_Carlo_Defaults.sts	Browse
	File formaţ: Excel Workbook (*.xlsx)	
	Specify export options. Export data <u>with formatting and layout.</u> Select this option to preserve most formatting and layout information when exporting a table, quere	y, form, or report.

Required Data NA

ExpectedThe two files should be the same (as verified in "BUILD Uncertainty Defaults.csv").**Results**

Project	RESRAD-BUILD
Test Case ID	RESBLD-TEST-032
Requirements Tested	32
Test Summary	Verify running time with the default case is under 30 seconds.
Test Objective	Ensure that code runs default case in under 30 seconds.
Procedure	1. Launch RESRAD-BUILD.
	2. Click File->New to generate the default case with Co-60 contamination.
	3. Click File->Run to execute the calculations.
	4. Verify that RESRAD-BUILD finishes the calculation before the Calculation Time on the Doing Calculations window (shown below) reaches 30 seconds.
	Run
	Doing Calculations

Calculation Time 0	Seconds	Cancel
--------------------	---------	--------

Required Data NA

Expected
ResultsThe Doing Calculations window disappears before the Calculation Time reaches 30, and
"RESRADB.RPT" displays.

Project	RESRAD-BUILD			
Test Case ID	RESBLD-TEST-033			
Requirements Tested	33			
Test Summary	Test validation of user's email for download.			
Test Objective	Tests validation of user's email for download.			
Procedure	1. Submit the Download form on the RESRAD website (https://resrad.evs.anl.gov/download/).			
	2. Verify receipt of email for access to download.			
	3. Verify email link allows access.			
	4. Verify download is successful.			
Required Data	NA			
Expected Results	The RESRAD-BUILD installer is downloaded successfully.			

Project	RESRAD-BUILD		
Test Case ID	RESBLD-TEST-034		
Requirements Tested	34		
Test Summary	Test the setting and function of calculating instantaneous external dose for IND nuclides.		
	This test involves retrieving the 10 template files as input to the RESRAD-BUILD code, then verifying that all IND radionuclides are included in the area source, the special settings to calculate instantaneous external dose rates are implemented, the input parameter values can be revised and saved to a new input file, and dose calculations are completed without any issues.		
Test Objective	Test and verify the code has a special setup to calculate instantaneous external dose rates for the scenarios in the RESRAD-IND code.		
Procedure	Copy the file "ind96dcf.key" that contains the special key needed to set up the RESRAD- BUILD code for IND analysis to the directory where the RESRAD-BUILD code was installed.		
	Test the RESRAD-BUILD code with the following procedure:		
	1. Check to see the menu option INitial external Dose rate is available under View.		
	2. Retrieve the first template input file.		
	3. Check the following settings are in place:		
	a. Only the evaluation time of 0 year can be specified.		
	b. Exposure duration = 1 year; indoor time fraction = 1 .		
	c. Cut-off half-life = 0 day.		
	d. There are 96 initially existing nuclides in each radiation source.		
	e. All sources are area sources.		
	4. Without making any changes, launch calculations (with the File\Run menu option or the Perform Calculations tool button). Verify that calculations are completed without any issue and the template file is used for the calculations (check the header section of the summary report). Record the direct external dose at t =0 for each parent nuclide.		
	5. In subsequent runs, keep a couple of radionuclides, keep one source and make sure the source concentration is 1, change the exposure duration to 365/2 (then to 365/10, 365/50, 365/250, 365/1250, and 365/6250 day), save the inputs to a different file, and then launch calculations. Record the direct external dose at t=0 for each parent nuclide after each run is completed from "Dose and Risk Components.rpt."		
	6. Normalize the calculated direct external dose in Step 5 to get annual dose, by multiplying with a factor of 2, 10, 50, 250, 1250, and 6250, respectively.		

	7. Retrieve the template input file with an exposure duration of 365 days. Launch calculations by selecting the "Initial external dose rate" option under the View menu. Confirm two messages appear that inform: (i) File will be saved with extension "iie", and (ii) Instantaneous exposure from source based on unit concentration for selected radionuclides will be calculated.
	8. View the report brought up after calculations are completed. Confirm that only radiation dose for the direct external pathway is calculated. Dose results for other pathways are 0s.
	9. Compare the direct external dose with the normalized annual doses for selected radionuclides in Step 6. The annual doses would display a trend of getting closer to the direct external dose (obtained with the input file with the "iie" extension).
	10. Repeat Steps 3–9 with a different template file.z.
Required Data	The special key file named "ind96dcf.key" for enabling this feature and the 10 template input files, including (1) "Bridge.tem," (2) "Monument.tem," (3) "RailCar.tem," (4) "RuralHouse.tem," (5) "Store.tem," (6) "Street.tem," (7) "SubHouse.tem," (8) "substation.tem," (9) "UrbanApt.tem," and (10) "Warehouse.tem."
Expected Results	The code performs as described in the procedure.

Project	RESRAD-BUILD		
Test Case ID	RESBLD-TEST-036		
Requirements Tested	36		
Test Summary	Test compatibility with input files generated with previous version of the code.		
	With two input files generated by using Version 3.5, this test case tests whether Version 4.0 can read in old input files without any issue and preserve the input values for most of the input parameters, except for those that are used previously but not in Version 4.0 or vice versa. For the exceptions, proper input values should be assigned to related input parameters. The code is then tested to save the input file and perform calculations.		
Test Objective	Test and verify that Version 4.0 of RESRAD-BUILD can read in old input files created with previous version(s) of the code, as required by the code requirement 36.		
Procedure	 Read in the input file "Test 36-1.BLD," which was generated using Version 3.5 of the code. The following are the input values/selections: 		
	Case Case Title Default Case for RESRAD-BUILD Dose/Risk Library ICRP 72 (Age 1)		

-Time	e Parameters ———	
₿	Exposure Duration (days) Indoor fraction	30 0.5
	Evaluation Times	

Evaluation Times				
Times for Calculation (ye	ears):			OK Cancel
1 10 Remove Time Integration Maximum number of po Dose/Risk 17	100 <u>A</u> dd ints for:	1000	10000 1 2 1 3 2 4 5 5 10	

Building Para	meters			
Nur Dej Res	nber of Rooms position Velocity suspension Rate	3 0.01 0.000	•	m/s 1/s
	Air Flow			'

6	🔁 Room Details							
	Building Exchange Rate [1/h] 0.64							
	_ Room 1]					
	Area [m ²]	<mark>45</mark>	→ 96 3					
	Height [m] Exchange Rate	2.5	m°7h → 114					
	[1/h]	1.010000						
Ļ	0	18	[]] [≜] m ³ /h					
	Room 2							
	Area [m ²]	45	- 60 m ³ /h					
	Exchange Rate	2.5	57					
	[1/h]							
Ļ	15	30] <mark>†</mark> m ³ /h					
ľ	Room 3							
	Area [m²]	45 2.5	4 — <u>60</u> m ³ /h					
	Height [m] Exchange Rate	0.666666	→ 45					
	[1/h]							
	ОК	Cano	el					

Radiological Units					
Activity:	Dose:				
p ▼ Ci ▼	m 💌 rem 💌				

Receptor Parameters					
Receptor # Room Time Fraction Breathing Rate Location [m] x: 1 y: 1 z: 1					

Receptor Parameters	Receptor Parameters			
Receptor # Room Time Fraction Breathing Rate Location [m] x: 1 y: 1 z: 3.5	Receptor # 3 Room 3 Time Fraction 1 Breathing Rate 18 Ingestion Rate 0.0001 Location [m] x: 1 y: 1			

5 Source Recep	tor T	able		—
Thickness			Source #	
Density		1	2	
Naterial 🔻	1	0	1	
		2.4	2.4	_
		Concrete	Concrete 💌]
	2	1	1	
Decenter #		2.4	2.4	_
Receptor #		Concrete	Concrete 💌]
	3	3	3	
	-	2.4	2.4	_
		Concrete	🗸 Concrete 💌]
		Save ar	nd Exit	Cancel

Source Parameters				
Source #				
Type/Dir	Volume 💌 🗙 💌			
Location [m]				
x. U	y: U z: U			

eometry • Circular	C Rectangular	Contamination Concentration	
Area [m2]	Length along (m): Y 0	CO-60 1.00E+00	
36	Z 0		Delete Nuclide
elease Air Fraction Direct Ingestion (g/b)	0.1		
Number of Wall Regions Material Type	1 -	AG-105 🔽 1	Add Nuclide
Layer Region Pa	rameters		

ち Layer Region Parameters 🛛 💌	
Regions	
1 Contaminated	Source Parameters
Thickness [cm] 15	Source # 2
Density [g/cc] 2.4	Room 3 🔻
Erosion [cm/d] 2.40E-08	Type/Dir Area 💌 🗙 💌
	Location [m]
OK Cancel	x: 0 y: 0 z: 5

- Check to see whether Traditional Appearance and Write intermediate output are the selected Advanced features. The internal dose library is set to ICRP72 (Age 1), the external dose library to ICRP60, and the risk library to FGR13 morbidity.
- Check to see whether all the other input parameter values/selections are preserved.
- Check to see whether the values of randomly selected input parameters can be changed. Revert the changes.
- Save the inputs to a new file under the directory of the current version.
- Run the code to see whether calculations are performed and summary reports and intermediate outputs are generated without any issue.
- Read in the input file "Test 36-2.BLD," which was also generated using Version 3.5 of the code. Repeat the above steps to check the advanced setting, check the input values, change input values and revert the changes, save the inputs to a file under the current version, and run the code to generate summary reports and intermediate outputs.
- The following are the input values/settings of "Test 36-2.BLD":

Case	
Cas	3e
Title	Default Case for RESRAD-BUILD
Dose.	/Risk Library
Γ	FGR 11 🔹
-Tim	e Parameters

raiameters	
Exposure Duration (days)	30
Indoor fraction	0.5
Evaluation Times	

OK Times for Calculation (years): Cancel I I I	Eva	aluation Times				
1 10 100 1000 10000 Remove Add 2) 1 3) 2 4) 5 5) 10 Time Integration 5) 10 10 Maximum number of points for: Dose/Risk 17 •		Times for Calculation (ye	ars):	 		OK Cancel
		10 Remove Time Integration Maximum number of poin Dose/Risk 17	100 <u>A</u> dd nts for:	1) 2) 3) 4) 5)	10000 5 1 2 5 10	

Building Parameters					
N B	umber of Rooms eposition Velocity esuspension Rate	2 • 0.01 0.0000005	m/s 1/s		
	Air Flow				

🖘 Room Details	—
Building Exchange Rate [1	/h] 0.64
Room 1 Area [m ²] 45	
Height [m] 2.5 Exchange Rate 1.173333 [1/h]	
30] ↑ m ³ /h
Room 2	
Area (m ²) 45	
Height [m] 2.5 Exchange Rate 0.8 [1/h]	→ 42
OK Cancel	

Radiological Units	
Activity:	Dose: m <u> </u>

Receptor Parameters	Receptor Parameters					
Receptor # Room Time Fraction Breathing Rate Location [m] x: 1 y: 1 z: 1	Receptor # Room Time Fraction Breathing Rate Ingestion Rate Location [m] x: 1 y: 1 z: 3.5					

Source Par	ameters
Source # Room	
Type/Dir	Volume 💌 🗙 💌
Location	[m]
x: 5	y: 5 z: 0

Geometry Circular Area [m2]	C Rectangular	-Contaminatio	n		
Area [m2]	Length along [m]: 🛛 🗌	Kadionuclide	Bq/g		
36	Y 0	AM-241 CO-60	1.00E+00 3.70E-02	Delete	
Release		TH-229 U-233	0.00E+00 0.00E+00	Nuclide	
Air Flaction Direct Ingestion [g/h] Number of Wall Regions Material Type	0 1	AG-105 -] [1	Add Nuclide	
Layer Region Para	meters				
	OK Can	cel			

🗈 Layer Region Parameters 💦 📧	
Regions	·
1	Source Parameters
Contaminated O Thickness [cm] 15	Source # 2
Density [g/cc] 2.4 Erosion [cm/d] 2.40E-08	Type/Dir Line V X V
	Location [m]
OK Cancel	x: 0 y: 0 z: 2.5

Cometry		Contamination Radionuclide	on Concentration Bq/m		×
Length (m) 36		AC-227 PB-210 PO-210	3.70E-02 0.00E+00 0.00E+00	Delete Nuclide	
Release Air Fraction Direct Ingestion [1/h] Removable Fraction Lifetime [d] Radon Release Fraction	0.1 0 0.5 60 0.1	RB-84	1.005+00	Add	
	ОК	Cancel			

Required Data Input files "Test 36-1.BLD" and "Test 36-2.BLD" that were generated with Version 3.5 of the code.

ExpectedVersion 4.0 (the version tested) should be able to read in the old input files generated with
previous version of the code and continue the normal operations.

This page intentionally left blank.

APPENDIX B. RESRAD-BUILD Version 4.0 Release Testing Report

This appendix is a compilation of the separate test reports prepared by various testers who conducted the RESRAD-BUILD Version 4.0 release testing. The release testing was conducted December 15-19, 2022, using the candidate beta version, 4.0.19.0, and with the test cases designed by the RESRAD team (see Appendix A). The beta version successfully passed the release testing and was officially released as Version 4.0 on December 22, 2022.

The test cases were designed to verify that the RESRAD-BUILD code meets each of the software requirements, which include but are not limited to (1) proper functioning of the interface to accept input data, access the nuclide databases, launch calculations, and display calculation results; (2) perform calculations that implement the methodology and models as described in the User's Manual; and (3) ensure compatibility with the Windows[®] operating system and with the input files generated by the previously released Version 3.5.

In general, the RESRAD-BUILD code is considered to pass the testing with a test case when it performs as expected or produces expected calculation results. In many cases, the expected calculation results are those that were verified by spreadsheets that implement the same methodology or model for specific building and exposure conditions and calculate radiation doses associated with external radiation, inhalation, and ingestion exposures of selected receptors to selected radionuclides. Chapters 2 and 3 of this report detail the comparisons of results calculated by the RESRAD-BUILD code Version 4.0 and the verification spreadsheets.

Some of the release testing was documented as video recordings, showing maneuvering in the interface to verify the functioning of the various features and input and output options provided by the interface. These recordings were saved in a designated folder in the RESRAD program central storage location and are not included in this appendix. The test reports included in this appendix are ordered by each test case's identification number.

1. TEST CASE 001

Test objectives/descriptions:

To test installation and operation with the Windows operating system.

Test result (Pass/Fail): Pass

Test details:

(1) Installed the code to the default location by double-clicking the installation and using all the default settings. Checked whether the functionality of opening the Readme file and launching the code works at the end of installation. It worked as expected.

RESRAD-BUILD : Site1.bld	
File View Modify Advanced Help	
Case Receptor Parameters	Readme.txt - Notepad - 🗆 🗙
Title Receptor # 🍰 1	File Edit Format View Help
Title Default Case for RESRAD-BUILD Room 1	RESRAD-BUILD 4.0
Time Parameters Time Fraction 1	Please visit the RESRAD website (https://resrad.evs.anl.gov/codes/resrad-build/history.cfm) fc
Exposure Duration (days) 365 Evaluation Breathing Bate 18 m ² /d	Also, please send questions and comments to the RESRAD team at resrad@anl.gov.
Indoor Fraction 0.5 Times Ingestion Rate 0.0001 m ² /h	RESRAD-BUILD 4.0 contains many new features and improvements upon the previous version, 3.5.
Building Parameters	The changes from 3.5 to 4.0 include:
POR Number of Booms 1	- Modeled all branches of the transformation chain.
Air Shielding Parameters	- Added the option of choosing ICRP-107 or ICRP-38 transformation data for establishing de
Flow Source 1 / Receptor 1	 Allowed the specification of any logical cut-off half-life to reduce execution time. Allowed independent choice of a set of internal does external does end risk libraries the
Thickness 0 cm	of transformation data.
Radiological Data Density 2.4 g/cm ²	- Added DCFPAR3.02 dose and risk libraries associated with ICRP-107 transformation data.
Material Concrete	 Computed direct external dose & risk from each individual progeny radionuclide. Incorporated a new dynamic ventilation model to compute the concentrations of the radionuc
	- Maintains mass balance,
View Table Copy Shielding	 Allows air exchange in each direction, between each pair of rooms, and between each room
C ICBP 107 C ICBP 29 Transformations	- computes transient concentrations, - Models vacuuming at regular intervals,
Source Parameters	- Models delayed and intermittent releases of contaminated material from point, line, or (
Internal Dose Library FGR 11 V Source # 1	 Models releases over up to 10 different periods of time, each at a different release rat Has an analytical algorithm suitable for most constant source material release rate scar
External Dose Library FGR 12 Room 1	Has a numerical algorithm for scenarios with up to 9 rooms,
Hisk Library FGH 13 Morbidity Type Volume T	S - Replaces the old pseudo steady-state model.
C:\RESRAD_Family\DCF\3.3	 - speaded up time integration or dose and risk. - Developed analytical expressions for time integration where feasible.
Location of Centroid x: 0 y: 0 z: 0	- Employed numerical time integration, when necessary, with a user specifiable convergence
Cut-on Hair-Line: 144 days of Source [m]	 Redefined the basis for specifying the source coordinates as the center of the contaminate
About	- Generated intermediate results in multiple output files per user's choice, for obtaining c
	insights to the modeling.
HESHAD-BUILD for Windows UK	 Offers a choice of functionality and input forms: Introduced new ammersance to accent input for the new features and models
	- Maintained the traditional appearance (similar to version 3.5) with access to fewer feat
The RESRAD-BUILD computer code was developed under the joint sponsorship of the U.S. Department of Energy and the U.S.	- Provided interactive context-specific help with links between help topics.
Nuclear Regulatory Commission for site-specific dose assessment of residual radioactivity	- Linked the code to DCF Editor version 3.3 that has an expanded database (including air sut
Developed at the Environmental Science Division of Argonne	an improved interactive help feature.
National Laboratory.	 Listed dose and risk contributions from each radionuclide in a decay chain sequentially in Listed components of dose and risk by time, exposure pathway, recentor source initially
Email: restad@anl.nov	- Enabled the code to run and produce graphic results on Windows 10 computers.
https://www.an.gov	- Fixed several miscellaneous issues occurred under special circumstances related to saving/
2450-2710-100.015.018.00T	• • • • • • • • • • • • • • • • • • •
	Ln 1, Col 1 100% Windows (CRLF) UTF-8

(2) Opened "qa1.bld" in QA_files, the subfolder of where the RESRAD-BUILD code was installed and ran it. Compared the dose report file with the file "QA_files\QAoutputforComparison\qa1.RPT" and saved the comparison result to file "difference_qa1.gra." Differences were only in reporting time and code version number. Checked the display of graphics and report, especially the font and special characters. All looked properly displayed. Therefore, the code performed as expected.

→ ` ↑	is PC > Local Disk (C:) > RESRAD_Family	> BUILD > 4.0.19.0_beta > Q	A_files v	Q 5	Search QA_files	
rganize 🔻 🛛 New fold	er					
📑 Email attachmer ^	Name	Date modified	Туре	Size		
📑 Email attachmer	QAoutputforComparison	12/14/2022 10:50 PM	File folder			
resrad	Basic ICRP38 ICRP30 pCi.bld	12/14/2022 11:04 AM	BLD File	6 K	В	
Shared with Ever	Basic ICRP38 ICRP60 Bq.bld	12/14/2022 11:04 AM	BLD File	6 K	В	
	Basic ICRP107 ICRP60 Bq.bld	12/14/2022 11:05 AM	BLD File	6 K	В	
OneDrive - Persor	Extended ICRP107 Bq.bld	12/14/2022 11:05 AM	BLD File	6 K	В	
This PC	📑 qa1.bld	12/9/2022 12:53 PM	BLD File	6 K	В	
3D Objects	📑 qa2.bld	12/9/2022 12:56 PM	BLD File	6 K	В	
Desktop						
Documents						
L Downloads-c						
Music						
Pictures						
Videos						
Local Disk (C:)						
File n	ame: gal bld			× Inn	ut (*.bld: *.TEM)	
riic ii	danie danibio			• mp	ac (abid, areivi)	

(3) Repeated Step 2 using the "qa2.bld" file in the same subfolder and saved the comparison result to the file "difference_qa2.gra." The code performed as expected.

2. TEST CASE 002

Test objectives/descriptions:

The objective of the test was to verify that conceptual models involving multiple rooms, sources, and receptors could be constructed and analyzed by the code.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, the RESRAD-BUILD Test Cases report. Eight input files were generated, and calculations were launched with each input file. The RESRAD-BUILD code allowed for the specifications of different numbers of rooms, receptors, sources, and their characteristics without any issues. Calculations were completed with each input file.

Test result (Pass/Fail): Pass

Test details:

	1 1					,		
Table. Inp	ut Specificatio	ons						
Test No.	Form Appearance	No. of Rooms in Building	No. of Receptors	Receptor Room No.	No. of Sources	Source Room No.	Source Type	No. of Release Phases of Each Source
1	Traditional	1	1	1	3	1, 1, 1	A, V, L	1, 1, 1
2	Traditional	2	3	1, 2, 1	2	1, 2	A, V	1, 1
3	Traditional	3	5	1, 2, 3, 2, 1	5	3, 2, 1, 2, 3	A, L, P, A, V	1, 1, 1, 1, 1
4	New	2	6	1, 1, 1, 2, 2, 2	1	2	V	1
5	New	4	8	1, 2, 3, 4, 4, 3, 2, 1	4	4, 3, 2, 1	V, V, A, L	1, 1, 2, 3

Input specifications from RESBLD-Test-001, Rev. 2:

1, 2, 3, 4, 5, 6, 1, 2, 4, 6

2, 4, 6, 8, 1

3, 6, 9

Source Type -A: Area, L: Line, P: Point, V: Volume.

6

8

9

10

5

3

New

New

New

6

8

 Test No. 1 results – Input file generated, "Test-002_1.bld." The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

5

7

10

2, 4, 6, 5, 3

1, 2, 3, 4, 5, 6, 7

1. 2. 3. 4. 5. 6. 7. 8. 9. 9

A, A, V, V, L

A, V, A, V, L, P, V

V.V.V.V.A.A.A.A.L.P

5, 7, 1, 1, 4

5, 1, 4, 1, 6, 9, 1

1, 1, 1, 1, 3, 6, 9, 10, 5, 3

itle : D nput Fil	efaul e : C	t Case for :\RESRAD_Fa	RESRAD-BUI	LD \4.0.19.0	beta\UserFi	les\Test Ca	ase-002_1.	.bld	10
valuatio	n Tim	e: 1.00000	000 years						
	1	- 2	ESRAD-BUIL	D Dose Tab	les	=			
	2	_			285-12	_			
						_			
		Source	Contribut	ions to Re	ceptor Dose				
		Source	Contribut	ions to Re	ceptor Dose	5			
		Source	Contribut	ions to Re [mSv]	ceptor Dose	-			
		Source	Contribut	ions to Re [mSv] Source	ceptor Dose Total	-			
eceptor	1	Source	Source	ions to Re [mSv] Source 3 2,907-05	Total	5			

(2) Test No. 2 results – Input file generated, "Test-002_2.bld." Input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

(3) Test No. 3 results – Input file generated, Test-002_3.bld. The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

Source Contributions to Receptor Doses ImSv1 Seceptor 1 2.002-07 1.822-08 3.482-07 7.442-02 Receptor 2 7.942-07 1.622-08 3.482-07 7.442-02 Receptor 3 1.222-06 5.192-04 1.472-08 1.522-06 2.442-01 Receptor 5 8.762-07 1.822-08 1.522-06 2.442-01 2.442-01 Receptor 3 1.222-06 5.192-04 1.472-08 1.522-06 2.442-01 Receptor 5 8.762-07 1.822-08 5.020-07 3.482-01	** RESRAD- Title : D Input Fil Evaluatio	BUIL efau e : (n Tir	D Dose Progr lt Case for C:\RESRAD_Fa me: 0.00000	am Output, RESRAD-BUI mily\BUILD 00002+00 y	Version 4 LD V4.0.19.0_ Years	1.0.15.0 Be	eta 12/15/2 Siles\Test	2 10:40:13 Case-002_3.b	Page: 8 **
Source Contributions to Receptor Doses ImSv1 Source Total 1 2 3 4 5 7 A42-02 7.442-01 1.472-01 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-04 1.472-			2	ESRAD-BUII	D Dose Tab	les	=		
IBBV1 Source Source Source Source Source Source Total 1 2 3 4 5 Receptor 1 2.802-07 1.822-08 3.482-07 7.442-02 7.442-02 Receptor 2 7.942-07 1.622-08 2.262-08 1.712-06 1.522-01 1.942-01 Receptor 3 1.222-06 5.152-04 1.472-08 1.522-06 2.242-01 2.442-01 Receptor 4 4.952-07 1.622-03 5.020-07 5.282-02 5.442-02 Receptor 5 8.762-07 1.622-08 1.672-07 1.282-06 1.802-01 Receptor 5 8.762-07 1.622-08 1.672-07 1.282-06 1.802-01			Source	Contribut	tions to Re	ceptor Dos	ies		
Source Source Source Source Source Source Total 1 2 3 4 5 Receptor 1 2.02-07 1.822-08 3.482-07 7.442-02 7.442-02 Receptor 2 7.942-07 1.622-08 2.62-08 5.082-07 7.442-02 7.442-02 Receptor 2 7.942-01 1.522-01 1.542-01 1.542-01 Receptor 3 1.222-06 5.152-04 1.472-08 1.522-06 2.243-01 Receptor 4 4.552-07 1.622-03 5.402-07 5.427-02 5.442-02 Receptor 4 4.552-07 1.622-03 5.020-07 5.202-07 4.442-02 Receptor 4 4.552-07 1.622-08 1.672-07 1.282-06 1.802-01 Receptor 5 7.762-07 1.282-06 1.802-01 1.802-01					[msv]				
1 2 3 4 5 Receptor 1 2.802-07 1.822-08 3.482-08 5.082-07 7.442-02 7.442-02 Receptor 2 7.542-07 1.622-03 2.262-08 1.712-06 1.522-01 1.542-01 Receptor 3 1.222-06 5.152-04 1.472-08 1.522-06 2.242-01 2.242-01 Receptor 4 1.622-03 5.952-09 5.020-07 5.282-02 5.444-02 Receptor 5 8.762-07 1.622-03 1.672-07 1.282-06 1.802-01 Receptor 4 6.772-06 1.672-07 1.262-06 1.602-01 1.602-01 Receptor 5 8.762-07 1.622-03 1.672-07 1.282-06 1.802-01			Source	Source	Source	Source	Source	Total	
Receptor 1 2.902-07 1.822-08 3.402-08 5.082-07 7.442-02 7.442-02 Receptor 2 7.942-07 1.622-08 2.262-08 1.712-06 1.522-01 1.942-01 Receptor 3 1.222-06 5.192-04 1.472-08 1.522-06 2.242-01 2.242-01 Receptor 4 4.952-07 1.622-08 9.952-08 9.202-07 5.262-02 5.442-02 Receptor 5 8.762-07 1.822-08 1.672-07 1.262-06 1.802-01 1.802-01 Tento 2 072-09 2.722-09 1.672-07 1.262-06 1.802-01 1.802-01	-		1	2	3	4	5		
Receptor 2 7.942-07 1.622-03 2.262-03 1.712-06 1.922-01 1.942-01 Receptor 3 1.222-06 5.192-04 1.472-08 1.522-06 2.242-01 2.242-01 Receptor 4 4.992-07 1.622-03 5.992-09 5.202-07 5.282-02 9.442-02 Receptor 5 8.762-07 1.622-08 1.672-07 1.282-06 1.802-01 Torol 3 2.742-01 2.247-01 1.802-01	Receptor	1	2.802-07	1.822-08	3.482-08	5.082-07	7.442-02	7.442-02	
Receptor 3 1.222-00 5.132-04 1.472-05 1.522-06 2.242-01 2.242-01 Receptor 4 4.592-07 1.622-03 5.952-05 5.202-07 5.262-02 5.442-02 Receptor 5 8.762-07 1.622-08 1.672-07 1.262-06 1.602-01 1.602-01	Receptor	2	7.942-07	1.622-03	2.262-08	1.712-06	1.922-01	1.942-01	
Receptor 4 4.552-07 1.622-03 5.552-05 5.202-07 5.282-02 5.442-02 Receptor 5 8.762-07 1.822-08 1.672-07 1.282-06 1.802-01 1.802-01 Tran. 2 4.77 0.	Receptor	3	1.222-06	5.192-04	1.472-08	1.522-06	2.242-01	2.242-01	
Receptor 5 8.762-07 1.822-08 1.672-07 1.282-06 1.802-01 1.802-01	Receptor	4	4.992-07	1.622-03	9.992-09	9.202-07	9.282-02	9.442-02	
a property of the second of th	Receptor	5	8.761-07	2 757-02	2 467-07	1.283-06	7 627-01	7 677-01	

(4) Test No. 4 results – Input file generated, "Test-002_4.bld." The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

Title : I	-BUIL	D Dose Progr 1t Case for	am Output, RESRAD-BUII	Version 4	.0.19.0	Beta 12	/15/22	10:41:16	Page:	6 **
Input Fil	Le :	C:\RESRAD_Fa	mily\BUILD	4.0.19.0_1	beta\Use	rFiles\	Test Ca	se-002_4	.bld	
Evaluatio	on Ti	me: 0.00000	000E+00 ye	ears						
							-			
							-			
	3	_					-			
	3	R	ESRAD-BUILI	D Dose Tabl	les	_	-			
						_				
							_			
		Source	Contributi	ions to Rea	ceptor D	oses				
		Source	Contributi	ions to Rea [mSv]	ceptor D	oses				
		Source	Contributi	ions to Red [mSv]	ceptor D	oses				
		Source	Contribut; I Total	ions to Rea [mSv]	ceptor D	oses				
Receptor	1	Source	Contributi Total	ions to Rea [mSv]	ceptor D	oses				
Receptor	1 2	Source 1 1.272-01 2.892-01	Contribut: Total 1.272-01 2.892-01	ions to Red [mSv]	ceptor D	oses				
Receptor Receptor Receptor	1 2 3	Source 1 1.272-01 2.892-01 3.232-01	Contribut: Total 1.272-01 2.892-01 3.232-01	ions to Red [mSv]	ceptor D	loses				
Receptor Receptor Receptor Receptor	1 2 3 4	Source 1 1.272-01 2.852-01 3.662-01	Contributs Total 1.272-01 2.892-01 3.232-01 3.662-01	ions to Red [mSv]	ceptor D	loses				
Receptor Receptor Receptor Receptor	1 2 3 4 5	Source 1 1.272-01 2.852-01 3.232-01 3.662-01 8.832-01	Contribut: Total 1.272-01 2.892-01 3.232-01 3.662-01 8.832-01	ions to Rea	ceptor D	loses				
Receptor Receptor Receptor Receptor Receptor	1 2 3 4 5 6	Source 1 1.272-01 2.892-01 3.232-01 3.662-01 8.832-01 1.662-01	Total 1.272-01 2.692-01 3.232-01 3.662-01 8.632-01 1.662-01	ions to Rea	ceptor D	oses				

(5) Test No. 5 results – Input file generated, "Test-002_5.bld." The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

** RESRAD- Title : D Input Fil Evaluatio	BUII efau e : n Ti	D Dose Progr alt Case for C:\RESRAD_Fa ime: 0.00000	am Output, RESRAD-BUI mily\BUILD 0002+00 y	Version 4 LD \4.0.15.0_ ears	.0.19.0 Be beta\UserF	ta 12/15/22 10:42:13 Page: Siles\Test Case-002_5.bld	8 **	
	RESRAD-BUILD Dose Tables							
						_		
		Source	Contribut	ions to Pe	CODION DOG	205		
		Source	contribut	TOUS CO KE	ceptor boa			
				[mSv]				
		Source	Source	Source	Source	Total		
		1	2	3	4			
Receptor	1	4.19E-02	8.142-02	3.562-07	2.452-06	1.232-01		
Receptor	2	4.622-02	4.962-02	4.88Ξ-06	5.282-07	9.57X-02		
Receptor	3	5.292-02	1.902-01	2.932-07	1.702-06	2.422-01		
Receptor	4	3.042-01	2.312-01	4.002-07	5.672-07	5.342-01		
Receptor	5	6.502-01	1.862-01	3.332-07	5.452-07	8.362-01		
Receptor	6	6.253-02	3.732-01	2.782-07	1.122-06	4.362-01		
Receptor	7	1.202-01	8.822-02	1.222-06	5.282-07	2.082-01		
Receptor	8	6.672-02	1.022-01	5.652-07	1.482-06	1.682-01		
Total		1.342+00	1.302+00	8.332-06	8.922-06	2.642+00		

(6) Test No. 6 results – Input file generated, "Test-002_6.bld." The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

** RESRAD-BUILD Title : Defaul Input File : C Evaluation Tim	Dose Progr t Case for (\RISRAD_Fa e: 0.00000	am Output, RESRAD-BUI mily\BUILD 000E+00 y	Version 4 LD V4.0.19.0_ ears	.0.19.0 Be beta\UserF	ta 12/15/2 Tiles\Test	2 10:43:11) Case-002_6.b	Page: 8 '	•••
=	_				_			
=	RESRAD-BUILD Dose Tables							
-								
-								
	Source	Contribut	ions to Re	ceptor Dos				
			[mSv]					
	Source	Source	Source	Source	Source	Total		
	1	2	3	4	5			
Receptor 1	2.282-06	1.402-06	1.462-02	3.492-02	7.142-06	4.95E-02		
Receptor 2	4.292-06	3.742-06	3.492-02	1.292-01	7.662-06	1.642-01		
Receptor 3	3.322-06	5.522-06	1.292-01	8.532-01	2.182-05	9.822-01		
Receptor 4	2.622-06	6.291-06	8.532-01	1.362+00	7.272-06	2.212+00		
Receptor 5	1.202-06	4.332-06	1.362+00	1.382+00	7.182-06	2.752+00		
Receptor 6	8.002-07	1.652-06	1.382+00	1.052+00	7.142-06	2.432+00		
Receptor 7	1.092-06	9.992-07	3.722-02	7.41E-02	7.112-06	1.112-01		
Receptor 8	2.402-06	1.502-06	7.41E-02	1.642-01	7.452-06	2.382-01		
Receptor 9	1.182-06	2.673-06	3.522-01	5.452-01	7.222-06	8.972-01		
Receptor 10	7.322-07	1.092-06	5.662-01	3.982-01	7.142-06	9.642-01		
Total	1.992-05	2.922-05	4.812+00	5.992+00	8.712-05	1.082+01		

(7) Test No. 7 results – Input file generated, "Test-002_7.bld." The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

Innut Fil		Lt Case for	RESRAD-BUI	LD					
upue str	e : 0	:\RESRAD_Fa	mily\BUILD	4.0.15.0	beta\UserF	iles\Test	Case-002_7	.bld	
valuatio	n Tin	e: 0.00000	000E+00 y	ears					
	=								
	-								
	-	_	TODAD DETT	D Dees Tab	1				
	-		ESKAD-BUIL	D Dose lan	tes				
	-								
	-								
	-								
		Source	Contribut	ions to Re	ceptor Dos	ies			
		Source	Contribut	ions to Re	ceptor Dos	:es			
		Source	Contribut	ions to Re [mSv]	ceptor Dos	:es			
		Source	Contribut	ions to Re [mSv]	Source	Source	Source	Source	Total
		Source	Source	ions to Re [mSv] Source	Source	Source	Source	Source	Total
aceptor	1	Source 1 3 567-03	Source	ions to Re [mSv] Source 3 4 557-05	Source 4 5 137-01	Source 5	Source 6 1 407-08	Source 7 1 377-02	Total
eceptor	1	Source 1 3.562-03	Source 2 1.552+00 3.417=01	[mSv] Source 3 4.652-06	Source 4 5.132-01	Source 5 1.502-05	Source 6 1.402-08 5 767-09	Source 7 1.372-02 3.712-02	Total 2.122+00
ceptor	1 2 3	Source 1 3.562-03 1.762-03	Source 2 1.552+00 3.412-01	ions to Re [mSv] Source 3 4.65Z-06 3.66Z-06	Source 4 5.132-01 1.382+00	Source 5 1.502-05 1.522-05	Source 6 1.402-08 5.762-08 2.402-07	Source 7 1.37Z-02 3.71Z-02 7.55Z-02	Total 2.122+00 1.762+00
eceptor eceptor eceptor	1 2 3	Source 1 3.562-03 1.762-03 1.762-03	Source 2 1.552+00 3.412-01 1.942-01	ions to Re [mSv] Source 3.662-06 1.442-06	Source 4 5.13Z-01 1.38Z+00 5.98Z-01	Source 5 1.502-05 1.522-05 1.522-05	Source 6 1.402-08 5.762-08 2.402-07 2.922-09	Source 7 1.37Z-02 3.71Z-02 7.55Z-02	Total 2.122+00 1.762+00 8.702-01
eceptor eceptor eceptor	1 2 3 4	Source 1 3.562-03 1.762-03 1.762-03	Source 2 1.595+00 3.412-01 1.942-01 6.072-02	[mSv] Source 3 4.652-06 3.662-06 1.442-06 5.052-07 3.272-07	Source 4 5.132-01 1.382+00 5.982-01 1.062-01 2.662-01	Source 5 1.502-05 1.522-05 1.522-05 1.522-05	Source 6 1.402-08 5.762-08 2.402-07 2.832-08 6.832-06	Source 7 1.372-02 3.712-02 7.552-02 8.932-02 6.407-02	Total 2.123+00 1.762+00 8.702-01 2.582-01

(8) Test No. 8 results – Input file generated, "Test-002_8.bld." The input echo of the summary report reflected the input specifications. Dose results to each receptor from different sources were successfully calculated.

	5											
			ESRAD-BUIL	D Dose Tab	les	=						
						_						
		Source	Contribut	ions to Pe	CODIOT DOS							
		Source	Contribut	ions to Re	ceptor Dos	es						
		Source	Contribut	ions to Re [mSv]	ceptor Dos	es						
		Source	Contribut	ions to Re [mSv] Source	Ceptor Dos Source	Source	Source	Source	Source	Source	Source	Total
		Source 1	Contribut Source 2	ions to Re [mSv] Source 3	Source	es Source 5	Source 6	Source 7	Source 8	Source 9	Source 10	Total
Receptor	1	Source 1 2.962-01	Source 2 6.912-01	ions to Re [mSv] Source 3 1.582+00	Source 4 1.172+00	es Source 5 6.352-06	Source 6 1.192-03	Source 7 7.372-05	Source 8 4.572-03	Source 9 9.982-04	Source 10 4.192-09	Total 3.752+0
Receptor	1 2	Source 1 2.96Z-01 7.29Z-02	Source 2 6.912-01 1.232-01	ions to Re [mSv] Source 3 1.582+00 1.952-01	Source 4 1.172+00 2.952-01	Source 5 6.352-06 6.352-06	Source 6 1.19Ξ-03 2.41Ξ-03	Source 7 7.37Z-05 7.50Z-05	Source 8 4.57Z-03 4.57Z-03	Source 5 5.582-04 5.582-04	Source 10 4.152-05 8.172-05	Total 3.752+0 6.942-0
Receptor Receptor Receptor	1 2 3	Source 1 2.962-01 7.295-02 3.092-02	Source 2 6.912-01 1.232-01 4.572-02	ions to Re [mSv] Source 3 1.582+00 1.952-01 6.082-02	Source 4 1.172+00 2.952-01 7.252-02	Source 5 6.352-06 6.352-06 6.342-06	Source 6 1.152-03 2.412-03 1.152-03	Source 7 7.372-05 7.502-05 7.402-05	Source 8 4.572-03 4.592-03 4.592-03	Source 9 9.982-04 9.982-04 2.092-03	Source 10 4.152-09 8.172-05 1.872-08	Total 3.752+0 6.942-0 2.182-0

3. TEST CASE 005

Test objectives/descriptions:

To test the specification of shielding between radiation sources and receptors.

Test result (Pass/Fail): Pass

Test details:

(1) Launched the code and specified values to Thickness, Density, and Material in the Shielding Parameter window. Saved the file as "Test005-1.bld." The values for the shielding parameters in the input file matched those specified in the interface. The code performed as expected.

PESPAD, PLULD - C\PESPAD, Esmith PLULD\40.19.0 hets\UserFile	-) Tert005-1 bld	7
Cite Mardia Advanced Usia		
File View Modry Advance Help		DSOR(1, 1) = 1.
Case	Receptor Parameters	
Title Title Title Default Care for FESRAD-BUILD Time Parameters Exposure Duration (days) 365 Lindoor Fraction 0.5	Receptor # 1 Room 1 Time Fraction 1 Breathing Rate 18 m²/d Ingestion Rate 0.0001 m²/h	DSIR(1,1)=1, DSDEN(1,1)=2.5, MTLC(1,1)=1,
Building Parameters	Location [m] x: 1 y: 1 z: 1	
Number of Rooms 1Air Deposition Velocity 0.00039 m/s Flow Resuspension Rate 0.0000005 1/s Rediclogical Data Activity: Dose:	Shielding Parameters Source 1 / Receptor 1 Thickness 1 cm Density 2.5 g/cm ² Material Concrete	
p ▼ Ci ▼ m ▼ rem ▼	View Table Copy Shielding	
© ICRP 107 CICRP 38 Transformations Internal Dose Library DDE STD-1196-2011 (Reference ▼ External Dose Library DCFPAK3.02 ▼ Risk Library DCFPAK3.02 Morbidity ▼ Location of DCF Database Files C:\NESRAD_Family\DCF\3.3 Cut-off Half-Life: 30 ▼ days	Source Parameters Source # 1 Room 1 Type Volume Direction X Location of Centroid x:0 y:0 z:0	

(2) Opened "Test005-1.bld" and added a source and receptor in Room 2. Specified the Thickness, Density, and Material for shielding between Source 2 and Receptor 2 in the Shielding Parameter window and saved the inputs to "Test005-2.bld." Opened the generated input file and compared the values for the shielding parameters. They were identical to those input in the interface. The code performed as expected.

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFile	s\Test005-2.bld — 🗆 🗙	RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Test005-2.bld - X
File View Modify Advanced Help		File View Modify Advanced Help
	Recenter Dysameters	Case Receptor Parameters
	Receptor # Janketon Receptor # 1	Title Receptor # 2 Time Parameters 2 Exposure Duration (days) 365 Evaluation 1 Indoor Fraction 0.5 Times Beathing Rate 18 m²/d Indoor Fraction 0.5 Times Evaluation (m) x 1 yr. z.
Number of Rooms 2 m Air Deposition Velocity 0.00033 m/s Air Resuspension Rate 0.0000005 1/s Air Redictoprat Dats Activity: Dose: p v Ci v m v rem v © ICRP 107 C ICRP 38 Transformations	Source Parameters Source 2 / Receptor 1 Thickness 1:1 Density 2:6 Waterial View Table Copy Shielding Source Parameters	Number of Rooms 2 // Deposition Velocity 0.00033 m/s Flow Flow Flow Resubprise 0.0000005 1/s Soliding Parameters 1/s 1/s Deposition Velocity 0.0000005 1/s Facility Dose: 1/s 1/s p * Ci * m * rem * View Table Copy Shielding Fource Parameters Source Parameters Source Parameters
Internal Dose Library DOE: STD-1196-2011 (Reference • External Dose Library DCFPAK3.02 • Risk Library DCFPAK3.02 Morbidity • Location of DCF Database Files C:\NFSRAD_Family\DCF\3.3 Cut-off Half-Life: 30 •	Source # 2 Room 2 Type Volume Direction X Lacation (Centroid x 0 y 0 z 0 Source [m]	Internal Dose Library DOEF9AX302 Source # 1 External Dose Library DOEF9AX302 Risk Library DOEF9AX302 C:\RFSRAD_familyDEF33.3 Cut-off Half-Life: 30deys
Number of parameters selected for Sensitivity Analysis: 0		Number of parameters selected for Sensitivity Analysis: 0
ESRAD-BUILD : CARESRAD_Family/BUILDNA.019.0_beta/UserFile File View Modify Advanced Help File View Modify Advanced Help Cose Title Title Detault Case for RESRAD-BUILD Time Parameters Forum Duration (days) 365 Evaluation Times Deposition Velocity 0.00039 m/s Resupersion Rate 0.0000005 T/s Soliding Parameters Evaluation Cose Cose Cose Cose Cose Cose Cose Cose	Net005-2.bld - ×	DSOR(1,1)=1, DSOR(1,2)=1, DSOR(2,1)=1, DSOR(2,2)=1, DSTH(1,1)=1, DSTH(1,2)=1.1, DSTH(2,1)=1.2, DSTH(2,2)=1.25, DSDEN(1,1)=2.5, DSDEN(1,2)=2.6, DSDEN(2,1)=2.7, DSDEN(2,2)=2.8, MTLC(1,1)=1, MTLC(1,2)=2, MTLC(2,1)=3, MTLC(2,2)=4,

(3) Opened "Test005-2.bld." Clicked the View Table button in the Shielding Parameters window to check whether the values shown in the pop-up window matched those shown in the main interface. The code worked as expected.

B Source Receptor T	able		×
Thickness, cm		Source #	
Density, g/cm ³	1	2	
Material 🗾	1	1.1	
	2.5	2.6	_
	Concrete 💌	Water 🔹	
Receptor # 2	1.2	1.25	
_	2.7	2.8	
	Aluminum 💌	Iron 🔻	[
	Save an	d Exit	Cancel

(4) Opened "Test005-2.bld," then clicked the View Table button in the Shielding Parameter window, made changes to the values, and then clicked the Save and Exit button in the Source Receptor Table. Checked the values in the main interface. The values matched those modified in the Source Receptor Table window.

(5) Saved the inputs to "Test005-3.bld." Repeated Step 4 (as shown in the left panel of the figure below) but clicked the Cancel button this time rather than the Save and Exit button. Checked the values in the main interface, which remained the same as prior to the change, as shown in the right panel of the figure below.

(6) Opened "Test005-3.bld" with Receptor 2 and Source 2 shown in the main interface and then clicked the Copy Shielding button in the Shielding Parameters window. The Copy Shielding window popped up. Selected the first option and then saved the change. Checked whether the shielding parameters for Source 2 and Receptor 2 were applied to Receptor 1/Source 2. Saved the inputs to "Test005-4.bld." The code performed as expected.

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles	∖Test005-4.bld — □	×			
File View Modify Advanced Help		Esi Source Receptor 1	Table		×
				· ·	
Copy Shielding	Receptor Parameters	Thickness, cm		Source #	
Apply shielding properties for SOURCE	Receptor # 2 · · · · · · · · · · · · · · · · · ·	Density, g/cm ²	1	2	
RECEPTORS for SOURCE 2	Breathing Rate 18 m²/d	Haterial 🗾	2	2.25	
	Ingestion Rate 0.0001 m²/h		3.5	3.8	
Apply shielding properties for SOURCE C 2 and RECEPTOR 2 to ALL SOURCES for DECEPTOR 2 to ALL SOURCES			Water 💌	Copper 💌	
	Source 2 / Receptor 2	Receptor # 2	2.2	2.25	
🛉	Thickness 2.25 cm Density 3.8 g/cm ²	. 2	3.7	3.8	
C 2 and RECEPTORS to ALL SOURCES	Material Copper		Iron 💌	Copper 🔻	
I	View Table Copy Shielding				
Save Cancel	Source Parameters		Save an	d Exit C	Cancel
	Source # 2				
Risk Library DCFPAK3.02					
Location of DCF Database Files	Type Volume _ Declarity				
C:\RESRAD_Family\DCF\3.3	Location of Centroid x: 0 v: 0 z: 0				
Cut-off Half-Life: 30 Tays	of Source [m]				

Number of parameters selected for Sensitivity Analysis:

(7) Opened "Test005-3.bld" and made sure the Shielding Parameters window was showing for Source 1/Receptor 1. Clicked Copy Shielding, selected the second option, and saved the changes. Checked whether the changes were shown in the main interface and saved the inputs to "Test005-4.bld." The code worked as expected.

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles	\Test005-3.bld — □ >	< _			
File View Modify Advanced Help		Source Receptor T	[able		— × —
Copy Shielding	Receptor Parameters	Thickness cm		Source #	
Apply shielding properties for SOURCE A	Receptor II 1 v Room 1 v Time Fraction 1	Density, g/cm ³	1	2	
	Breathing Rate 18 m³/d Ingestion Rate 0.0001 m²/h Location [m] x: 1 y: 1 z: 1	Material 1	2 3.5	2 3.5	
Apply shielding properties for SOURCE T and RECEPTOR 1 to ALL SOURCES for RECEPTOR 1	Shielding Parameters		Water 💌	Water 💌	
	Source 1 / Receptor 1	Receptor # 2	2.2	2.25	
Annie skielding generating fan SOURCE 🛉 🗠	Density 3.5 g/cm ³		3.7	3.8	
△ 1 and RECEPTOR 1 to ALL SOURCES	Material Water		Iron 💌	Copper 💌	
	View Table Copy Shielding				
Save Cancel	Source Parameters		Save an	dExit (Cancel
External Dose Library DCFPAK3.02	Source # 1				
Risk Library DCFPAK3.02 Morbidity	Type Volume - Columnation				
Location of DCF Database Files C:\RESRAD_Family\DCF\3.3	Direction X				
Cut-off Half-Life: 30 days	Location of Centroid x: 0 y: 0 z: 0 of Source [m]				
Number of parameters selected for Sensitivity Analysis: 0					

(8) Repeated Step 7 but selected the third option. The code performed as expected.

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles	Test005-3.bld	- 0	×			
File View Modify Advanced Help			Source Receptor 1	Table		— ———————————————————————————————————
	V7	2	~			
Copy Shielding	Receptor Parameters		Thickness cm		Source #	
■ <u>→</u>	Receptor # 🍰 1	-	TINCKINESS, CM		OUTCO F	
testestistis counce 🗛 👖 💼	Room 1	•	Density, a/cm ³	1	2	
1 and RECEPTOR 1 to ALL	Time Fraction 1			•	-	
	Breathing Bate 18	m³/d	Material 🔻 .	2	2	
	Ingestion Rate 0.0001	m²/h	1	6	2	-
	Location [m] x: 1	y: 1 z: 1		3.5	3.5	
Apply shielding properties for SOURCE						4
C 1 and RECEPTOR 1 to ALL SOURCES	Shielding Parameters			Water 💌	Water 💌	
	Source 1 / Receptor 1		Decentry 4	2	2	
.	Thickness 2	cm	Receptor # 2	2	2	
	Density 3.5	g/cm²		3.5	3.5]
I and RECEPTOR 1 to ALL SOURCES	Material Water	•				4
and RECEPTORS		_		Water 🔹	Water 🔹	·
	View Table	Copy Shielding				-
				c	1	c i
Save Cancel	Source Parameters			Save an	dExit	Cancel
	Source # 1	•				
External Dose Library DCFPAK3.02	Room 1					
Bisk Library DCFPAK3.02 Morbidity 💌	Type Volume	🚽 🔽 Details				
Location of DCF Database Files	Direction X	•				
30 × 40 × 12	Location of Centroid x: 0	y: 0 z: 0				
Cucon naircine.	of Source [m]					
Number of parameters selected for Sensitivity Analysis: 0						

4. TEST CASE 006

Test objectives/descriptions:

To test the assembly of decay chains based on a specified transformation database and input cutoff half-life.

Test result (Pass/Fail): Pass

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Test 006-38.bld

Test details:

- (1) Copied the files "Test 006-38.bld" and "Input 006-107.bld" that are associated with this test case to the subfolder, UserFiles, of the RESRAD-BUILD code installation directory.
- (2) Ran "Test 006-38.bld" with "No" selected in the pop-up warning message window and saved the results to "test006-1.rpt." Compared the results with the provided result file "test 006-38.RPT" and saved the comparison to "test006-38.dif," which showed only differences in the directory path, running time, and code version number. The code performed as expected.

File View Modify Advanced Help		
□ 🖾 🛄 💹 🜌 📰 🐉 DCF ±? ?		
Case	Receptor Parameters	
- Title	Receptor # 1 Room 1	
Time Parameters	Time Fraction 1	
Exposure Duration (days) 365 Evaluation	Breathing Rate 18 m³/d	
	Ingestion Hate 0.0001 m ² /h	
Building Parameters		
Number of Rooms 1	Shielding Parameters	
Deposition Velocity 0.01 m/s Flow	Source 1 / Receptor 1	
Resuspension Rate 0.0000005 1/s	Thickness 0 cm	
Radiological Data	Density 2.4 g/cm ³	
Activity: Dose:	Material Concrete	
p V Ci V m V rem V	View Table Copy Shielding	RESRAD-BUILD ×
○ ICRP 107	Source Parameters	At least one radionucide with a namine of greater than 10 minutes is missing one or more dose coefficients or slope factors. Do you want to create a library with pop racio values in place of the micro values?
Internal Dose Library FGR 11	Source # 1	Click YES to Jaunch the Dose and Slope Factor Editor where you can
Risk Library FGR 13 Morbidity		create the library.
Location of DCF Database Files	Type Volume V	Click NO to use 0 in place of the missing values and to PROCEED with the Run.
C:\RESRAD_Family\DCF\3.3	Location of Centroid x: 0 y: 0 z: 0	Click CANCEL to cancel generation of current library.
Cut-off Half-Life: Joudays	of Source [m]	If you wish to, you can set your preference to use 0 in place of the mission values in the Advanced Menu, and avoid this marcage
		instanty values in the Auvanced Menu, and avoid this message.
		Yes No Cancel

(3) Repeated Step 2 using the provided "Input 006-107.bld" file and saved the comparison to "test006-107.dif." The code performed as expected.

5. TEST CASE 007

5.1 TEST CASE 007-1

Test objectives/descriptions:

The objective of the test was to verify the modeling of concentrations in the source, the modeling of the releases and ventilation, and the subsequent dose and risk calculations, with the intermediate outputs of time-averaged activity in the source, time-integrated direct ingestion, air release rate, time-averaged radionuclide concentration in the air and on the floor, dose and risk components, as well as the summary results of the inhalation (of particulates), ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file "Volume 1_S=1_EXP.BLD" associated with Test Case 007-1 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and a volume source in Room 1 that released radioactivity into the air; no vacuuming of floor deposition was involved. The dose and risk coefficients used in calculations matched those provided in RESBLD-Test-001, Rev. 2; the intermediate outputs matched those in the verification spreadsheet file "Vol1_S=1.xlsx," and the pathway dose/risk results to each receptor matched those provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

- (1) The aggregated dose and slope factors (including those of short-live progeny) from the run matched those provided in RESBLD-Test-001, Rev. 2.
- (2) Time-averaged activity in the source and time-integrated direct ingestion of activity from the run matched those in "Vol1_S=1.xlsx":

Results from "Vol1_S=1.xlsx"

ime a	veraged activ	ity			from RRB	E
					C.	
	ISrc	Time	Parent	Porgeny	pCi	I
	1	1	RA-226	RA-226	12864698.58	
	1	1	RA-226	PB-210	49699.58387	
	1	1	RA-226	PO-210	6776.713027	
	1	2	RA-226	RA-226	12673990.75	
	1	2	RA-226	PB-210	146696.8331	
	1	2	RA-226	PO-210	41522.64202	
	1	3	RA-226	RA-226	12483323.35	
	1	3	RA-226	PB-210	240018.8003	
	1	3	RA-226	PO-210	97815.28964	
	1	4	RA-226	RA-226	12292697.44	
	1	4	RA-226	PB-210	329705.631	
	1	4	RA-226	PO-210	166189.72	
	1	5	RA-226	RA-226	12102113.04	
	1	5	RA-226	PB-210	415797.0256	
	1	5	RA-226	PO-210	240752.0488	
	1	6	RA-226	RA-226	11911569.06	
	1	6	RA-226	PB-210	498332.3857	
	1	6	RA-226	PO-210	317838.3615	
	1	7	RA-226	RA-226	11721067.65	
	1	7	RA-226	PB-210	577350.6139	
	1	7	RA-226	PO-210	395176.8597	

Fime Inte	grated dire	ect ingestio	on (full oc	cupancy), p	from RRB
	iSrc	iTime	Parent	Porgeny	pCi
	1	1	RA-226	RA-226	21.898819
	1	1	RA-226	PB-210	0.084808298
	1	1	RA-226	PO-210	0.011577215
	1	2	RA-226	RA-226	21.8964481
	1	2	RA-226	PB-210	0.253652513
	1	2	RA-226	PO-210	0.071841106
	1	3	RA-226	RA-226	21.8940773
	1	3	RA-226	PB-210	0.421171427
	1	3	RA-226	PO-210	0.171699181
	1	4	RA-226	RA-226	21.8917065
	1	4	RA-226	PB-210	0.587375283
	1	4	RA-226	PO-210	0.29613328
	1	5	RA-226	RA-226	21.8893356
	1	5	RA-226	PB-210	0.752274275
	1	5	RA-226	PO-210	0.435641676
	1	6	RA-226	RA-226	21.8869648
	1	6	RA-226	PB-210	0.915878534
	1	6	RA-226	PO-210	0.584214151
	1	7	RA-226	RA-226	21.884594
	1	7	RA-226	PB-210	1.07819796
	1	7	RA-226	PO-210	0.738050222

iSrc iTime Parent Porgeny pCi 1 1 CS-137 CS-137 12828423. 1 2 CS-137 CS-137 12566824. 1 3 CS-137 CS-137 12307813. 1 4 CS-137 CS-137 12051368.	veraged activ	ty			from RRB
1 1 CS-137 CS-137 12828423 1 2 CS-137 CS-137 12566824 1 3 CS-137 CS-137 12307813 1 4 CS-137 CS-137 12037813	iSrc	iTime	Parent	Porgeny	pCi
1 2 CS-137 CS-137 12566824. 1 3 CS-137 CS-137 12307813. 1 4 CS-137 CS-137 12051368.	1	1	CS-137	CS-137	12828423.49
1 3 CS-137 CS-137 12307813. 1 4 CS-137 CS-137 12051368.	1	2	CS-137	CS-137	12566824.26
1 4 CS-137 CS-137 12051368	1	3	CS-137	CS-137	12307813.75
	1	4	CS-137	CS-137	12051368.56
1 5 CS-137 CS-137 11797470.	1	5	CS-137	CS-137	11797470.59
1 6 CS-137 CS-137 11546096.	1	6	CS-137	CS-137	11546096.44
1 7 CS-137 CS-137 11297226.	1	7	CS-137	CS-137	11297226.95

Time Integrated direct ingestion (full occupancy), pC from RRE	5
--	---

	:6	Time	Darant	Dergenu	-Ci	
1	ISIC	nime	Parent	Porgeny	pci	J
	1	1	CS-137	CS-137	21.8369198	
	1	2	CS-137	CS-137	21.7111492	
l	1	3	CS-137	CS-137	21.5861015	
	1	4	CS-137	CS-137	21.4617748	
	1	5	CS-137	CS-137	21.3381634	
	1	6	CS-137	CS-137	21.2152653	
	1	7	CS-137	CS-137	21.0930748	

Results from the run

Tir	ne	average	d activi	ty
19	Sro	: iTime	Parent P	rogeny pCi
1	1	Ra-226	Ra-226	12864698.57893049
1	1	Ra-226	Pb-210	49699.58387011669
1	1	Ra-226	Po-210	6776.713026889904
1	2	Ra-226	Ra-226	12673990.74743785
1	2	Ra-226	Pb-210	146696.8331040081
1	2	Ra-226	Po-210	41522.64202130898
1	3	Ra-226	Ra-226	12483323.34809944
1	3	Ra-226	Pb-210	240018.8003490614
1	3	Ra-226	Po-210	97815.28963571791
1	4	Ra-226	Ra-226	12292697.44491933
1	4	Ra-226	Pb-210	329705.6309771690
1	4	Ra-226	Po-210	166189.7199634703
1	5	Ra-226	Ra-226	12102113.03789751
1	5	Ra-226	Pb-210	415797.0256397768
1	5	Ra-226	Po-210	240752.0487711821
1	6	Ra-226	Ra-226	11911569.06302993
1	6	Ra-226	Pb-210	498332.3857371892
1	6	Ra-226	Po-210	317838.3614571284
1	7	Ra-226	Ra-226	11721067.64832471
1	7	Ra-226	Pb-210	577350.6139178082
1	7	Ra-226	Po-210	395176.8597300862

Timo Intogra	tod dino	ct indection of i
TIME THEERIG	iteu uite	ct ingestion, per
iSrc iTime	Parent P	rogeny Full occupancy ingestion
1 1 Ra-226	Ra-226	21.8988190
1 1 Ra-226	Pb-210	8.48082975E-02
1 1 Ra-226	Po-210	1.15772150E-02
1 2 Ra-226	Ra-226	21.8964481
1 2 Ra-226	Pb-210	0.253652513
1 2 Ra-226	Po-210	7.18411058E-02
1 3 Ra-226	Ra-226	21.8940773
1 3 Ra-226	Pb-210	0.421171427
1 3 Ra-226	Po-210	0.171699181
1 4 Ra-226	Ra-226	21.8917065
1 4 Ra-226	Pb-210	0.587375283
1 4 Ra-226	Po-210	0.296133280
1 5 Ra-226	Ra-226	21.8893356
1 5 Ra-226	Pb-210	0.752274275
1 5 Ra-226	Po-210	0.435641676
1 6 Ra-226	Ra-226	21.8869648
1 6 Ra-226	Pb-210	0.915878534
1 6 Ra-226	Po-210	0.584214151
1 7 Ra-226	Ra-226	21.8845940
1 7 Ra-226	Pb-210	1.07819796
1 7 Ra-226	Po-210	0.738050222

Time average	ed activi	ty
iSrc iTime	Parent P	rogeny pCi
1 1 Cs-137	Cs-137	12828423.48855200
1 2 Cs-137	Cs-137	12566824.25863014
1 3 Cs-137	Cs-137	12307813.75058346
1 4 Cs-137	Cs-137	12051368.55632268
1 5 Cs-137	Cs-137	11797470.58777879
1 6 Cs-137	Cs-137	11546096.43686251
1 7 Cs-137	Cs-137	11297226.95150076

Т	im	e	Integra	ated dir	rect inge	estion	n, pCi	
	iS	r	: iTime	Parent	Progeny	Full	occupancy	ingestion
	1	1	Cs-137	Cs-137	7 21.836	59198		
	1	2	Cs-137	Cs-137	7 21.71	11492		
	1	3	Cs-137	Cs-137	7 21.586	51015		
	1	4	Cs-137	Cs-137	21.46	17748		
	1	5	Cs-137	Cs-137	7 21.338	31634		
	1	6	Cs-137	Cs-137	7 21 21	52653		

Time	averaged act	tivity			from RRB	
	iSrc	iTime	Parent	Porgeny	pCi	Time averaged activity
		1	1 CO-60	CO-60	12656864.54	ISrc ITIme Parent Progeny pCi
		1	2 CO-60	CO-60	12067283.93	
		1	3 CO-60	CO-60	11502601.01	1 3 Co-60 Co-60 11502601 01404064
		1	4 CO-60	CO-60	10961819.89	1 4 Co-60 Co-60 10961819 88802435
		1	5 CO-60	CO-60	10443987.2	1 5 Co-60 Co-60 10443987.20064942
		1	6 CO-60	CO-60	9948183.653	1 6 Co-60 Co-60 9948183.653308980
		1	7 CO-60	CO-60	9473526.123	1 7 Co-60 Co-60 9473526.122634195
Time I	ntegrated di	rect inges	tion (full o	ccupancy), pC	Ci from RRB	
Time	ntegrated di	rect inges	tion (tull o	ccupancy), po		Time Integrated direct ingestion, pCi
	iSrc	iTime	Parent	Porgeny	pCi	iSrc iTime Parent Progeny Full occupancy ingest
		1	1 CO-60	CO-60	21.5441723	1 1 Co-60 Co-60 21.5441723
		1	2 CO-60	CO-60	20.8474121	1 2 Co-60 Co-60 20.8474121
		1	3 CO-60	CO-60	20.1731853	1 3 Co-60 Co-60 20.1731853
		1	4 CO-60	CO-60	19.5207653	1 4 Co-60 Co-60 19.5207653
		1	5 CO-60	CO-60	18.8894444	1 5 Co-60 Co-60 18.8894444
		1	6 CO-60	CO-60	18.2785416	1 6 Co-60 Co-60 18.2785416
		1	7 CO-60	CO-60	17.6873951	1 7 Co-60 Co-60 17.6873951

(3) The calculated air release rates from the run matched those in "Vol1_S=1.xlsx":

Results from "Vol1_S=1.xlsx"

Rate of release of	source mate	erial to air				-
fraction of source	per second	per volume (m3) of	the room of	release		Pate of release of source material to air
2.06E-12 from	time	0.00E+00 to	time	5.4E+08	seconds	fraction of source per second per volume (cubic meter) of the room of r
8.64E+00 from	time	0.00E+00 to	time	150000	hrs	2.05761471E-12 from time 0.00000000E+00 to time 540000000. second

(4) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Vol1_S=1.xlsx":

Results from "Vol1_S=1.xlsx"

Results from the run

Results from the run

RESRAD-B	UILD input	file "Volur	ne1_S=1_E	xp.BLD"		from RRB
Sr	iRoom	iTime	Parent	progeny	Media	Concentration
1	1	1	RA-226	RA-226	Air	2.17E-02
1	1	1	RA-226	RA-226	Floor	12.46466159
1	1	1	RA-226	PB-210	Air	8.72E-05
1	1	1	RA-226	PB-210	Floor	5.82E-02
1	1	1	RA-226	PO-210	Air	1.21E-05
1	1	1	RA-226	PO-210	Floor	8.41E-03
1	1	2	RA-226	RA-226	Air	2.38E-02
1	1	2	RA-226	RA-226	Floor	18.26215525
1	1	2	RA-226	PB-210	Air	2.76E-04
1	1	2	RA-226	PB-210	Floor	0.21220567
1	1	2	RA-226	PO-210	Air	7.81E-05
1	1	2	RA-226	PO-210	Floor	6.02E-02
1	1	3	RA-226	RA-226	Air	2.40E-02
1	1	3	RA-226	RA-226	Floor	18.67414307
1	1	3	RA-226	PB-210	Air	4.61E-04
1	1	3	RA-226	PB-210	Floor	0.359286625
1	1	3	RA-226	PO-210	Air	1.88E-04
1	1	3	RA-226	PO-210	Floor	0.14644909
1	1	4	RA-226	RA-226	Air	2.40E-02
1	1	4	RA-226	RA-226	Floor	18.70897818
1	1	4	RA-226	PB-210	Air	6.44E-04
1	1	4	RA-226	PB-210	Floor	0.501985826
1	1	4	RA-226	PO-210	Air	3.24E-04
1	1	4	RA-226	PO-210	Floor	0.253029538
1	1	5	RA-226	RA-226	Air	2.40E-02
1	1	5	RA-226	RA-226	Floor	18.71052055
1	1	5	RA-226	PB-210	Air	8.24E-04
1	1	5	RA-226	PB-210	Floor	0.643027968
1	1	5	RA-226	PO-210	Air	4.77E-04
1	1	5	RA-226	PO-210	Floor	0.372306982

ļ	Nu	me	ric	ally	7 Ti	me	Aver	age	ed (Con	cer	tra	atic	ns				
	pC:	i j	per	cuk	Dic :	met	er o	f	air	6	I	Ci	per	sq.	uare	meter	of	floor
ļ	i	Sr	iR	00m	iTi	me	Pare	nt	pro	oge	ny	Mee	dia	Con	cent	ration		
1	1	1	1	Ra-1	226	Ra	-226	1	Air	2.	165	5754	4613	774	734E	-02		
	1	1	1	Ra-1	226	Ra	-226	1	Floo	DI	12.	464	4661	593	0999	5		
	1	1	1	Ra-1	226	Pb	-210	2	Air	8.	723	8064	4947	104	102E	-05		
ļ	1	1	1	Ra-2	226	Pb	-210	1	Floo	I	5.8	17	5703	957	3820	42-02		
1	1	1	1	Ra-1	226	Po	-210	1	Air	1.	207	15	1659	728	911E	-05		
	1	1	1	Ra-1	226	Po	-210	1	Floo	DI	8.4	107	8255	802	8919	22-03		
	1	1	2	Ra-1	226	Ra	-226	1	Air	2.	378	800:	2322	742	263E	-02		
ļ	1	1	2	Ra-1	226	Ra	-226	1	Floa	I	18.	26	2155	251	1415	5		
	1	1	2	Ra-1	226	Pb	-210	1	Air	2.	757	770	1206	062	119E	-04		
	1	1	2	Ra-1	226	Pb	-210	1	Floo	DI	0.2	212:	2057	172	7549	47		
	1	1	2	Ra-1	226	Po	-210	-	Air	7.	816	5603	3847	834	617E	-05		
l	1	1	2	Ra-1	226	Po	-210	1	Flog	DI	6.0	23	5052	796	8036	6E-02		
ļ	1	1	3	Ra-1	226	Ra	-226	-	Air	2.	397	25	5715	690	005E	-02		
ł	1	1	3	Ra-1	226	Ra	-226	1	Floa	DI	18.	674	4143	074	5814	3		
	1	1	3	Ra-1	226	Pb	-210	1	Air	4.	611	183	3437	876	553E	-04		
	1	1	3	Ra-1	226	Pb	-210	1	Floo	DI	0.3	8593	2867	199	3911	72		
1	1	1	3	Ra-1	226	Po	-210	1	Air	1.	880	018.	7368	949	375E	-04		
	1	1	3	Ra-1	226	Po	-210		Floa	DI	0.1	464	1855	684	1704	72		
	1	1	4	Ra-1	226	Ra	-226	-	Air	2.	398	888	6585	928	970E	-02		
i	1	1	4	Ra-1	226	Ra	-226	1	Floa	I	18.	70	8978	183	6631	1		
	1	1	4	Ra-1	226	Pb	-210	-	Air	6.	436	473	3395	484	525E	-04		
	1	1	4	Ra-1	226	Pb	-210	1	F100	DI	0.5	5019	9855	208	5235	92		
	1	1	4	Ra-1	226	Po	-210	1	Air	з.	245	504	4787	603	849E	-04		
į	1	1	4	Ra-1	226	Po	-210	1	Floo	DI	0.2	2530	0846	968	5438	86		
	1	1	5	Ra-1	226	Ra	-226	1	Air	2.	398	8814	4053	779	807I	-02		
	1	1	5	Ra-1	226	Ra	-226		Floo	DI	18.	.71	0520	547	9452	0		
	1	1	5	Ra-1	226	Pb	-210	1	Air	8.	244	104	5495	624	0483	-04		
ļ	1	1	5	Ra-1	226	Pb	-210	1	Floa	I	0.6	5430	0280	948	7569	76		
I	1	1	5	Ra-1	226	Po	-210	1	Air	4.	774	1124	4400	982	2112	-04		
	1	1	5	Ra-2	226	Po	-210	1	Flo	DI	0.3	3723	3774	733	6377	47		

(5) The dose and risk component results from the run matched those in "Vol1_S=1.xlsx."

(6) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

(7) The total pathway risk results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Results from the run

Evaluation	Time: 0.0	0000002+00	years	171		5 5			Evaluation	Time: 0.0	00000002+00	years					
		Pathway	Detail of	Risks							Pathway	Detail of [Risk]	Risks				
			[Risk]														
Source: 1	External directly	Inhalation	Zxternal from	External from	Ingestion	Radon	Ingestion	Total	Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
	from		Deposition	Suspension	Deposition		Source		Receptor	Source		on floor	in air				
Receptor	Source		on floor	in air					1	1.832-06	5.082-07	1.532-10	5.772-11	0.002+00	1.432-10	6.352-09	2.342-0
1	1.032-06	5.082-07	1.532-10	5.772-11	0.00E+00	1.432-10	€.35%-09	2.342-06	2	1.402-07	1.292-07	3.422-11	1.322-11	1.782-10	7.542-11	0.00E+00	2.683-0
2	1.402-07	1.29E-07	3.422-11	1.322-11	1.782-10	7.542-11	0.00Z+00	2.682-07	3	1.912-08	9.652-08	2.052-11	7.892-12	2.132-10	5.652-11	0.00E+00	1.162-0
3	1.912-08	9.653-08	2.053-11	7.893-12	2.132-10	5.653-11	0.002+00	1.162-07	4	2.642-08	1.932-07	6.842-11	2.632-11	5.33Z-10	1,132-10	0.00Z+00	2.202-0
4	2.642-08	1.932-07	6.842-11	2.632-11	5.332-10	1.132-10	0.002+00	2.202-07	Total	2.018-06	9.268-07	2.762-10	1.057-10	9.242-10	3.887-10	6.357-09	2.957-0
Taxal	2 017-06	6 267-07	2 262-10	1 057-10	6 247-10	2 227-10	6 957-06	2 652-06									

5.2 TEST CASE 007-2

Test objectives/descriptions:

The objective of the test was to verify the modeling of concentrations in the source, the modeling of the releases and ventilation, and the subsequent dose and risk calculations, with the intermediate outputs of time-averaged activity in the source, time-integrated direct ingestion, air release rate, time-averaged radionuclide concentration in the air and on the floor, the dose and risk components, as well as the summary results of the inhalation (of particulates), ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file "Area $1_S=3_V=14_exp.BLD$ " associated with Test Case 007-2 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and an area source in Room 3 that released radioactivity into the air; floor vacuuming was considered every 14 days with an efficiency of 80%. The dose and risk coefficients used in the calculations matched those provided in RESBLD-Test-001, Rev. 2; the intermediate outputs matched those in the verification file "Area $1_S=3_V=14.xlsx$," and the pathway dose/risk results to each receptor matched those provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

- (1) The aggregated dose and slope factors (including those of short-live progeny) from the run matched those provided in RESBLD-Test-001, Rev. 2.
- (2) Time-averaged activity and time-integrated direct ingestion results from the run matched those in "Area 1_S=3_V=14.xlsx":

Time ave	eraged activit	у			from RRB I
	iSrc	iTime	Parent	Porgeny	pCi
	1	1	RA-226	RA-226	29.0493861
	1	1	RA-226	PB-210	0.102088906
	1	1	RA-226	PO-210	1.32E-02
	1	2	RA-226	RA-226	8.538455226
	1	2	RA-226	PB-210	9.00E-02
	1	2	RA-226	PO-210	2.37E-02
	1	3	RA-226	RA-226	3.673446918
	1	3	RA-226	PB-210	7.04E-02
	1	3	RA-226	PO-210	2.86E-02
	1	4	RA-226	RA-226	1.619424562
	1	4	RA-226	PB-210	4.08E-02
	1	4	RA-226	PO-210	1.97E-02
	1	5	RA-226	RA-226	0.00E+00
	1	5	RA-226	PB-210	0.00E+00
	1	5	RA-226	PO-210	0.00E+00
	1	6	RA-226	RA-226	0.00E+00
	1	6	RA-226	PB-210	0.00E+00
	1	6	RA-226	PO-210	0.00E+00
	1	7	RA-226	RA-226	0.00E+00
	1	7	RA-226	PB-210	0.00E+00
	1	7	RA-226	PO-210	0.00E+00

Results from	"Area 1	S=3	V=14.xlsx"

Results from the run

Tir	ne	average	d activit	ТУ
i	Sro	: iTime	Parent Pr	rogeny pCi
1	1	Ra-226	Ra-226	29.04938609842720
1	1	Ra-226	Pb-210	0.1020889291206875
1	1	Ra-226	Po-210	1.321440792615979E-02
1	2	Ra-226	Ra-226	8.538455225773719
1	2	Ra-226	Pb-210	8.997705796549975E-02
1	2	Ra-226	Po-210	2.372384611039764E-02
1	3	Ra-226	Ra-226	3.673446917808219
1	3	Ra-226	Pb-210	7.041755255898022E-02
1	3	Ra-226	Po-210	2.864322916666667E-02
1	4	Ra-226	Ra-226	1.619424562404871
1	4	Ra-226	Pb-210	4.075092453862252E-02
1	4	Ra-226	Po-210	1.973424320617707E-02
1	5	Ra-226	Ra-226	0.000000000000000E+00
1	5	Ra-226	Pb-210	0.000000000000000E+00
1	5	Ra-226	Po-210	0.000000000000000E+00
1	6	Ra-226	Ra-226	0.000000000000000E+00
1	6	Ra-226	Pb-210	0.000000000000000E+00
1	6	Ra-226	Po-210	0.000000000000000E+00
1	7	Ra-226	Ra-226	0.000000000000000E+00
1	7	Ra-226	Pb-210	0.000000000000000E+00
1	7	Ra-226	Po-210	0.0000000000000000E+00

Time Integrated dire	t ingestion	(full occup	ancy), pCi	from RRB	E
iSrc	iTime	Parent	Porgeny	pCi	F
1	1	RA-226	RA-226	7.88E-04	
1	1	RA-226	PB-210	3.05E-06	
1	1	RA-226	PO-210	4.17E-07	
1	2	RA-226	RA-226	7.88E-04	
1	2	RA-226	PB-210	9.13E-06	
1	2	RA-226	PO-210	2.59E-06	
1	3	RA-226	RA-226	1.50E-04	
1	3	RA-226	PB-210	2.42E-06	
1	3	RA-226	PO-210	8.67E-07	
1	4	RA-226	RA-226	6.05E-04	
1	4	RA-226	PB-210	1.60E-05	
1	4	RA-226	PO-210	7.99E-06	
1	5	RA-226	RA-226	0.00E+00	
1	5	RA-226	PB-210	0.00E+00	
1	5	RA-226	PO-210	0.00E+00	
1	6	RA-226	RA-226	0.00E+00	
1	6	RA-226	PB-210	0.00E+00	
1	6	RA-226	PO-210	0.00E+00	
1	7	RA-226	RA-226	0.00E+00	
1	7	RA-226	PB-210	0.00E+00	
1	7	RA-226	PO-210	0.00E+00	

Tir	ne	Integra	ated dire	ct ingestion. pCi
i	Sro	: iTime	Parent P	rogeny Full occupancy ingestion
1	1	Ra-226	Ra-226	7.88357342E-04
1	1	Ra-226	Pb-210	3.05309823E-06
1	1	Ra-226	Po-210	4.16779642E-07
1	2	Ra-226	Ra-226	7.88271951E-04
1	2	Ra-226	Pb-210	9.13148870E-06
1	2	Ra-226	Po-210	2.58627915E-06
1	3	Ra-226	Ra-226	1.50085936E-04
1	3	Ra-226	Pb-210	2.42398482E-06
1	3	Ra-226	Po-210	8.67010101E-07
1	4	Ra-226	Ra-226	6.04574103E-04
1	4	Ra-226	Pb-210	1.59933443E-05
1	4	Ra-226	Po-210	7.98770907E-06
1	5	Ra-226	Ra-226	0.0000000E+00
1	5	Ra-226	Pb-210	0.0000000E+00
1	5	Ra-226	Po-210	0.0000000E+00
1	6	Ra-226	Ra-226	0.0000000E+00
1	6	Ra-226	Pb-210	0.0000000E+00
1	6	Ra-226	Po-210	0.0000000E+00
1	7	Ra-226	Ra-226	0.0000000E+00
1	7	Ra-226	Pb-210	0.0000000E+00
1	7	Ra-226	Po-210	0.0000000E+00

ime ave	raged activ	ity				from RRB	
							Time averaged activity
	iSrc	iTime	Pa	rent	Porgeny	pCi	iSrc iTime Parent Progeny pCi
		1	1 CS	-137	CS-137	28.9748762	1 1 Cs-137 Cs-137 28.97487620497209
		1	2 CS	-137	CS-137	8.472733257	1 2 Cs-137 Cs-137 8.472733257229832
		1	3 CS	-137	CS-137	3.621955733	1 3 Cs-137 Cs-137 3.621955733130390
		1	4 CS	-137	CS-137	1.589603564	1 4 Cs-137 Cs-137 1.589603564180619
		1	5 CS	-137	CS-137	0.00E+00	1 5 CS-137 CS-137 0.00000000000000000000000000000000000
		1	6 CS	-137	CS-137	0.00E+00	1 6 CS-137 CS-137 0.00000000000000000000000000000000000
		1	7 CS	-137	CS-137	0.00E+00	1 / CS-13/ CS-13/ 0.00000000000000000000000000000000000
imo Inte	ograted dire	et ingestie	n (ful	Loccur	ancu) nCi	from PPP	
ine inu	egrated dire	ectingestic	n (rui	roccup	bancy), pci	TOTING	
	iSrc	iTimo	Dat	ront	Porgony	nCi	Time Integrated direct ingestion, pCi
	1310	1	1 (5	.137	CS-137	7 86F-04	iSrc iTime Parent Progeny Full occupancy ingestion
		1	2 (5	137	CS-137	7.801-04	1 1 Cs-137 Cs-137 7.86128920E-04
		1	2 05	137	CS 137	1.485.04	1 2 CS-137 CS-137 7.81601178E-04
		1	1 (5	127	CS 127	1.46E-04	1 3 CS-13/ CS-13/ 1.48314211E-04
		1	4 05	127	CS-137	0.005+00	1 4 CS-137 CS-137 5.92868368E-04
		1	5 CS-	127	CS-157	0.00E+00	1 5 CS-137 CS-137 0.00000000E+00
		1	7	127	CS-137	0.000000	1 7 Co 127 Co 127 0 000000000000000000000000000000000
		1	105	-137	05-157	0.002100	1, 63, 15, 63, 15, 0.000000000000000
ime ave	raged activ	ity				from RRB	
	-						Time averaged activity
	iSrc	iTime	Pa	rent	Porgeny	pCi	iSrc iTime Parent Progeny pCi
		1	1 CC	0-60	CO-60	28.62219685	1 1 Co-60 Co-60 28.62227650938610
		1	2 CC	0-60	CO-60	8.165660578	1 2 Co-60 Co-60 8.165729578893963
		1	3 CC	0-60	CO-60	3.385642948	1 3 Co-60 Co-60 3.385695585996956
		1	4 CC	0-60	CO-60	1.454435312	1 4 Co-60 Co-60 1.454465024099442
		1	5 CC	0-60	CO-60	0.00E+00	1 5 Co-60 Co-60 0.000000000000E+00
		1	6 CC	0-60	CO-60	0.00E+00	1 6 Co-60 Co-60 0.000000000000E+00
		1	7 CC	0-60	CO-60	0.00E+00	1 7 Co-60 Co-60 0.0000000000000E+00
ime Inte	egrated dire	ect ingesti	on (fu	ull occu	upancy), pCi	from RRB	
	iSrc	iTime	Pa	arent	Porgeny	pCi	IIme Integrated direct ingestion, pCi iSrc iTime Parent Progeny Full occupancy ingestio
		1	1 C0	0-60	CO-60	7.76E-04	1 1 Co-60 Co-60 7.75590015E-04
		1	2 CC	0-60	CO-60	7.50E-04	1 2 Co-60 Co-60 7.50506704E-04
		1	3 0.0	0-60	CO-60	1.40E-04	1 3 Co-60 Co-60 1.40128206E-04
		1	4 (0	0-60	CO-60	5.40F-04	1 4 Co-60 Co-60 5.39970177E-04
		1	5 00	0-60	CO-60	0.00E+00	1 5 Co-60 Co-60 0.0000000E+00
		1	6 00	0-60	CO-60	0.000+00	1 6 Co-60 Co-60 0.0000000E+00
		1	7.00	0-00	CO-60	0.00E+00	1 7 Co-60 Co-60 0.0000000E+00
		1	10	0-60	CO-60	0.00E+00	1, 20,00, 20,00, 0.00000002,00

(3) The air release rate results from the run matched those in "Area $1_S=3_V=14.xlsx$ ":

Results from "Area 1_S=3_V=14.xlsx"

Results from the run

Rate of release of s	ource materi	al to air				
fraction of source p	er second pe	er volume (m3)	of the roon	n of release	e	Rate of release of source material to air
2.14E-10 from	time	0 1	to	time	2592000 seconds	fraction of source per second per volume (cubic meter) of the room of release
3.22E-10 from	time	2592000 t	to	time	ne 5184000 seconds	2.14411697E-10 from time 0.00000000E+00 to time 2592000.00 seconds
4.02E-10 from	time	5184000 t	to	time	8640000 seconds	3.21617566E-10 from time 2592000.00 to time 5184000.00 seconds
9.65E-10 from	time	8640000 1	to	time	10368000 seconds	9.65345137E-10 from time 8640000.00 to time 10368000.0 seconds
8.04E-11 from	time	10368000 t	to	time	17280000 seconds	8.03838801E-11 from time 10368000.0 to time 17280000.0 seconds
9.19E-11 from	time	24192000 t	to	time	30240000 seconds	9.18773321E-11 from time 24192000.0 to time 30240000.0 seconds
(4) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Area 1 S=3 V=14.xlsx":

Results from "Area 1 S=3 V=14.xlsx"

Results from the run

RESRA	D-BUILD inp	ut file "Ar	ea1_S=3_V=	14_Exp.BLD		from RRB	E
						Concentration	C () Numerically Time Averaged Concentrations
						(pCi/m3 or	pCi per cubic meter of air & pCi per square meter of f
Sr	iRoom	iTime	Parent	progeny	Media	pCi/m2)	c iSr iRoom iTime Parent progeny Media Concentration
	1	1	1 RA-226	RA-226	Air	4.40E-07	1 1 1 Ra-226 Ra-226 Air 4.396054540292555E-07
	1	1	1 RA-226	RA-226	Floor	9.58E-05	1 1 1 Ra-226 Ra-226 Floor 9.582810617231101E-05
	1	1	1 RA-226	PB-210	Air	1.97E-09	1 1 1 Ra-226 Pb-210 Air 1.966785299315300E-09
	1	1	1 RA-226	PB-210	Floor	4.43E-07	1 1 1 Ra-226 Pb-210 Floor 4.425644572164612E-07
	1	1	1 RA-226	PO-210	Air	2.83E-10	1 1 1 Ra-226 Po-210 Air 2.832362040374589E-10
	1	1	1 RA-226	PO-210	Floor	6.40E-08	1 1 1 Ra-226 Po-210 Floor 6.407039652978751E-08
	1	1	2 RA-226	RA-226	Air	4.85E-07	1 1 2 Ra-226 Ra-226 Air 4.847176724554378E-07
	1	1	2 RA-226	RA-226	Floor	1.26E-04	1 1 2 Ra-226 Ra-226 Floor 1.261211764927385E-04
	1	1	2 RA-226	PB-210	Air	4.84E-09	1 1 2 Ra-226 Pb-210 Air 4.838663047034991E-09
	1	1	2 RA-226	PB-210	Floor	1.29E-06	1 1 2 Ra-226 Pb-210 Floor 1.289413399892311E-06
	1	1	2 RA-226	PO-210	Air	1.21E-09	1 1 2 Ra-226 Po-210 Air 1.207411521691347E-09
	1	1	2 RA-226	PO-210	Floor	3.28E-07	1 1 2 Ra-226 Po-210 Floor 3.278468055570265E-07
	1	1	3 RA-226	RA-226	Air	2.78E-08	1 1 3 Ra-226 Ra-226 Air 2.780824498982674E-08
	1	1	3 RA-226	RA-226	Floor	8.43E-06	1 1 3 Ra-226 Ra-226 Floor 8.429396158544500E-06
	1	1	3 RA-226	PB-210	Air	4.58E-10	1 1 3 Ra-226 Pb-210 Air 4.581249456518135E-10
	1	1	3 RA-226	PB-210	Floor	1.42E-07	1 1 3 Ra-226 Pb-210 Floor 1.416333673691036E-07
	1	1	3 RA-226	PO-210	Air	1.66E-10	1 1 3 Ra-226 Po-210 Air 1.663871598300037E-10
	1	1	3 RA-226	PO-210	Floor	5.22E-08	1 1 3 Ra-226 Po-210 Floor 5.220721996961542E-08
	1	1	4 RA-226	RA-226	Air	1.04E-07	1 1 4 Ra-226 Ra-226 Air 1.041041162641807E-07
	1	1	4 RA-226	RA-226	Floor	2.45E-05	1 1 4 Ra-226 Ra-226 Floor 2.454541117814759E-05
	1	1	4 RA-226	PB-210	Air	2.78E-09	1 1 4 Ra-226 Pb-210 Air 2.780795014188835E-09
	1	1	4 RA-226	PB-210	Floor	6.65E-07	1 1 4 Ra-226 Pb-210 Floor 6.647457149898504E-07
	1	1	4 RA-226	PO-210	Air	1.40E-09	1 1 4 Ra-226 Po-210 Air 1.397073403083994E-09
	1	1	4 RA-226	PO-210	Floor	3.37E-07	1 1 4 Ra-226 Po-210 Floor 3.367386028767842E-07
	1	1	5 RA-226	RA-226	Air	7.48E-10	1 1 5 Ra-226 Ra-226 Air 7.475319591113179E-10
	1	1	5 RA-226	RA-226	Floor	5.35E-07	1 1 5 Ra-226 Ra-226 Floor 5.349562532220740E-07
	1	1	5 RA-226	PB-210	Air	2.35E-11	1 1 5 Ra-226 Pb-210 Air 2.348345221173375E-11
	1	1	5 RA-226	PB-210	Floor	1.68E-08	1 1 5 Ra-226 Pb-210 Floor 1.682454501838626E-08
	1	1	5 RA-226	PO-210	Air	1.29E-11	1 1 5 Ra-226 Po-210 Air 1.294442879464638E-11
	1	1	5 RA-226	PO-210	Floor	9.28E-09	1 1 5 Ra-226 Po-210 Floor 9.279869183073910E-09

- (5) The dose and risk component results from the run matched those in "Area 1 S=3 V=14.xlsx."
- (6) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

 Results from RESBLD-TEST-001, Rev. 2
 Results from the run

 Intervent inte

(7) The total pathway risk results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Evaluation Time: 0.00000000E+00 years

		Pathway	Detail of	Risks					1		Pathway	Detail of	Risks				
			[Risk]									[Risk]					
Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	External directly	Inhalation	External from	External from	Ingestion of	Radon	Ingestion of	Total
Receptor	Source		on floor	in air						from		Deposition	Suspension	Deposition		Source	
1	9.332-12	1.032-11	1.172-15	1.172-15	0.002+00	3.342-14	0.002+00	1.972-11	Receptor	Source		on floor	in air				
2	5.20X-13	4.452-10	4.772-14	4.552-14	2.472-13	1.132-13	1.142-13	4.462-10	1	5.332-12	1.032-11	1.172-15	1.171-15	0.002+00	3.342-14	0.002+00	1.972-11
3	7.032-14	7.602-11	6.38I-15	6.212-15	6.623-14	9.122-14	0.002+00	7.632-11	2	5.20E-13	4.452-10	4.772-14	4.552-14	2.472-13	1.132-13	1.142-13	4.462-10
4 Total	9.84Z-14 1.00Z-11	6.90Z-11 6.00Z-10	9.512-15 6.482-14	9.40Z-15 6.22Z-14	7.402-14 3.882-13	1.56Z-13 3.54Z-13	0.002+00	6.93Z-11 6.11E-10	3 4	7.032-14 5.842-14	7.60Z-11 6.90Z-11	6.38I-15 5.51I-15	6.21Z-15 9.40Z-15	6.622-14 7.402-14	9.122-14 1.562-13	0.002+00	7.632-11 6.932-11
									Total	1.002-11	€.002-10	€.482-14	6.222-14	3.862-13	3.542-13	1.142-13	€.112-10

6. TEST CASE 008

6.1 TEST CASE 008-1

Test objectives/descriptions:

The objective of the test was to verify the release and ventilation modeling in the code and the subsequent radiation exposures associated with the releases, with the intermediate outputs of air release rate and time-averaged radionuclide concentration in the air and on the floor, as well as the resultant inhalation, ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file, "Volume $1_S=1_V=30_EXP.BLD$," associated with Test Case 008-1 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and a volume source in Room 1 that released radioactivity into the air; floor vacuuming was considered every 30 days with an efficiency of 90%. The intermediate outputs matched those in the verification spreadsheet file, "Vol1_S=1_V=30.xlsx." The resultant pathway dose/risk to each receptor matched those obtained previously and provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

(1) The air release rate results from the run matched those in "Vol1 S=1 V=30.xlsx":

Results from "Vol1 S=1 V=30.xlsx"

Rate of rel	ease of sou	rce materia	al to air				
fraction of	source per	second pe	r volume (ı	m3) of the	room of re	lease	
2.06E-11	from	time	0.00E+00	to	time	5.4E+08	seconds
8.64E+01	from	time	0.00E+00	to	time	150000	hrs

Results from the run

Rate of release of source material to air fraction of source per second per volume (cubic meter) of the room of release 2.05761467E-11 from time 0.00000000E+00 to time 540000000. seconds (2) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Vol1 S=1 V=30.xlsx":

Results from "Vol1 S=1 V=30.xlsx"

Results from the run

RESRA	D-BUILD inpu	ut file "Vol	ume1_S=1_\	V=30_Exp.B	LD"	from RRB	Numerically Time Averaged Concentrations
							pCi per cubic meter of air & pCi per square meter of floor
iSr	iRoom	iTime	Parent	progeny	Media	Concentration	iSr iRoom iTime Parent progeny Media Concentration
	1	1	1 RA-226	RA-226	Air	1.99E-01	1 1 1 Ra-226 Ra-226 Air 0.1986718670725520
	1	1	1 RA-226	RA-226	Floor	7.03E+01	1 1 1 Ra-226 Ra-226 Floor 70.25151090816844
	1	1	1 RA-226	PB-210	Air	7.78E-04	1 1 1 Ra-226 Pb-210 Air 7.779898989448567E-04
	1	1	1 RA-226	PB-210	Floor	2.98E-01	1 1 1 Ra-226 Pb-210 Floor 0.2978861618467783
	1	1	1 RA-226	PO-210	Air	1.07E-04	1 1 1 Ra-226 Po-210 Air 1.065783140200882E-04
	1	1	1 RA-226	PO-210	Floor	4.18E-02	1 1 1 Ra-226 Po-210 Floor 4.180645928462709E-02
	1	1	2 RA-226	RA-226	Air	2.00E-01	1 1 2 Ra-226 Ra-226 Air 0.1996765284119736
	1	1	2 RA-226	RA-226	Floor	7.30E+01	1 1 2 Ra-226 Ra-226 Floor 72.97951496702181
	1	1	2 RA-226	PB-210	Air	2.32E-03	1 1 2 Ra-226 Pb-210 Air 2.317054318873668E-03
	1	1	2 RA-226	PB-210	Floor	8.58E-01	1 1 2 Ra-226 Pb-210 Floor 0.8584436199898529
	1	1	2 RA-226	PO-210	Air	6.57E-04	1 1 2 Ra-226 Po-210 Air 6.570246603088534E-04
	1	1	2 RA-226	PO-210	Floor	2.46E-01	1 1 2 Ra-226 Po-210 Floor 0.2456801433282598
	1	1	3 RA-226	RA-226	Air	2.00E-01	1 1 3 Ra-226 Ra-226 Air 0.1996514935312024
	1	1	3 RA-226	RA-226	Floor	7.31E+01	1 1 3 Ra-226 Ra-226 Floor 73.08493150684932
	1	1	3 RA-226	PB-210	Air	3.84E-03	1 1 3 Ra-226 Pb-210 Air 3.843018445189624E-03
1	1	1	3 RA-226	PB-210	Floor	1.41E+00	1 1 3 Ra-226 Pb-210 Floor 1.413343353627600
	1	1	3 RA-226	PO-210	Air	1.57E-03	1 1 3 Ra-226 Po-210 Air 1.567295610572045E-03
	1	1	3 RA-226	PO-210	Floor	5.78E-01	1 1 3 Ra-226 Po-210 Floor 0.5780840309487569
	1	1	4 RA-226	RA-226	Air	2.00E-01	1 1 4 Ra-226 Ra-226 Air 0.1996375412227296
	1	1	4 RA-226	RA-226	Floor	7.30E+01	1 1 4 Ra-226 Ra-226 Floor 73.04706240487062
	1	1	4 RA-226	PB-210	Air	5.36E-03	1 1 4 Ra-226 Pb-210 Air 5.357453089326484E-03
	1	1	4 RA-226	PB-210	Floor	1.96E+00	1 1 4 Ra-226 Pb-210 Floor 1.962406265854896
	1	1	4 RA-226	PO-210	Air	2.70E-03	1 1 4 Ra-226 Po-210 Air 2.701301686960934E-03
	1	1	4 RA-226	PO-210	Floor	9.90E-01	1 1 4 Ra-226 Po-210 Floor 0.9900205479452054
	1	1	5 RA-226	RA-226	Air	2.00E-01	1 1 5 Ra-226 Ra-226 Air 0.1996789066463724
	1	1	5 RA-226	RA-226	Floor	7.33E+01	1 1 5 Ra-226 Ra-226 Floor 73.28265449010654
	1	1	5 RA-226	PB-210	Air	6.86E-03	1 1 5 Ra-226 Pb-210 Air 6.862320542395992E-03
	1	1	5 RA-226	PB-210	Floor	2.52E+00	1 1 5 Ra-226 Pb-210 Floor 2.518068239472349
	1	1	5 RA-226	PO-210	Air	3.97E-03	1 1 5 Ra-226 Po-210 Air 3.973924641679350E-03
	1	1	5 RA-226	PO-210	Floor	1.46E+00	1 1 5 Ra-226 Po-210 Floor 1.458017630644343

(3) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Evaluation	Time: 0.0	00000002+00	years	= 0					Tvaluation	Time: 0.0	00000002+00	years					
		Pathway	Detail of [mrem]	Doses							Fathway	Detail of [mrem]	Doses				
Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	External directly from	Inhalation	Internal from Deposition	Internal from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air			100100000000000000000000000000000000000		Receptor	Source		on floor	in air				
1	2.282+00	5.812+00	1.072-03	6.57E-04	8.541-03	6.85X-04	0.002+00	5.10E+00 7.78Z400	-	3.487-01	5.81E+00 7.437+00	4.417-04	6.572-04 7.757-04	8.542-03	6.052-04	0.002400	2.752400
3	7 947-02	2 437+00	4 417-04	2 757-04	3.517-03	6.647-04	0.007+00	2.527+00		7.947-02	2.437+00	4.417-04	2.758-04	3.617-03	6.647-04	0.002+00	2.572+00
4	3.292-02	2.432+00	4.412-04	2.752-04	3.512-03	6.642-04	0.002+00	2.472+00	4	3.292-02	2.431+00	4.412-04	2.752-04	3.51X-03	6.642-04	0.002+00	2.472+00
Total	2.742+00	1.312+01	2.402-03	1.482-03	1.912-02	2.682-03	0.002+00	1.592+01	Total	2.742+00	1.312+01	2.402-03	1.482-03	1.912-02	2.652-03	0.002+00	1.552+01

(4) The total pathway risk results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Ivaluation	Time: 0.0	00000002+00	years	-			-		Evaluation	Time: 0.0	0000002+00	years	2			ē	
		Pathway	Detail of F	Risks					2								
			[Risk]								Pathway	Detail of	Risks				
												[Risk]					
Source: 1	Internal	Inhalation	Internal	External	Ingestion	Radon	Indestion	Total	Source: 1								
	directly		from	from	of		of			Internal	Inhalation	Internal	Internal	Ingestion	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source			directly		from	from	of		of	
Receptor	Source		on floor	in air					1	from		Deposition	Suspension	Deposition		Source	
1	1.832-06	4.662-06	8.622-10	5.302-10	4.462-09	7.612-10	0.002+00	6.492-06	Acceptor	1.027-06	4 667-06	0. 627-10	5 207-10	4 467-06	7 617-10	0.002400	6 467-06
2	2.792-07	1.952-06	3.54E-10	2.222-10	1.832-09	7.162-10	0.002+00	2.232-06	-	2 797-07	1 957-06	3 547-10	2 227-10	1 837-09	7 167-10	0.007400	2 237-06
3	6.372-08	1.952-06	3.54Z-10	2.222-10	1.832-09	7.162-10	0.00Z+00	2.022-06	3	6 377-08	1.957-06	3.547-10	2 227-10	1 837-09	7 167-10	0.007+00	2.023-06
4	2.642-08	1.952-06	3.542-10	2.222-10	1.832-05	7.162-10	0.00Z+00	1.982-06	4	2.642-08	1.952-06	3.542-10	2.222-10	1.832-09	7.162-10	0.002+00	1.982-06
Total	2.201-06	1.052-05	1.922-09	1.192-09	9.96Z-09	2.912-09	0.002+00	1.272-05	Total	2.202-06	1.052-05	1.922-09	1.192-09	9.962-09	2.912-09	0.002+00	1.272-05

- - -

6.2 TEST CASE 008-2

Test objectives/descriptions:

The objective of the test was to verify the release and ventilation modeling in the code and the subsequent radiation exposures associated with the releases, with the intermediate outputs of air release rate and time-averaged radionuclide concentration in air and on the floor, as well as the resultant inhalation, ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file, "Volume 2_S=2_EXP.BLD," associated with Test Case 008-2 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and a volume source in Room 2 that released radioactivity into the air; no floor vacuuming was involved. The intermediate outputs matched those in the verification spreadsheet file, "Vol2_S=2.xlsx." The resultant pathway dose/risk to each receptor matched those provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

8.64E+01 from

(1) The air release rate results from the run matched those in "Vol2 S=2.xlsx":

5.4E+08 seconds

150000 hrs

Results from "Vol2 S=2.xlsx"

fraction of source per second per volume (m3) of the room of release

0.00E+00 to

time

time

Rate of release of source material to air

2.06E-11 from time 0.00E+00 to

time

Results from the run

Rate of release of source material to air fraction of source per second per volume (cubic meter) of the room of release 2.65761328E-11 from time 0.00000000E+00 to time 540000000. seconds (2) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Vol2 S=2.xlsx":

Results from "Vol2 S=2.xlsx"

Results from the run

ESRAE)-BUILD inpu	t file "Volu	ime2_S=2	_Exp.BLD"		from RRB	Numerically Time Averaged Concentrations
							pCi per cubic meter of air & pCi per square met
r	iRoom	iTime	Parent	progeny	Media	Concentration	iSr iRoom iTime Parent progeny Media Concentratio
	1 1	. 1	RA-226	RA-226	Air	2.13E-02	1 1 1 Ra-226 Ra-226 Air 2.133673420852359E-02
	1 1	. 1	RA-226	RA-226	Floor	1.06E+01	1 1 1 Ra-226 Ra-226 Floor 10.62543581938102
	1 1	. 1	RA-226	PB-210	Air	1.06E-04	1 1 1 Ra-226 Pb-210 Air 1.061863466182498E-04
	1 1	. 1	RA-226	PB-210	Floor	5.71E-02	1 1 1 Ra-226 Pb-210 Floor 5.710207778411974E-0
	1 1	. 1	RA-226	PO-210	Air	1.60E-05	1 1 1 Ra-226 Po-210 Air 1.599446436525419E-05
	1 1	. 1	RA-226	PO-210	Floor	8.87E-03	1 1 1 Ra-226 Po-210 Floor 8.871425711884829E-03
	1 1	2	2 RA-226	RA-226	Air	5.18E-02	1 1 2 Ra-226 Ra-226 Air 5.177384576357179E-02
	1 1	. 2	2 RA-226	RA-226	Floor	3.51E+01	1 1 2 Ra-226 Ra-226 Floor 35.14236834094368
	1 1	. 2	2 RA-226	PB-210	Air	6.14E-04	1 1 2 Ra-226 Pb-210 Air 6.140487879922945E-04
	1 1	2	2 RA-226	PB-210	Floor	4.20E-01	1 1 2 Ra-226 Pb-210 Floor 0.4203418949771690
	1 1	. 2	2 RA-226	PO-210	Air	1.77E-04	1 1 2 Ra-226 Po-210 Air 1.769145653974822E-04
	1 1	. 2	2 RA-226	PO-210	Floor	1.22E-01	1 1 2 Ra-226 Po-210 Floor 0.1218405948756976
	1 1	. 3	8 RA-226	RA-226	Air	6.68E-02	1 1 3 Ra-226 Ra-226 Air 6.677472571029934E-02
	1 1	. 3	8 RA-226	RA-226	Floor	4.97E+01	1 1 3 Ra-226 Ra-226 Floor 49.74319634703196
	1 1	. 3	8 RA-226	PB-210	Air	1.29E-03	1 1 3 Ra-226 Pb-210 Air 1.290150789970193E-03
	1 1	. 3	8 RA-226	PB-210	Floor	9.63E-01	1 1 3 Ra-226 Pb-210 Floor 0.9626922247590055
	1 1	3	8 RA-226	PO-210	Air	5.27E-04	1 1 3 Ra-226 Po-210 Air 5.274989545677955E-04
	1 1	. 3	8 RA-226	PO-210	Floor	3.94E-01	1 1 3 Ra-226 Po-210 Floor 0.3940521943176052
	1 1		RA-226	RA-226	Air	7.23E-02	1 1 4 Ra-226 Ra-226 Air 7.231084316336885E-02
	1 1		RA-226	RA-226	Floor	5.56E+01	1 1 4 Ra-226 Ra-226 Floor 55.56711922881786
	1 1	. 4	RA-226	PB-210	Air	1.94E-03	1 1 4 Ra-226 Pb-210 Air 1.942058654196791E-03
	1 1	. 4	RA-226	PB-210	Floor	1.49E+00	1 1 4 Ra-226 Pb-210 Floor 1.492958269913749
	1 1	. 4	RA-226	PO-210	Air	9.79E-04	1 1 4 Ra-226 Po-210 Air 9.796809598554034E-04
	1 1		RA-226	PO-210	Floor	7.53E-01	1 1 4 Ra-226 Po-210 Floor 0.7533056823947235
	1 1	. 5	5 RA-226	RA-226	Air	7.41E-02	1 1 5 Ra-226 Ra-226 Air 7.413068398021309E-02
	1 1		5 RA-226	RA-226	Floor	5.76E+01	1 1 5 Ra-226 Ra-226 Floor 57.55016539827498
	1 1	. 5	5 RA-226	PB-210	Air	2.55E-03	1 1 5 Ra-226 Pb-210 Air 2.548258091942542E-03
	1 1	. 5	6 RA-226	PB-210	Floor	1.98E+00	1 1 5 Ra-226 Pb-210 Floor 1.978492643328260
	1 1	. 5	5 RA-226	PO-210	Air	1.48E-03	1 1 5 Ra-226 Po-210 Air 1.475875165485477E-03
	1 1	5	5 RA-226	PO-210	Floor	1.15E+00	1 1 5 Ra-226 Po-210 Floor 1.145942415017758

(3) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Evaluation	Time: 0.0	0000002+00	years	-		n (n) 3			Evaluation	Time: 0.(00000002+00	years	-				
		Pathway	Detail of [mrem]	Doses							Pathway	Detail of [mrem]	Doses				
Source: 1 Receptor	External directly from Source	Inhalation	External from Deposition on floor	External from Suspension in air	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	Internal directly from	Inhalation	Zxternal from Deposition	Internal from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
1 2 3 4 Total	2.282+00 3.482-01 7.542-02 3.252-02 2.742+00	6.243-01 2.402+01 7.813+00 4.302+00 3.762+01	1.622-04 7.102-03 2.132-03 1.162-03 1.062-02	7.032-05 2.802-03 8.802-04 4.942-04 4.242-03	1.302-03 5.672-02 1.702-02 9.272-03 8.432-02	3.492-03 2.782-02 2.342-02 1.962-02 7.442-02	0.002+00 0.002+00 0.002+00 0.002+00 0.002+00	2.912+00 2.522+01 7.932+00 4.452+00 4.052+01	Receptor 1 2 3 4 Total	Source 2.282+00 3.402-01 7.942-02 3.292-02 2.742+00	6.24Z-01 2.40Z+01 7.61Z+00 4.38Z+00 3.76Z+01	on floor 1.622-04 7.102-03 2.132-03 1.162-03 1.062-02	in air 7.032-05 2.802-03 8.802-04 4.542-04 4.242-03	1.302-03 5.672-02 1.702-02 9.272-03 8.432-02	3.492-03 2.702-02 2.342-02 1.962-02 7.442-02	0.002+00 0.002+00 0.002+00 0.002+00 0.002+00	2.912+00 2.522+01 7.932+00 4.452+00 4.052+01

(4) The total pathway risk results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Evaluation	Time: 0.0	00000002+00	years						Evaluation	Time: 0.0	00000002+00	years	-				
		Pathway	Detail of I	lisks							Pathway	Detail of	Risks				
			[Risk]									[Risk]					
Source: 1	00000000000					-		121111	Source: 1					-		-	
	Internal directly	Inhalation	Internal	Internal	Ingestion	Radon	Ingestion	Total		Internal	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	from		Deposition	Suspension	Deposition		Source			from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air					Receptor	Source		on floor	in air				
1	1.832-06	5.01I-07	1.302-10	5.672-11	6.772-10	3.532-09	0.00E+00	2.332-06	1	1.832-06	5.012-07	1.302-10	5.672-11	6.77Z-10	3.532-09	0.002+00	2.332-06
2	2.752-07	1.992-05	5.702-09	2.262-05	2.562-08	2.882-08	0.002+00	2.022-05	2	2.792-07	1.992-05	5.70Z-05	2.262-09	2.962-08	2.882-08	0.002+00	2.022-05
3	€.37Ξ-08	6.262-06	1.712-09	7.102-10	8.89Z-09	2.382-08	0.002+00	6.362-06	3	6.372-08	6.262-06	1.712-09	7.102-10	8.892-09	2.382-08	0.002+00	6.362-06
4	2.643-08	3.512-06	9.302-10	3.982-10	4.842-09	1.993-08	0.00E+00	3.572-06	4	2.642-08	3.512-06	9.30Z-10	3.982-10	4.842-09	1.992-08	0.002+00	3.572-06
Total	2.202-06	3.012-05	8.462-09	3.422-09	4.402-08	7.612-08	0.002+00	3.252-05	Total	2.202-06	3.012-05	8.462-09	3.422-09	4.402-08	7.612-08	0.002+00	3.252-05

6.3 TEST CASE 008-3

Test objectives/descriptions:

The objective of the test was to verify the release and ventilation modeling in the code and the subsequent radiation exposures associated with the releases, with the intermediate outputs of air release rate and time-averaged radionuclide concentration in air and on the floor, as well as the resultant inhalation, ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file, "Volume $2_S=2_V=14_EXP.BLD$," associated with Test Case 008-3 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and a volume source in Room 2 that released radioactivity into the air; floor vacuuming was considered every 14 days with an efficiency of 80%. The intermediate outputs matched those in the verification file, "Vol2_S=2_V=14.xlsx." The resultant pathway dose/risk to each receptor matched those provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

(1) The air release rate results from the run matched those in "Vol2 S=2 V=14.xlsx":

Results from "Vol2 S=2 V=14.xlsx"

Results from the run

Rate of rel	ease of sou	rce materia	l to air	Rate of release of source material to air										
fraction of	source per	second per	r volume (i	m3) of the	room of re	lease								
2.06E-11	from	time	0.00E+00	to	time	5.4E+08	seconds							
8.64E+01	from	time	0.00E+00	to	time	150000	hrs							

Rate of release of source material to air fraction of source per second per volume (cubic meter) of the room of release 2.05761328E-11 from time 0.00000000E+00 to time 540000000. seconds

(2) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Vol2 S=2 V=14.xlsx":

Results	from	"Vol2	S=2	V=14.xlsx"
				-

Results from the run

RESRAD	-BUILD in	out file "V	olume1_S=1	_V=30_Exp	.BLD"	from RRB	Numerically Time Averaged Concentrations
							pCi per cubic meter of air & pCi per square meter of f
ôr 👘	iRoom	iTime	Parent	progeny	Media	Concentration	iSr iRoom iTime Parent progeny Media Concentration
	1	1	1 RA-226	RA-226	Air	7.02E-03	1 1 1 Ra-226 Ra-226 Air 7.015214754566210E-03
	1	1	1 RA-226	RA-226	Floor	1.55E+00	1 1 1 Ra-226 Ra-226 Floor 1.553402207001522
	1	1	1 RA-226	PB-210	Air	2.81E-05	1 1 1 Ra-226 Pb-210 Air 2.814694796039150E-05
	1	1	1 RA-226	PB-210	Floor	6.52E-03	1 1 1 Ra-226 Pb-210 Floor 6.521954571759259E-03
	1	1	1 RA-226	PO-210	Air	3.85E-06	1 1 1 Ra-226 Po-210 Air 3.850918261306894E-06
	1	1	1 RA-226	PO-210	Floor	8.97E-04	1 1 1 Ra-226 Po-210 Floor 8.971375223950405E-04
	1	1	2 RA-226	RA-226	Air	7.48E-03	1 1 2 Ra-226 Ra-226 Air 7.483648152111872E-03
	1	1	2 RA-226	RA-226	Floor	1.79E+00	1 1 2 Ra-226 Ra-226 Floor 1.792140157280568
	1	1	2 RA-226	PB-210	Air	8.68E-05	1 1 2 Ra-226 Pb-210 Air 8.676626668975535E-05
	1	1	2 RA-226	PB-210	Floor	2.08E-02	1 1 2 Ra-226 Pb-210 Floor 2.078406622590056E-02
	1	1	2 RA-226	PO-210	Air	2.46E-05	1 1 2 Ra-226 Po-210 Air 2.460282517834281E-05
	1	1	2 RA-226	PO-210	Floor	5.90E-03	1 1 2 Ra-226 Po-210 Floor 5.897080419996195E-03
	1	1	3 RA-226	RA-226	Air	7.31E-03	1 1 3 Ra-226 Ra-226 Air 7.314366914003044E-03
	1	1	3 RA-226	RA-226	Floor	1.71E+00	1 1 3 Ra-226 Ra-226 Floor 1.713691146626078
	1	1	3 RA-226	PB-210	Air	1.41E-04	1 1 3 Ra-226 Pb-210 Air 1.407835025100282E-04
	1	1	3 RA-226	PB-210	Floor	3.30E-02	1 1 3 Ra-226 Pb-210 Floor 3.300359509766616E-02
	1	1	3 RA-226	PO-210	Air	5.74E-05	1 1 3 Ra-226 Po-210 Air 5.740712561140442E-05
	1	1	3 RA-226	PO-210	Floor	1.35E-02	1 1 3 Ra-226 Po-210 Floor 1.346127144374683E-02
	1	1	4 RA-226	RA-226	Air	7.46E-03	1 1 4 Ra-226 Ra-226 Air 7.464995857908422E-03
	1	1	4 RA-226	RA-226	Floor	1.78E+00	1 1 4 Ra-226 Ra-226 Floor 1.784255327245053
	1	1	4 RA-226	PB-210	Air	2.00E-04	1 1 4 Ra-226 Pb-210 Air 2.003124746073931E-04
	1	1	4 RA-226	PB-210	Floor	4.79E-02	1 1 4 Ra-226 Pb-210 Floor 4.788465959538305E-02
	1	1	4 RA-226	PO-210	Air	1.01E-04	1 1 4 Ra-226 Po-210 Air 1.010001543994364E-04
	1	1	4 RA-226	PO-210	Floor	2.41E-02	1 1 4 Ra-226 Po-210 Floor 2.414700263191273E-02
	1	1	5 RA-226	RA-226	Air	7.33E-03	1 1 5 Ra-226 Ra-226 Air 7.329065888984018E-03
	1	1	5 RA-226	RA-226	Floor	1.72E+00	1 1 5 Ra-226 Ra-226 Floor 1.723243023845763
	1	1	5 RA-226	PB-210	Air	2.52E-04	1 1 5 Ra-226 Pb-210 Air 2.519104530338343E-04
	1	1	5 RA-226	PB-210	Floor	5.92E-02	1 1 5 Ra-226 Pb-210 Floor 5.923727248224252E-02
	1	1	5 RA-226	PO-210	Air	1.46E-04	1 1 5 Ra-226 Po-210 Air 1.458881287209459E-04
	1	1	5 RA-226	PO-210	Floor	3.43E-02	1 1 5 Ra-226 Po-210 Floor 3.430741454211060E-02

(3) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Purluanter Time: 0.000000000000000

Ivaluation	Time: 0.0	0000000Z+00	years	-			-										
			a								Pathway	Detail of	Doses				
		Pathway	Detail of	Doses								[mrem]					
Source: 1			[nren]						Source: 1	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total	Recentor	directly from		from Deposition	from Suspension	of Deposition		of Source	
Receptor	Source		on floor	in air	and be reasoned				1	2.287+00	2.057-01	2.388-05	2.328-05	1.897-04	8.578-04	0.007+00	2.487+00
1	2.282+00	2.052-01	2.38I-05	2.322-05	1.892-04	8.57I-04	0.002+00	2.482+00	2	3.482-01	1.582+01	1.912-03	1.792-03	1.522-02	8.30Z-03	0.002+00	1.622+01
2	3.481-01	1.582+01	1.912-03	1.752-03	1.521-02	8.302-03	0.002+00	1.622+01	3	7.942-02	3.623+00	4.283-04	4.092-04	3.402-03	6.162-03	0.002+00	3.712+00
3	7.942-02	3.622+00	4.282-04	4.092-04	3.402-03	6.162-03	0.002+00	3.712+00	4	3.292-02	1.642+00	1.922-04	1.862-04	1.532-03	4.942-03	0.002+00	1.682+00
Total	3.29X-02 2.74X+00	1.642+00 2.132+01	1.922-04 2.552-03	1.862-04 2.412-03	1.532-03 2.032-02	4.94Z-03 2.03Z-02	0.002+00	1.652+00 2.412+01	Total	2.742+00	2.132+01	2.552-03	2.412-03	2.032-02	2.032-02	0.002+00	2.412+01

(4) The total pathway risk results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

6.4 TEST CASE 008-4

Test objectives/descriptions:

The objective of the test was to verify the release and ventilation modeling in the code and the subsequent radiation exposures associated with the releases, with the intermediate outputs of air release rate and time-averaged radionuclide concentration in air and on the floor, as well as the resultant inhalation, ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file, "Area 1_S=3_EXP.BLD," associated with Test Case 008-4 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and an area source in Room 3 that released radioactivity into the air; floor vacuuming was not involved. The intermediate outputs matched those in the verification spreadsheet file, "Area1_S=3.xlsx." The resultant pathway dose/risk to each receptor matched those provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

(1) The air release rate results from the run matched those in "Area1 S=3.xlsx":

Results from "Area1 S=3.xlsx"

Rate of release of s	ource mater	ial to air				
fraction of source p	er second pe	er volume (m3) o	of the room of rele	ase		Rate of release of source material to air
4.29E-10 from	time	0 t	o time	259200	0 seconds	4 28823393E-10 from time 0 000000E+00 to time 2592000 00 seconds
6.43E-10 from	time	2592000 t	o time	518400	0 seconds	6.43235132E-10 from time 2592000.00 to time 5184000.00 seconds
8.04E-10 from	time	5184000 t	o time	864000	0 seconds	8.03838773E-10 from time 5184000.00 to time 8640000.00 seconds
1.93E-09 from	time	8640000 t	o time	1036800	0 seconds	1.93069027E-09 from time 8640000.00 to time 10368000.0 seconds
1.61E-10 from	time	10368000 t	o time	1728000	0 seconds	1.60767760E-10 from time 10368000.0 to time 17280000.0 seconds
1.84E-10 from	time	24192000 t	o time	3024000	0 seconds	1.83754664E-10 from time 24192000.0 to time 30240000.0 seconds

(2) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Area1 S=3.xlsx":

RESRAE	D-BUILD inpu	ut file "Ar	rea1_S=3_Exp	o.BLD"		from RRB	
S.r.	iPoom	iTimo	Daront	progony	Modia	Concentration (pCi/m3 or :	Numerically Time Averaged Concentrations pCi per cubic meter of air & pCi per square meter of
31	1	1	1 04 226	progeny	Air	2.045.06	1 1 1 Do 226 Do 226 Aim 2 04499520722226245 AG
	1	1	1 0A 226	RA-220	Floor	2.04E-00	1 1 1 Rd-220 Rd-220 AIr 2.04488530/323024E-00
	1	1	1 DA 226	DR 210	Air	1.045.08	1 1 1 Rd-220 Rd-220 F100F 9.919116495830161E-04
	1	1	1 PA 226	PB-210	Eleer	5.415.06	1 1 1 Rd-220 PD-210 AIr 1.042845121/10994E-08
	1	1	1 DA 226	PD-210	Air	1.505.00	1 1 1 Rd-220 PD-210 F100F 5.41282462202/950E-00
	1	1	1 RA-220	PO-210	Floor	8.495-07	1 1 1 Pa-226 PO-210 AIN 1.592245904094524E-09
	1	1	2 RA-220	PA-226	Air	5.605-06	$1 1 2 Pa_{20} P_{210} = 1000 0.492/0/40039/21/E-0/$
	1	1	2 RA-220	RA-220	Eleor	3.002-00	1 1 2 Pa-226 Pa-226 Eloon 2 020297059506665-02
	1	1	2 RA-220	DR-210	Air	5.35E-03	1 1 2 Ra 220 Ra 220 F100 5.55020205055505000000000000000000000
	1	1	2 RA-220	PB-210	Floor	4.665-05	1 1 2 Ra 220 Pb 210 All 0.4554054054225552-08 1 1 2 Ra 226 Pb 210 Floor / 6623361588/0212E-05
	1	1	2 RA-226	PO-210	Air	1.825-08	1 1 2 Ra 226 Po 210 Air 1 8176161988866565-08
	1	1	2 RA-226	PO-210	Floor	1.34F-05	1 1 2 Ra-226 Po-210 Floor 1 341201108703149E-05
	1	1	3 RA-226	RA-226	Air	3 34E-06	1 1 3 Ra-226 Ra-226 Air 3 341391024887108F-06
	1	1	3 RA-226	RA-226	Floor	3.12E-03	1 1 3 Ra-226 Ra-226 Floor 3 121919690988077E-03
	1	1	3 RA-226	PB-210	Air	6.25E-08	1 1 3 Ra-226 Pb-210 Air 6.245301950407295F-08
	1	1	3 RA-226	PB-210	Floor	5.87E-05	1 1 3 Ra-226 Pb-210 Floor 5.870471878864631E-05
	1	1	3 RA-226	PO-210	Air	2.49E-08	1 1 3 Ra-226 Po-210 Air 2.495660047310975E-08
	1	1	3 RA-226	PO-210	Floor	2.36E-05	1 1 3 Ra-226 Po-210 Floor 2.355703685805013E-05
	1	1	4 RA-226	RA-226	Air	1.81E-06	1 1 4 Ra-226 Ra-226 Air 1.808038766707097E-06
	1	1	4 RA-226	RA-226	Floor	1.60E-03	1 1 4 Ra-226 Ra-226 Floor 1.601743468773782E-03
	1	1	4 RA-226	PB-210	Air	4.82E-08	1 1 4 Ra-226 Pb-210 Air 4.821215892793684E-08
	1	1	4 RA-226	PB-210	Floor	4.26E-05	1 1 4 Ra-226 Pb-210 Floor 4.257335691872978E-05
	1	1	4 RA-226	PO-210	Air	2.42E-08	1 1 4 Ra-226 Po-210 Air 2.421590087076300E-08
	1	1	4 RA-226	PO-210	Floor	2.13E-05	1 1 4 Ra-226 Po-210 Floor 2.134371698961108E-05
	1	1	5 RA-226	RA-226	Air	9.58E-07	1 1 5 Ra-226 Ra-226 Air 9.576601161985819E-07
	1	1	5 RA-226	RA-226	Floor	9.31E-04	1 1 5 Ra-226 Ra-226 Floor 9.307081589294774E-04
	1	1	5 RA-226	PB-210	Air	3.24E-08	1 1 5 Ra-226 Pb-210 Air 3.236898881175807E-08
	1	1	5 RA-226	PB-210	Floor	3.15E-05	1 1 5 Ra-226 Pb-210 Floor 3.152568203613033E-05
	1	1	5 RA-226	PO-210	Air	1.86E-08	1 1 5 Ra-226 Po-210 Air 1.858068580012948E-08
	1	1	5 RA-226	PO-210	Floor	1.81E-05	1 1 5 Ra-226 Po-210 Floor 1.811726888020833E-05

Results from "Area1 S=3.xlsx"

Results from the run

(3) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Evaluation	Time: 0.0	0000002+00	years	-		a (a c.			Evaluation	Time: 0.0	0000002+00	years	-				
		Pathway	Detail of [[mrem]	Doses							Pathway	Detail of [mrem]	Doses				
Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air					Receptor	Source 1.1€Z-05	5.982-05	on floor 1.51E-08	in air 6.742-09	1.212-07	2.382-07	0.002+00	7.192-05
1 2 3	1.162-05 1.302-06 2.522-07	5.982-05 2.472-03 7.622-04	1.512-08 6.832-07 2.022-07	6.742-09 2.782-07 8.592-08	1.212-07 5.462-06 1.612-06	2.382-07 1.162-06 1.452-06	0.002+00 0.002+00 0.002+00	7.192-05 2.482-03 7.662-04	2 3 4	1.30Z-06 2.92Z-07 1.23Z-07	2.47E-03 7.62E-04 4.23E-04	6.832-07 2.022-07	2.782-07 8.592-08 4.762-08	5.462-06 1.612-06 8.702-07	1.162-06 1.452-06 1.307-06	0.002+00	2.482-03 7.662-04 4.253-04
Total	1.23Z-07 1.34Z-05	4.23E-04 3.71E-03	1.092-07	4.182-05 4.182-07	8.70∑-07 8.0€∑-0€	1.302-06 4.152-06	0.002+00	4.252-04 3.742-03	Total	1.342-05	3.712-03	1.012-06	4.162-07	8.062-06	4.152-06	0.002+00	3.742-03

The total pathway risk results (summed over nuclides) for each receptor-source from the (4) run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Evaluation	Time: 0.0	0000002+00	years	-					Evaluation	Time: 0.0	00000002+00	years	-		79 (73 S		
		Pathway	Detail of [Risk]	Risks							Pathway	Detail of [Risk]	Risks				
Source: 1	External directly from	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	Internal directly from	Inhalation	Ixternal from Deposition	Ixternal from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor 1 2 3 4 Total	Source 5.332-12 1.042-12 2.342-13 5.842-14 1.072-11	4.80Z-11 1.96Z-05 6.11Z-10 3.35Z-10 2.98Z-05	on floor 1.212-14 5.462-13 1.622-13 8.722-14 8.092-13	in air 5.442-15 2.242-13 6.932-14 3.942-14 3.392-13	6.322-14 2.652-12 6.422-13 4.542-13 4.212-12	2.412-13 1.232-12 1.492-12 1.332-12 4.282-12	0.002+00 0.002+00 0.002+00 0.002+00 0.002+00	5.762-11 1.982-09 6.142-10 3.412-10 3.002-09	Receptor 1 2 3 4 Total	Source 9.332-12 1.042-12 2.342-13 9.842-14 1.072-11	4.802-11 1.582-05 6.112-10 3.352-10 2.582-05	on floor 1.212-14 5.482-13 1.622-13 8.722-14 8.092-13	in air 5.44Z-15 2.24Z-13 6.93Z-14 3.84Z-14 3.38Z-13	6.322-14 2.852-12 8.422-13 4.542-13 4.212-12	2.41Z-13 1.23Z-12 1.49Z-12 1.33Z-12 4.28Z-12	0.002+00 0.002+00 0.002+00 0.002+00 0.002+00	5.762-11 1.502-05 6.142-10 3.412-10 3.002-05

6.5 TEST CASE 008-5

Test objectives/descriptions:

The objective of the test was to verify the release and ventilation modeling in the code and the subsequent radiation exposures associated with the releases, with the intermediate outputs of air release rate and time-averaged radionuclide concentration in air and on the floor, as well as the resultant inhalation, ingestion, and air submersion pathway dose and risk to each receptor.

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involved retrieving the same input file previously used for verification, launching calculations, and comparing the results and outputs with those obtained previously, which were shown to agree with the calculation results from the verification spreadsheet.

The input file, "Area 2_S=5_V=14_EXP.BLD," associated with Test Case 008-5 was used to run the code. It considered a building with 9 rooms, 4 receptors in different rooms, and an area source in Room 5 that released radioactivity into the air; floor vacuuming was considered every 14 days with an efficiency of 80%. The intermediate outputs matched those in the verification spreadsheet file, "Area2_S=5_V=14.xlsx." The resultant pathway dose/risk to each receptor matched those provided in RESBLD-Test-001, Rev. 2.

Test result (Pass/Fail): Pass

Test details:

(1) The air release rate results from the run matched those in "Area 2 S=5 V=14.xlsx":

Results from "Area2 S=5 V=14.xlsx"

Results from the run

Rate of rel	ease of sou	rce materia	l to air				
fraction of	source per	second per	volume (m3)	of the roor	m of releas	e	
2.14E-10	from	time	0.00E+00	to	time	5184000	seconds
3.22E-10	from	time	5184000	to	time	10368000	seconds
4.02E-10	from	time	10368000	to	time	17280000	seconds
9.65E-10	from	time	17280000	to	time	20736000	seconds
8.04E-11	from	time	20736000	to	time	34560000	seconds
4.02E-11	from	time	34560000	to	time	48384000	seconds
4.59E-11	from	time	48384000	to	time	60480000	seconds

Rate of release of source material to air fraction of source per second per volume (cubic meter) of the room of release 2.14424936E-10 from time 0.0000000E-00 to time 5184000.00 seconds 3.21637411E-10 from time 5184000.00 to time 1286000.0 seconds 4.0120548E-10 from time 1036800.0 to time 1208000.0 seconds 9.64623714E-10 from time 17280000.0 to time 20736000.0 seconds 8.03853095E-11 from time 20736000.0 to time 20736000.0 seconds 4.0120548E-11 from time 20736000.0 to time 43456000.0 seconds 4.59403487E-11 from time 48384000.0 to time 6048000.0 seconds (2) Time-averaged concentrations of radionuclide in the air and depositing on the floor from the run matched those in "Area2_S=5_V=14.xlsx":

RESRAD-E	BUILD input	file "Area	2_S=5_V=1	4_Exp.BLD		from RRB	I construction of the second se
iSr	iRoom	iTime	Parent	progeny	Media	Concentration (pCi/m3 or pCi/m2)	Numerically Time Averaged Concentrations pCi per cubic meter of air & pCi per square meter of floor iSr iRoom iTime Parent progeny Media Concentration
1	. 1	. :	1 RA-226	RA-226	Air	8.93E-07	1 1 1 Ra-226 Ra-226 Air 8.931659551395008E-07
1	1	. :	1 RA-226	RA-226	Floor	1.96E-04	1 1 1 Ra-226 Ra-226 Floor 1.959710200990535E-04
1	1	. :	1 RA-226	PB-210	Air	3.85E-09	1 1 1 Ra-226 Pb-210 Air 3.850586496894581E-09
1	1	. :	1 RA-226	PB-210	Floor	8.69E-07	1 1 1 Ra-226 Pb-210 Floor 8.689182655028677E-07
1	. 1	L :	1 RA-226	PO-210	Air	5.53E-10	1 1 1 Ra-226 Po-210 Air 5.530487350979654E-10
1	. 1	L :	1 RA-226	PO-210	Floor	1.25E-07	1 1 1 Ra-226 Po-210 Floor 1.246177760070499E-07
1	. 1	. :	2 RA-226	RA-226	Air	1.41E-06	1 1 2 Ra-226 Ra-226 Air 1.411581450703784E-06
1	. 1	. :	2 RA-226	RA-226	Floor	3.38E-04	1 1 2 Ra-226 Ra-226 Floor 3.384278954012874E-04
1	. 1	. :	2 RA-226	PB-210	Air	1.66E-08	1 1 2 Ra-226 Pb-210 Air 1.662711975297487E-08
1	. 1	. :	2 RA-226	PB-210	Floor	3.99E-06	1 1 2 Ra-226 Pb-210 Floor 3.993706192721092E-06
1	. 1	. :	2 RA-226	PO-210	Air	4.77E-09	1 1 2 Ra-226 Po-210 Air 4.766856706245244E-09
1	. 1	1 :	2 RA-226	PO-210	Floor	1.15E-06	1 1 2 Ra-226 Po-210 Floor 1.147357659071366E-06
1	. 1	1	3 RA-226	RA-226	Air	2.01E-06	1 1 3 Ra-226 Ra-226 Air 2.014203823985695E-06
1	. 1	. :	3 RA-226	RA-226	Floor	4.96E-04	1 1 3 Ra-226 Ra-226 Floor 4.964682909512145E-04
1	1	1 1	3 RA-226	PB-210	Air	3.74E-08	1 1 3 Ra-226 Pb-210 Air 3.742611858821774E-08
1	. 1	1	3 RA-226	PB-210	Floor	9.38E-06	1 1 3 Ra-226 Pb-210 Floor 9.380547665267472E-06
1	1	1 1	3 RA-226	PO-210	Air	1.48E-08	1 1 3 Ra-226 Po-210 Air 1.485126574047927E-08
1	. 1	1	3 RA-226	PO-210	Floor	3.77E-06	1 1 3 Ra-226 Po-210 Floor 3.767228864401745E-06
1	. 1	4	4 RA-226	RA-226	Air	3.06E-07	1 1 4 Ra-226 Ra-226 Air 3.062629385202564E-07
1	1	4	4 RA-226	RA-226	Floor	7.59E-05	1 1 4 Ra-226 Ra-226 Floor 7.593438445100441E-05
1	. 1	4	4 RA-226	PB-210	Air	8.21E-09	1 1 4 Ra-226 Pb-210 Air 8.209722370801391E-09
1	1	4	4 RA-226	PB-210	Floor	2.03E-06	1 1 4 Ra-226 Pb-210 Floor 2.031078077342412E-06
1	1	4	4 RA-226	PO-210	Air	4.14E-09	1 1 4 Ra-226 Po-210 Air 4.136975040023306E-09
1	1	4	4 RA-226	PO-210	Floor	1.02E-06	1 1 4 Ra-226 Po-210 Floor 1.022243427177905E-06
1	1	L 1	5 RA-226	RA-226	Air	2.13E-07	1 1 5 Ra-226 Ra-226 Air 2.133016928629728E-07
1	1	L .	5 RA-226	RA-226	Floor	5.34E-05	1 1 5 Ra-226 Ra-226 Floor 5.338390704522213E-05
1	. 1		5 RA-226	PB-210	Air	7.20E-09	1 1 5 Ra-226 Pb-210 Air 7.198406699978718E-09
1	. 1		5 RA-226	PB-210	Floor	1.80E-06	1 1 5 Ra-226 Pb-210 Floor 1.803454138312105E-06
1	. 1		5 RA-226	PO-210	Air	4.13E-09	1 1 5 Ra-226 Po-210 Air 4.128681969243460E-09
1	1	L 1	5 RA-226	PO-210	Floor	1.03E-06	1 1 5 Ra-226 Po-210 Floor 1.034892433975506E-06

Results from "Area2 S=5 V=14.xlsx"

Results from the run

(3) The total pathway dose results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Results from RESBLD-TEST-001, Rev. 2

Results from the run

Ivaluation	Time: 0.0	00000002+00	years	-			-		Evaluation	Time: 0.0	00000002+00	years					
		Pathway	Detail of I	Doses							Pathway	Detail of [mrem]	Doses				
Source: 1	Internal directly from	Inhalation	Internal from Deposition	Ixternal from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	Internal directly from	Inhalation	External from Deposition	Internal from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air					Receptor	Source		on floor	in air				
1	1.332-05	2.612-05	3.002-09	2.952-09	2.392-08	5.022-08	0.002+00	3.95X-05	1	1.33E-05	2.612-05	3.00E-05	2.952-09	2.39E-08	5.02E-08	0.00E+00	3.95E-05
2	1.48Z-06	1.152-05	1.292-09	1.302-09	1.032-08	5.722-08	0.002+00	1.302-05	2	1.482-06	1.152-05	1.292-09	1.30Z-09	1.032-08	5.722-08	0.002+00	1.302-05
3	2.352-07	5.352-06	6.032-10	6.082-10	4.802-09	3.452-08	0.002+00	5.672-06	3	2.398-07	5.397-06	6.032-10	6.082-10	4.802-05	3.452-08	0.003+00	5.672-06
4	1.402-07	2.102-04	2.432-08	2.372-08	1.932-07	2.752-07	0.002+00	2.10E-04	4	1.402-07	2.102-04	2.432-08	2.372-08	1.932-07	2.752-07	0.002+00	2.102-04
Total	1.512-05	2.532-04	2.922-08	2.052-08	2.322-07	4.172-07	0.002+00	2.602-04	Total	1.512-05	2.532-04	2.922-08	2.852-08	2.322-07	4.172-07	0.002+00	2.682-04

(4) The total pathway risk results (summed over nuclides) for each receptor-source from the run matched those provided in RESBLD-Test-001, Rev. 2:

Resu	lts fro	om R	ESBI	LD-T	EST-	001,	Rev.	2	Resu	lts fro	om th	e run					
Evaluation	Time: 0.0	0000002+00	years					Evaluation	Time: 0.0	00000002+00	years						
		Pathway	Detail of P	lisks							Pathway	Detail of	Risks				
			[Risk]									[Risk]					
Source: 1	External directly from	Inhalation	Internal from Deposition	External from	Ingestion of Deposition	Radon	Ingestion of Source	Total	Source: 1	External directly	Inhalation	External from Deposition	External from Suspension	Ingestion of Deposition	Radon	Ingestion of Source	Total
Receptor	Source		on floor	in air					Receptor	Source		on floor	in air				
1	1.062-11	2.092-11	2.402-15	2.382-15	1.252-14	5.09E-14	0.002+00	3.162-11	1	1.062-11	2.092-11	2.40E-15	2.382-15	1.252-14	5.09Z-14	0.002+00	3.162-11
2	1.182-12	9.202-12	1.032-15	1.042-15	5.362-15	5.772-14	0.002+00	1.052-11	2	1.182-12	9.20E-12	1.032-15	1.042-15	5.36E-15	5.772-14	0.002+00	1.052-11
3	1.922-13	4.322-12	4.042-16	4.912-16	2.512-15	3.522-14	0.002+00	4.552-12	3	1.923-13	4.322-12	4.842-16	4.912-16	2.512-15	3.522-14	0.002+00	4.552-12
4	1.122-13	1.681-10	1.952-14	1.912-14	1.012-13	2.802-13	0.002+00	1.692-10	4	1.122-13	1.682-10	1.952-14	1.912-14	1.012-13	2.802-13	0.002+00	1.692-10
Total	1.212-11	2.032-10	2.342-14	2.302-14	1.212-13	4.242-13	0.002+00	2.152-10	Total	1.212-11	2.032-10	2.342-14	2.302-14	1.212-13	4.242-13	0.002+00	2.152-10

7. TEST CASE 012

7.1 TEST CASE 012-1

Test objectives/descriptions:

To verify the external dose calculation results for a point source.

Test result (Pass/Fail): Pass

Test details:

Refer to Test Case 012-1 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2, for details on the test procedure. The input file associated with this test case, "point-source-verification.bld," was used. External exposure pathway dose and risks were calculated at different receptor locations with and without shielding. The receptors considered were:

Receptor 1 – no shield and @ 1 m, 1 m, 1 m

- Receptor 2 water shield 1 cm and @ 1 m, 1 m, 1 m
- Receptor 3 water shield 5 cm and @ 1 m, 1 m, 1 m
- Receptor 4 water shield 50 cm and @ 1 m, 1 m, 1 m
- Receptor 5 concrete shield 1 cm and @ 1 m, 1 m, 1 m
- Receptor 6 concrete shield 1 cm and @ 1 m, 1 m, 1 m
- Receptor 7 concrete shield 1 cm and @ 1 m, 1 m, 1 m
- Receptor 8 no shield and @ 0 m, 0 m, 0.3 m
- Receptor 9 no shield and @ 0 m, 0 m, 4 m

Dose results for the external exposure pathway in "Verification of Point Source Dose Calculations.docx" for different receptors are displayed first followed by results in RESRADB.RPT in the following screen shots. Dose results for the external exposure pathway match:

Dose (mr "Verifica	em/yr) Calculatio tion of Point Sou	on Results for a rce Dose Calcul	Point Source at ations.docx" Fi	t Different Ro le	eceptor Locat	ions with and	d without Shi	elding from t	he
Nualida	Withou	ut Shielding (Tab	ole 1)	With Wa Rece	ter Shielding (ptor (1m, 1m,	Table 2) 1m)	With Conc Rece	rete Shielding ptor (1m, 1m,	(Table 3) 1m)
Nuclide	Receptor (0m,0m,0.3m)	Receptor (1m,1m,1m)	Receptor (0m,0m,4m)	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm
C-14	1.01E-09	3.17E-11	6.41E-12	4.04E-11	4.72E-11	3.36E-14	1.87E-11	7.13E-13	2.77E-31
Mn-54	1.13E-05	3.36E-07	6.28E-08	3.32E-07	3.18E-07	5.79E-08	3.26E-07	2.70E-07	1.46E-09
Co-60	4.36E-05	1.31E-06	2.44E-07	1.29E-06	1.22E-06	2.77E-07	1.26E-06	1.05E-06	1.39E-08
Nb-94	3.10E-05	9.28E-07	1.73E-07	9.18E-07	8.81E-07	1.55E-07	9.01E-07	7.46E-07	3.57E-09
Tc-99	3.31E-09	1.01E-10	1.97E-11	1.18E-10	1.66E-10	4.24E-12	1.12E-10	5.66E-11	3.96E-18

** RISRAD- Title : D Input Fil Evaluatio	BUILD Dose efault Cas e : C:\Use n Time: O	Program C e for RESR rs\kamboj\ .000000002 Nucl	Dutput, Ver RAD-BUILD Desktop\Bu +00 years 	sion 4.0.1 hild-Releas	.5.0 Beta 1 :e-Testing\	2/16/22 08 point-sour	:14:31 Pa	ge: 8 **		
Source: 1 Nuclide	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Receptor	Total
C-14	1 3.17E-11	2 4.04E-11	3 4.72E-11	4 3.362-14	5 1.87E-11	6 7.13E-13	7 2.77 Ξ -31	8 1.01E-09	9 6.41E-12	1.152-09
Co-60	1.312-06	1.292-06	1.222-06	2.77至-07	1.262-06	1.052-06	1.392-08	4.362-05	2.442-07	5.03E-05
Mn-54	3.362-07	3.322-07	3.182-07	5.792-08	3.262-07	2.702-07	1.462-09	1.132-05	€.28Ξ-08	1.302-05
Nb-94	9.282-07	9.182-07	8.812-07	1.55E-07	9.01E-07	7.462-07	3.571-09	3.102-05	1.732-07	3.571-05
Tc-99	1.012-10	1.182-10	1.662-10	4.242-12	1.122-10	5.662-11	3.962-18	3.312-09	1.972-11	3.892-09

Risk results for the external exposure pathway in the "Verification of Point Source Dose Calculations.docx" file are displayed first followed by results in RESRADB_R.RPT in the following screen shots. Risk results for the external exposure pathway match:

Risk (risl "Verifica	k/yr) Calculation tion of Point Sou	Results for a Po rce Dose Calcul	oint Source at D ations.docx" Fi	Different Rece le	ptor Location	ns with and w	ithout Shield	ing from the	;
	Withou	ut Shielding (Tab	le 5)	With Wa Rece	tter Shielding eptor (1m, 1m,	(Table 6) 1m)	With Conc Rece	rete Shieldin ptor (1m, 1m	g (Table 7) , 1m)
Nuclide	Receptor (0m,0m,0.3m)	Receptor (1m,1m,1m)	Receptor (0m,0m,4m)	1 cm	5 cm	50 cm	1 cm	5 cm	50 cm
C-14	5.85E-16	1.85E-17	3.73E-18	2.35E-17	2.75E-17	1.96E-20	1.09E-17	4.15E-19	1.61E-37
Mn-54	8.49E-12	2.54E-13	4.74E-14	2.51E-13	2.40E-13	4.37E-14	2.46E-13	2.04E-13	1.10E-15
Co-60	3.34E-11	9.99E-13	1.87E-13	9.85E-13	9.32E-13	2.11E-13	9.63E-13	8.01E-13	1.06E-14
Nb-94	2.34E-11	6.99E-13	1.31E-13	6.91E-13	6.64E-13	1.17E-13	6.79E-13	5.62E-13	2.69E-15
Tc-99	2.15E-15	6.56E-17	1.28E-17	7.64E-17	1.08E-16	2.75E-18	7.29E-17	3.67E-17	2.57E-24

** RESRAD-BUILD Risk Program Output, Version 4.0.19.0 Beta 12/16/22 08:14:31 Page: 8 ** Title : Default Case for RESRAD-BUILD Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\point-source-verification.bld Evaluation Time: 0.000000002+00 years

Nuclide Detail of Risks

[Risk]

Source: 1 Nuclide Receptor Receptor Receptor Receptor Receptor Receptor Receptor Receptor Receptor Total 3 8 1.852-17 2.352-17 2.752-17 1.962-20 1.092-17 4.152-19 1.612-37 5.852-16 3.732-18 C-14 6.702-16 Co-60 9.992-13 9.852-13 9.322-13 2.112-13 9.632-13 8.012-13 1.062-14 3.342-11 1.872-13 3.852-11 Mn-54 2.542-13 2.512-13 2.402-13 4.372-14 2.462-13 2.042-13 1.102-15 8.492-12 4.742-14 9.772-12 6.992-13 6.912-13 6.642-13 1.172-13 6.792-13 5.622-13 2.692-15 2.342-11 1.312-13 2.692-11 Nb-94 6.562-17 7.642-17 1.082-16 2.752-18 7.292-17 3.672-17 2.572-24 2.152-15 1.282-17 2.522-15 Tc-99

7.2 TEST CASE 012-2

Test objectives/descriptions:

To verify the external dose calculation results for a line source.

Test result (Pass/Fail): Pass

Test details:

Refer to Test Case 012-2 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "line-source-verification.bld" associated with the test case was used. External exposure pathway dose and risks are calculated at different receptor locations with and without shielding. The receptors considered were:

Receptor 1 – no shield and @ 1 m, 1 m, 1 m

Receptor 2 - water shield 1 cm and @ 1 m, 1 m, 1 m

Receptor 3 – water shield 5 cm and @ 1 m, 1 m, 1 m

Receptor 4 - water shield 50 cm and @ 1 m, 1 m, 1 m

Receptor 5 – concrete shield 1 cm and @ 1 m, 1 m, 1 m

Receptor 6 - concrete shield 1 cm and @ 1 m, 1 m, 1 m

Receptor 7 – concrete shield 1 cm and @ 1 m, 1 m, 1 m

Receptor 8 – no shield and @ 0 m, 0 m, 0.3 m

Receptor 9 – no shield and @ 0 m, 0 m, 4 m

Dose results for the external exposure pathway from "Verification of Line Source Dose Calculations.docx" for different receptors are displayed first followed by results in RESRADB.RPT in the following screen shots. Dose results for the external exposure pathway match:

Dose (mrem/yr) Calculation Results for a Line Source at Different Receptor Locations with and without Shielding from the "Verification of Line Source Dose Calculations.docx" File											
	Without Shielding (Table 1)			With Water Shielding (Table 2) Receptor (1m, 1m, 1m)			With Concrete Shielding (Table 3) Receptor (1m, 1m, 1m)				
Nuclide	Receptor 8 (0m,0m,0.3m)	Receptor 1 (1m,1m,1m)	Receptor 9 (0m,0m,4m)	Receptor 2 1 cm	Receptor 3 5 cm	Receptor 4 50 cm	Receptor 5 1 cm	Receptor 6 5 cm	Receptor 7 50 cm		
C-14	6.20E-10	3.20E-11	6.38E-12	4.07E-11	4.76E-11	3.39E-14	1.89E-11	7.18E-13	2.79E-31		
Mn-54	6.95E-06	3.39E-07	6.25E-08	3.35E-07	3.20E-07	5.83E-08	3.28E-07	2.72E-07	1.47E-09		
Co-60	2.70E-05	1.32E-06	2.43E-07	1.30E-06	1.23E-06	2.79E-07	1.27E-06	1.06E-06	1.40E-08		
Nb-94	1.92E-05	9.35E-07	1.73E-07	9.25E-07	8.88E-07	1.57E-07	9.08E-07	7.52E-07	3.60E-09		
Tc-99	2.04E-09	1.02E-10	1.96E-11	1.19E-10	1.67E-10	4.27E-12	1.13E-10	5.70E-11	3.99E-18		

** RISRAD- Title : D Input Fil Evaluatio	<pre>** RESRAD-BUILD Dose Program Output, Version 4.0.15.0 Beta 12/16/22 08:31:02 Page: 8 ** Title : Default Case for RESRAD-BUILD Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\line-source-verification.bld Evaluation Time: 0.000000002+00 years Nuclide Detail of Doses</pre>										
			[mrem]								
Source: 1											
Nuclide	Receptor	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Receptor 6	Receptor 7	Receptor 8	Receptor	Total	
C-14	3.20E-11	4.07E-11	4.76E-11	3.39E-14	1.892-11	7.18E-13	2.79E-31	6.20E-10	6.38E-12	7.672-10	
Co-60	1.322-06	1.302-06	1.232-06	2.792-07	1.272-06	1.062-06	1.402-08	2.702-05	2.432-07	3.372-05	
Mn-54	3.392-07	3.352-07	3.202-07	5.832-08	3.282-07	2.722-07	1.472-09	6.952-06	6.252-08	8.672-06	
Nb-94	9.352-07	9.252-07	8.882-07	1.572-07	9.082-07	7.522-07	3.602-09	1.922-05	1.732-07	2.392-05	
Tc-99	1.022-10	1.192-10	1.672-10	4.272-12	1.132-10	5.702-11	3.992-18	2.042-09	1.962-11	2.622-09	

Risk results for the external exposure pathway in the "Verification of Line Source Dose Calculations.docx" file are displayed first followed by results in RESRADB_R.RPT in the following screen shots. Risk results for the external exposure pathway match:

٦

Risk (risk/yr) Calculation Results for a Line Source at Different Receptor Locations with and without Shielding from the "Verification of Line Source Dose Calculations.docx" File										
Nuclide	Without Shielding (Table 5)			With Wa Rece	ater Shielding eptor (1m, 1m,	(Table 6) 1m)	With Concrete Shielding (Table 7) Receptor (1m, 1m, 1m)			
	Receptor 8 (0m,0m,0.3m)	Receptor 1 (1m,1m,1m)	Receptor 9 (0m,0m,4m)	Receptor 2 1 cm	Receptor 3 5 cm	Receptor 4 50 cm	Receptor 5 1 cm	Receptor 6 5 cm	Receptor 7 50 cm	
C-14	3.61E-16	1.86E-17	3.71E-18	2.37E-17	2.77E-17	1.97E-20	1.10E-17	4.18E-19	1.62E-37	
Mn-54	5.24E-12	2.56E-13	4.72E-14	2.53E-13	2.42E-13	4.40E-14	2.48E-13	2.05E-13	1.11E-15	
Co-60	2.06E-11	1.01E-12	1.86E-13	9.93E-13	9.39E-13	2.13E-13	9.71E-13	8.07E-13	1.07E-14	
Nb-94	1.45E-11	7.04E-13	1.30E-13	6.97E-13	6.69E-13	1.18E-13	6.84E-13	5.66E-13	2.71E-15	
Tc-99	1.32E-15	6.61E-17	1.27E-17	7.69E-17	1.08E-16	2.77E-18	7.35E-17	3.70E-17	2.59E-24	

** RESRAD-BUILD Risk Program Output, Version 4.0.19.0 Beta 12/16/22 08:31:02 Page: 8 ** Title : Default Case for RESRAD-BUILD Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\line-source-verification.bld Evaluation Time: 0.000000002+00 years

Nuclide	Detail	of	Risks
	[Risk]		

s	ource: 1										
	Nuclide	Receptor	Receptor 2	Receptor	Receptor	Receptor	Receptor	Receptor 7	Receptor	Receptor	Total
	C-14	1.862-17	2.372-17	2.77E-17	1.971-20	1.10E-17	4.18E-19	1.62E-37	3.612-16	3.71E-18	4.462-16
	Co-60	1.012-12	9.932-13	9.392-13	2.132-13	9.71 2-1 3	8.072-13	1.072-14	2.062-11	1.862-13	2.572-11
	Mn-54	2.562-13	2.532-13	2.422-13	4.402-14	2.482-13	2.052-13	1.112-15	5.242-12	4.722-14	6.542-12
	Nb-94	7.042-13	6.972-13	6.692-13	1.182-13	6.842-13	5.662-13	2.712-15	1.442-11	1.302-13	1.802-11
	Tc-99	6.612-17	7.692-17	1.082-16	2.772-18	7.352-17	3.702-17	2.592-24	1.322-15	1.272-17	1.702-15

7.3 TEST CASE 012-3

Test objectives/descriptions:

To verify the external dose calculation results for floor deposition.

Test result (Pass/Fail): Pass

Test details:

Refer to Test Case 012-3 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "Deposition-1.bld" associated with the test case was used. External exposure pathway dose and risks are calculated at different receptor locations with and without shielding. The receptors considered were:

Receptor 1 – Room 1 (area = 10 m^2) @ 0 m, 0 m, 1 m Receptor 2 – Room 2 (area = 36 m^2) @ 6 m, 6 m, 1 m Receptor 3 – Room 3 (area = 100 m^2) @ 10 m, 10 m, 1 m Receptor 4 - Room 4 (area = $1,000 \text{ m}^2$) @ 25 m, 40 m, 1 m

Dose results for external exposure from deposition pathway from "Verification of External Exposure Dose and Risk from Deposition.docx" for different receptors are displayed first followed by results in RESRADB.RPT in the following screen shots. Dose results for external exposure from deposition pathway match:

Dose (mrem/yr) Calculation Results for Floor Deposition at Different Receptor Locations (receptors in different rooms) from Table 5 in the "Verification of External Exposure Dose and Risk from Deposition.docx" File

Radionuclide	Receptor 1 Room 1 - 10 m ²	Receptor 2 Room 2 - 36 m ²	Receptor 3 Room 3 - 100 m ²	Receptor 4 Room 4 - 1000 m ²
Mn-54 (Source 2)	3.60E-08	1.15E-08	9.80E-09	2.41E-09
C-14 (Source 1)	4.28E-13	1.49E-13	1.33E-13	3.63E-14
Mn-54 (Source 3)	3.60E-08	1.15E-08	9.80E-09	2.41E-09
Tc-99 (Source 4)	4.29E-13	1.48E-13	1.30E-13	3.46E-14

** RESRAD-BUILD Dose Program Output, Version 4.0.15.0 Beta 12/16/22 05:10:00 Page: 5 ** Title : Default Case for RESRAD-BUILD Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\Deposition-1.bld Evaluation Time: 0.00000000E+00 years

		Pathway	Detail of	Doses				
			[mrem]					
Source: 1								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		ot	
7	irom		Deposition	Suspension	Deposition		Source	
Receptor	Source	1 077 00	on ILCOR	in air	0 407 00	0.007100	0.007100	5 207 00
1	2 127-08	2 757-10	4.281-13	2.621-15	3.421-09	0.002+00	0.002+00	3.301-06
2	4 127-06	1 767-10	1.451-13	2 257-16	4 167-10	0.002+00	0.002+00	4 727-08
3	4.131-09	2 727-11	2 627-14	5.351-10	6 267-11	0.002+00	0.002+00	4.722-09
Total	5 327-06	1 857-09	7 457-13	3 537-15	4 567-09	0.002+00	0.002+00	5 337-06
IUUAI	3.322-00	1.052-05	7.432-13	3.332-15	4.362-05	01002400	0.002400	3.332-06
Source: 2								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
-	irom		Deposition	Suspension	Deposition		Source	
Receptor	Source	cc	on floor	in air	c con oc			
1	2.092-07	6.85 <u>2</u> -09	3.602-08	7.442-10	6.93E-09	0.002+00	0.002+00	2.592-07
2	6.772-06	1.292-09	1.152-08	1.402-10	1.26E-09	0.002+00	0.002+00	6.792-06
3	4.76E-07	8.042-10	9.80Z-09	8.722-11	7.74E-10	0.002+00	0.002+00	4.872-07
4	9.49E-09	1.222-10	2.412-09	1.322-11	1.162-10	0.002+00	0.002+00	1.212-08
Total	7.47±-06	9.072-09	5.971-08	9.842-10	9.072-09	0.002+00	0.002+00	7.551-06
Source: 3								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air				
1	8.06E-08	6.852-09	3.60E-08	7.44E-10	6.93E-09	0.002+00	0.002+00	1.31E-07
2	5.28E-07	1.29E-09	1.15E-08	1.40E-10	1.26E-09	0.002+00	0.002+00	5.42E-07
3	4.33E-06	8.04 Ξ -10	9.80E-09	8.72E-11	7.74E-10	0.002+00	0.002+00	4.342-06
4	1.352-08	1.222-10	2.41E-09	1.322-11	1.162-10	0.002+00	0.002+00	1.622-08
Total	4.952-06	9.072-09	5.97王-08	9.84E-10	9.071-09	0.002+00	0.002+00	5.031-06
Source: 4								
	External	Inhalation	External	External	Ingestion	Radon	Ingestion	Total
	directly		from	from	of		of	
	from		Deposition	Suspension	Deposition		Source	
Receptor	Source		on floor	in air	-			
1	3.30E-13	1.30E-09	4.29E-13	4.50E-15	5.69E-10	0.002+00	0.002+00	1.872-09
2	4.672-13	2.60E-10	1.482-13	9.01E-16	1.102-10	0.002+00	0.00E+00	3.712-10
3	6.08E-13	1.662-10	1.302-13	5.76E-16	6.922-11	0.002+00	0.002+00	2.36E-10
4	4.50E-10	2.58E-11	3.462-14	8.942-17	1.062-11	0.002+00	0.002+00	4.87E-10
Total	4.52E-10	1.75E-09	7.42E-13	6.06E-15	7.58E-10	0.002+00	0.002+00	2.96E-09

Risk results for external exposure from deposition pathway from "Verification of External Exposure Dose and Risk from Deposition.docx" for different receptors are displayed first followed by results in RESRADB_R.RPT in the following screen shots. Risk results for external exposure from deposition pathway match:

Risk (risk/yr) Calculation Results for Floor Deposition at Different Receptor Locations (receptors in different rooms) from Table 5 in the "Verification of External Exposure Dose and Risk from Deposition.docx" File

Depositionation inc				
Radionuclide	Receptor 1 Room 1 - 10 m ²	Receptor 2 Room 2 - 36 m ²	Receptor 3 Room 3 - 100 m ²	Receptor 4 Room 4 - 1000 m ²
Mn-54 (Source 2)	2.72E-14	8.69E-15	7.39E-15	1.82E-15
C-14 (Source 1)	2.49E-19	8.65E-20	7.72E-20	2.11E-20
Mn-54 (Source 3)	2.72E-14	8.69E-15	7.39E-15	1.82E-15
Tc-99 (Source 4)	2.79E-19	9.58E-20	8.44E-20	2.25E-20

7.4 TEST CASE 012-4

Test objectives/descriptions:

To verify the external dose calculation results for area sources.

Test result (Pass/Fail): Pass

Test details:

Refer to Test Case 012-4 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "area-source-verification.bld" associated with this test case was used. External exposure pathway dose and risks are calculated at different receptor locations with and without shielding for 6 different area sources (Source $1 - \text{Area} = 10000 \text{ m}^2$, Source $4 - \text{Area} = 1000 \text{ m}^2$, Source $2 - \text{Area} = 100 \text{ m}^2$, Source $3 - \text{Area} = 36 \text{ m}^2$, Source $5 - \text{Area} = 10 \text{ m}^2$, and Source $6 - \text{Area} = 4 \text{ m}^2$). The receptors considered were:

Receptor 1 – no shield and @ 0 m, 0 m, 1 m

Receptor 2 - concrete shield 5 cm and @ 0 m, 0 m, 1 m

Receptor 3 – concrete shield 1 cm and @ 0 m, 0 m, 1 m

- Receptor 4 no shield and @ 0 m, 0 m, 0.3 m
- Receptor 5 no shield and @ 0 m, 0 m, 4 m

Dose results for the external exposure pathway from "Verification of Area Source Dose Calculations.docx" for different receptors and sources are displayed first followed by results in RESRADB.RPT in the following screen shots. Three separate tables for each radionuclide from the verification report are provided. Dose results for the external exposure pathway match:

External Exposure Pathway Dose (mrem/yr) for Area Sources with C-14 Contamination from Table 2 and Table 5 in "Verification of Area Source Dose Calculations.docx"									
Source size	Receptor 1 (no shield) Location (0m, 0m, 1m)	Receptor 2 (5 cm concrete) Location (0m, 0m, 1m)	Receptor 3 (1 cm concrete) Location (0m, 0m, 1m)	Receptor 4 (no shield) Location (0m, 0m, 0.3m)	Receptor 5 (no shield) Location (0m, 0m, 4m)				
Source 1 - 10000 m ²	1.58E-09	2.81E-12	8.54E-11	1.96E-09	1.13E-09				
Source 4 - 1000 m ²	1.04E-09	2.81E-12	8.54E-11	1.42E-09	6.00E-10				
Source 2 - 100 m ²	5.83E-10	2.81E-12	8.53E-11	9.52E-10	1.98E-10				
Source $3 - 36 \text{ m}^2$	4.11E-10	2.81E-12	8.17E-11	7.72E-10	9.56E-11				
Source $5 - 10 \text{ m}^2$	2.29E-10	2.81E-12	6.35E-11	5.62E-10	3.17E-11				
Source $6 - 4 m^2$	1.30E-10	2.63E-12	4.23E-11	4.22E-10	1.34E-11				

External Exposure Pathway Dose (mrem/yr) for Area Sources with Mn-54 Contamination from Table 3 and								
Table 6 in "Verification of Area Source Dose Calculations.docx"								
		D ()	D (2					

Source size	Receptor 1 (no shield) Location (0m, 0m, 1m)	Receptor 2 (5 cm concrete) Location (0m, 0m, 1m)	Receptor 3 (1 cm concrete) Location (0m, 0m, 1m)	Receptor 4 (no shield) Location (0m, 0m, 0.3m)	Receptor 5 (no shield) Location (0m, 0m, 4m)
Source 1 - 10000 m ²	4.80E-05	9.87E-06	2.49E-05	6.25E-05	3.13E-05
Source $4 - 1000 \text{ m}^2$	3.46E-05	9.87E-06	2.42E-05	4.92E-05	1.82E-05
Source $2 - 100 \text{ m}^2$	2.10E-05	9.75E-06	1.76E-05	3.55E-05	6.58E-06
Source $3 - 36 \text{ m}^2$	1.52E-05	8.82E-06	1.32E-05	2.94E-05	3.25E-06
Source $5 - 10 \text{ m}^2$	8.65E-06	6.11E-06	7.65E-06	2.17E-05	1.09E-06
Source $6 - 4 m^2$	4.97E-06	3.80E-06	4.43E-06	1.65E-05	4.61E-07

External Exposure Pathway Dose (mrem/yr) for Area Sources with Tc-99 Contamination from Table 1 and									
Table 4 in "Verification of Area Source Dose Calculations.docx"									
Source size	Receptor 1 (no shield) Location (0m, 0m, 1m)	Receptor 2 (5 cm concrete) Location (0m, 0m, 1m)	Receptor 3 (1 cm concrete) Location (0m, 0m, 1m)	Receptor 4 (no shield) Location (0m, 0m, 0.3m)	Receptor 5 (no shield) Location (0m, 0m, 4m)				
Source 1 - 10000 m ²	6.50E-09	1.23E-10	1.10E-09	8.12E-09	4.61E-09				
Source 4 - 1000 m ²	4.19E-09	1.23E-10	1.10E-09	5.80E-09	2.34E-09				
Source 2 - 100 m ²	2.41E-09	1.23E-10	9.97E-10	3.99E-09	7.88E-10				
Source 3 – 36 m ²	1.72E-09	1.23E-10	8.08E-10	3.27E-09	3.84E-10				
Source $5 - 10 \text{ m}^2$	9.66E-10	1.10E-10	4.91E-10	2.41E-09	1.28E-10				
Source $6 - 4 \text{ m}^2$	5.53E-10	8.25E-11	2.87E-10	1.81E-09	5.39E-11				

** RESRAD-BUILD Dose Program Output, Version 4.0.15.0 Beta 12/16/22 09:32:46 Page: 11 ** Title : Default Case for RESRAD-BUILD Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\area-source-verification.bld Evaluation Time: 0.000000002+00 years

Nuclide Detail of Doses

[mrem]

Source: 1						
Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Total
C-14	1.582-09	2.812-12	8.542-11	1.962-09	1.132-09	4.762-09
Mn-54	4.80Ξ-05	9.872-06	2.492-05	6.252-05	3.132-05	1.772-04
Tc-99	6.502-09	1.232-10	1.102-09	8.122-09	4.612-09	2.052-08

Source: 2						
Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Total
C-14	5.832-10	2.812-12	8.532-11	9.522-10	1.982-10	1.822-09
Mn-54	2.102-05	9.751-06	1.762-05	3.552-05	6.581-06	9.042-05
Tc-99	2.412-09	1.232-10	9.971-10	3.992-09	7.882-10	8.31E-09

Source: 3

Nuclide Receptor Receptor Receptor Receptor Total 4.112-10 2.812-12 8.172-11 7.722-10 9.562-11 1.362-09 C-14 Mn-54 1.522-05 8.822-06 1.322-05 2.942-05 3.252-06 6.982-05 1.722-09 1.232-10 8.082-10 3.272-09 3.842-10 6.302-09 Tc-99 1

Source: 4 Nuclide Receptor Receptor Receptor Receptor Receptor Total 1.042-09 2.812-12 8.542-11 1.422-09 6.002-10 3.152-09 C-14 3.462-05 9.872-06 2.422-05 4.922-05 1.822-05 1.362-04 Mn-544.192-09 1.232-10 1.102-09 5.802-09 2.342-09 1.362-08 Tc-99

Source: 5 Nuclide Receptor Receptor Receptor Receptor Total 2.292-10 2.812-12 6.352-11 5.622-10 3.172-11 8.892-10 C-14 Mn-54 8.652-06 6.112-06 7.652-06 2.172-05 1.092-06 4.522-05 Tc-99 9.662-10 1.102-10 4.912-10 2.412-09 1.282-10 4.102-09

Source: 6 Nuclide Receptor Receptor Receptor Receptor Total 2 1 3 4 C-14 1.302-10 2.632-12 4.232-11 4.222-10 1.342-11 6.112-10 Mn-544.972-06 3.802-06 4.432-06 1.652-05 4.612-07 3.012-05 Tc-99 5.532-10 8.252-11 2.872-10 1.812-09 5.392-11 2.792-09 Risk results for the external exposure pathway from "Verification of Area Source Dose Calculations.docx" for different receptors and sources are displayed first followed by results in RESRADB_R.RPT in the following screen shots. Three separate tables for each radionuclide from the verification report are provided. Risk results for the external exposure pathway match:

External Exposure Pathway Risk (risk/yr) for Area Sources with C-14 Contamination from Table 9 in "Verification of Area Source Dose					
Calculations.docx"					
Source size	Receptor 1 (no shield) Location (0m, 0m, 1m)	Receptor 4 (no shield) Location (0m, 0m, 0.3m)	Receptor 5 (no shield) Location (0m, 0m, 4m)		
Source $1-10000 \text{ m}^2$	9.22E-16	1.14E-15	6.57E-16		
Source $4 - 1000 \text{ m}^2$	6.08E-16	8.26E-16	3.49E-16		
Source $2 - 100 \text{ m}^2$	3.39E-16	5.54E-16	1.15E-16		
Source $3 - 36 \text{ m}^2$	2.39E-16	4.49E-16	5.57E-17		
Source $5-10 \text{ m}^2$	1.33E-16	3.27E-16	1.85E-17		
Source $6 - 4 m^2$	7.59E-17	2.46E-16	7.77E-18		

External Exposure Pathway Risk (risk/yr) for Area Sources with Mn-54							
Contamination from T	Contamination from Table 10 in "Verification of Area Source Dose						
Calculations.docx"							
Source size	Receptor 1 (no shield) Location (0m, 0m, 1m)	Receptor 4 (no shield) Location (0m, 0m, 0.3m)	Receptor 5 (no shield) Location (0m, 0m, 4m)				
Source 1 - 10000 m ²	3.62E-11	4.72E-11	2.35E-11				
Source $4 - 1000 \text{ m}^2$	2.61E-11	3.71E-11	1.37E-11				
Source $2 - 100 \text{ m}^2$	1.59E-11	2.68E-11	4.96E-12				
Source $3 - 36 \text{ m}^2$	1.15E-11	2.21E-11	2.45E-12				
Source $5-10 \text{ m}^2$	6.52E-12	1.64E-11	8.23E-13				
Source $6 - 4 m^2$	3.75E-12	1.24E-11	3.47E-13				

External Exposure Pathway Risk (risk/yr) for Area Sources with Tc-99 Contamination from Table 8 in "Verification of Area Source Dose Calculations.docx"

eurounduota				
Source size	Receptor 1 (no shield) Location (0m, 0m, 1m)	Receptor 4 (no shield) Location (0m, 0m, 0.3m)	Receptor 5 (no shield) Location (0m, 0m, 4m)	
Source $1 - 10000 \text{ m}^2$	4.22E-15	5.20E-15	2.99E-15	
Source $4 - 1000 \text{ m}^2$	2.61E-15	3.76E-15	1.52E-15	
Source $2 - 100 \text{ m}^2$	1.59E-15	2.59E-15	5.11E-16	
Source $3 - 36 \text{ m}^2$	1.15E-15	2.12E-15	2.49E-16	
Source $5 - 10 \text{ m}^2$	6.27E-16	1.56E-15	8.30E-17	
Source $6 - 4 m^2$	3.58E-16	1.18E-15	3.50E-17	

** RESRAD-BUILD Risk Program Output, Version 4.0.19.0 Beta 12/16/22 09:32:46 Page: 11 ** Title : Default Case for RESRAD-BUILD Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\area-source-verification.bld Evaluation Time: 0.00000000E+00 years

```
Nuclide Detail of Risks
```

[Risk]

S	ource: 1						
	Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Total
	C-14	9.222-16	1.642-18	4.972-17	1.142-15	6.571-16	2.772-15
	Mn-54	3.622-11	7.442-12	1.882-11	4.722-11	2.362-11	1.332-10
	Tc-99	4.222-15	7.952-17	7.122-16	5.272-15	2.992-15	1.332-14

Source: 2						
Nuclide	Receptor 1	Receptor 2	Receptor 3	Receptor 4	Receptor 5	Total
C-14	3.392-16	1.642-18	4.972-17	5.542-16	1.152-16	1.062-15
Mn-54	1.592-11	7.35E-12	1.332-11	2.682-11	4.962-12	6.822-11
Tc-99	1.562-15	7.952-17	6.462-16	2.592-15	5.112-16	5.392-15

Source: 3 Nuclide Receptor Receptor Receptor Receptor Receptor Total 1 2 3 4 5 C-14 2.392-16 1.642-18 4.762-17 4.492-16 5.572-17 7.942-16 Mn-54 1.152-11 6.652-12 9.942-12 2.212-11 2.452-12 5.272-11 Tc-99 1.112-15 7.952-17 5.242-16 2.122-15 2.492-16 4.092-15

Source: 4 Nuclide Receptor Receptor Receptor Receptor Receptor Total 1 2 3 4 5 C-14 6.08Z-16 1.64Z-18 4.97Z-17 8.26Z-16 3.49Z-16 1.84Z-15 Mn-54 2.61Z-11 7.44Z-12 1.82Z-11 3.71Z-11 1.37Z-11 1.03Z-10 Tc-99 2.72Z-15 7.95Z-17 7.12Z-16 3.76Z-15 1.52Z-15 8.79Z-15

 Source:
 5

 Nuclide
 Receptor
 Receptor
 Receptor
 Receptor
 Receptor
 Total

 1
 2
 3
 4
 5

 C-14
 1.332-16
 1.642-18
 3.692-17
 3.272-16
 1.852-17
 5.182-16

 Mn-54
 6.522-12
 4.612-12
 5.772-12
 1.642-11
 8.232-13
 3.412-11

 Tc-99
 6.272-16
 7.162-17
 3.192-16
 1.562-15
 8.302-17
 2.662-15

Source: 6 Nuclide Receptor Receptor Receptor Receptor Receptor Total 1 2 3 4 5 C-14 7.59Z-17 1.53Z-18 2.46Z-17 2.46Z-16 7.77Z-18 3.55Z-16 Mn-54 3.75Z-12 2.86Z-12 3.34Z-12 1.24Z-11 3.47Z-13 2.27Z-11 Tc-99 3.58Z-16 5.35Z-17 1.86Z-16 1.18Z-15 3.50Z-17 1.81Z-15

7.5 TEST CASE 012-5

Test objectives/descriptions:

To verify the external dose calculation results for rectangular area sources.

Test result (Pass/Fail): Pass

Test details:

Refer to Test Case 012-5 in the document RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "rectangle-area-source-verification.bld" associated with this test case was used. External exposure pathway dose is calculated for 6 different area sources (Source $1 - \text{Area} = 16 \text{ m}^2$, Source $2 - \text{Area} = 12 \text{ m}^2$, Source $3 - \text{Area} = 8 \text{ m}^2$, Source $4 - \text{Area} = 4 \text{ m}^2$, Source $5 - \text{Area} = 36 \text{ m}^2$, and Source $6 - \text{Area} = 100 \text{ m}^2$).

Dose results for the external exposure pathway from "Verification of Area Source Dose Calculations.docx" for different receptors and sources are shown first followed by results in RESRADB.RPT in the following screen shots. Dose results for the external exposure pathway match:

Dose (mrem/yr) for Rectangular Area Source with C-14 Contamination from Table 11 in "Area Source Dose Calculations.docx"				
Source	Receptor @ 0m, 0m, 1m	Rectangle Size		
Source $6 - 100 \text{ m}^2$	5.79E-10	10×10		
Source $5 - 36 \text{ m}^2$	4.09E-10	6×6		
Source $1 - 16 \text{ m}^2$	2.88E-10	4×4		
Source $2 - 12 \text{ m}^2$	2.46E-10	4×3		
Source $3 - 8 \text{ m}^2$	1.89E-10	4×2		
Source $4 - 4 m^2$	1.29E-10	2×2		

** RESRAD-BUILD Dose Program Output, Version 4.0.15.0 Beta 12/16/22 10:05:10 Page: 10 **
Title : Default Case for RESRAD-BUILD
Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\rectangle-area-source-verification.bld
Evaluation Time: 0.000000002+00 years

			Nuclide	Detail	of	Doses
				[mrem]		
Source: 1						
Nuclide	Receptor 1	Tot	al			
C-14	2.882-10	2.883	-10			
Source: 2	:					
Nuclide	Receptor 1	Tot	al			
C-14	2.462-10	2.463	-10			
Source: 3	4					
Nuclide	Receptor 1	Tot	al			
C-14	1.892-10	1.893	-10			
Source: 4	l l					
Nuclide	Receptor 1	Tot	al			
C-14	1.292-10	1.293	-10			
Source: 5						
Nuclide	Receptor	Tota	1			
C-14	4.09E-10	4.092-	10			
Source: 6						
Nuclide	Receptor 1	Tota	1			
C-14	5.79E-10	5.79E-	10			

7.6 TEST CASE 012-6

Test objectives/descriptions:

To verify the external dose calculation results for volume sources.

Test result (Pass/Fail): Pass

Test details:

Refer to Test Case 012-6 in the document RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "volume-source-verification.bld" associated with the test case was used. Dose results for the external exposure pathway from "Verification of volume source dose calculations.docx" for different receptors and sources are displayed first followed by results in RESRADB.RPT in the following screen shots. Dose results for the external exposure pathway match:

Dose Rates (mrem/yr) from Co-60 and Mn-54 Sources (1 mCi/g, Volume Source Located at (0, 0, -5 cm), Length = 6 m, Width = 6 m, Thickness = 10 cm, Density = 2.4 g/cm ³) at Different Receptor			
Source Configurations	• • •	•	
Receptor	Source 1 – Co-60 ^a	Source 2 – Mn-54 ^b	
Receptor 1 – no shield @ (0, 0, 30 cm)	1.17E+10	2.84E+09	
Receptor $2 - 1$ cm concrete shield @ (0, 0, 30 cm)	9.88E+09	2.29E+09	
Receptor $3-5$ cm concrete shield @ (0, 0, 30 cm)	4.72E+09	9.96E+08	
Receptor 4 – no shield @ (0, 0, 100 cm)	8.49E+09	2.09E+09	
Receptor $5 - 1$ cm concrete shield @ (0, 0, 100 cm)	7.66E+09	1.83E+09	
Receptor $6-5$ cm concrete shield @ (0, 0, 100 cm)	4.41E+09	9.47E+08	
Receptor 7 – no shield @ (0, 0, 400 cm)	2.25E+09	5.65E+08	
Receptor $8 - 1$ cm concrete shield @ (0, 0, 400 cm)	2.14E+09	5.25E+08	
Receptor $9-5$ cm concrete shield @ (0, 0, 400 cm)	1.53E+09	3.50E+08	

^a Values from Table 9 in the verification report.

^b Values from Table 10 in the verification report.

** RESRAD-BUILD Dose Program Output, Version 4.0.19.0 Beta 12/16/22 12:53:57 Page: 7 **
Title : Volume sources verification
Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\volume-source-verification.bld
Evaluation Time: 0.000000002+00 years

	RESRAD-BUILD Dose Tables	
—		

Source	Contributions	to	Receptor	Doses
--------	---------------	----	----------	-------

				[mrem]
		Source	Source	Total
		1	2	
Receptor	1	1.17 E +10	2.84E+09	1.462+10
Receptor	2	9.88E+09	2.29E+09	1.22E+10
Receptor	3	4.72E+09	9.962+08	5.72E+09
Receptor	4	8.49E+09	2.092+09	1.062+10
Receptor	5	7.662+09	1.83E+09	9.49E+09
Receptor	6	4.41E+09	9.47E+08	5.35E+09
Receptor	7	2.25E+09	5.652+08	2.822+09
Receptor	8	2.14E+09	5.25E+08	2.662+09
Receptor	9	1.53E+09	3.502+08	1.882+09
Total		5.28E+10	1.24E+10	6.52E+10

Risk results for the external exposure pathway from "Verification of volume source dose calculations.docx" for different receptors and sources are displayed first followed by results in RESRADB_R.RPT in the following screen shots. Risk results for the external exposure pathway match:

Risk (risk/yr) from Co-60 and Mn-54 Sources (1 mCi/g,	, Volume Source Located	at (0, 0, -5 cm),
Length = 6 m, Width = 6 m, Thickness = 10 cm, Density	v = 2.4 g/cm3) at Differen	t Receptor Source
Configurations	-	_
Receptor	Source 1 – Co-60 ^a	Source 2 – Mn-54 ^a
Receptor 1 – no shield @ (0, 0, 30 cm)	8.97E+03	2.14E+03
Receptor $2 - 1$ cm concrete shield @ $(0, 0, 30$ cm)	7.55E+03	1.73E+03
Receptor $3-5$ cm concrete shield @ (0, 0, 30 cm)	3.61E+03	7.51E+02
Receptor 4 – no shield @ (0, 0, 100 cm)	6.49E+03	1.58E+03
Receptor $5 - 1$ cm concrete shield @ $(0, 0, 100 \text{ cm})$	5.85E+03	1.38E+03
Receptor $6-5$ cm concrete shield @ $(0, 0, 100$ cm)	3.37E+03	7.15E+02
Receptor 7 – no shield @ (0, 0, 400 cm)	1.72E+03	4.26E+02
Receptor $8 - 1$ cm concrete shield @ $(0, 0, 400 \text{ cm})$	1.63E+03	3.96E+02
Receptor $9-5$ cm concrete shield @ (0, 0, 400 cm)	1.17E+03	2.64E+02

^a Values from Table 12 in the verification report.

** RESRAD-BUILD Risk Program Output, Version 4.0.19.0 Beta 12/16/22 12:53:57 Page: 7 **
Title : Volume sources verification
Input File : C:\Users\kamboj\Desktop\Build-Release-Testing\volume-source-verification.bld
Evaluation Time: 0.000000002+00 years

Source Contributions to Receptor Risks

			[Risk]
	Source	Source	Total
	1	2	
1	8.97 ± +03	2.14E+03	1.11E+04
2	7.55E+03	1.73E+03	9.28E+03
3	3.61E+03	7.51E+02	4.36E+03
4	6.49E+03	1.58E+03	8.07 ±+ 03
5	5.85E+03	1.38E+03	7.23E+03
6	3.37E+03	7.15E+02	4.08E+03
7	1.72E+03	4.262+02	2.15E+03
8	1.632+03	3.96E+02	2.03E+03
9	1.17E+03	2.64E+02	1.44E+03
	4.04E+04	9.38E+03	4.98E+04
	1 2 3 4 5 6 7 8 9	Source 1 1 8.972+03 2 7.552+03 3 3.612+03 4 6.492+03 5 5.852+03 6 3.372+03 7 1.722+03 8 1.632+03 9 1.172+03 4.042+04	Source Source 1 2 1 8.97±+03 2.14±+03 2 7.55±+03 1.73±+03 3 3.61±+03 7.51±+02 4 6.49±+03 1.58±+03 5 5.85±+03 1.38±+03 6 3.37±+03 7.15±+02 7 1.72±+03 4.26±+02 8 1.63±+03 3.96±+02 9 1.17±+03 2.64±+02 4.04±+04 9.38±+03

8. TEST CASE 017

Test objectives/descriptions:

To test the selection, viewing, printing, and saving text reports.

Test result (Pass/Fail): Pass

Test details:

- (1) Copied the files "Input 017.bld" and "Input 017-1.bld" associated with the test case to the UserFiles folder under the RESRAD-BUILD installation directory.
- (2) Ran "Input 017.bld" file. The summary report would pop up after the calculation. Closed it.
- (3) Clicked View -> Last Report menu option, and the summary report opened. Tested the following menus in the Report Viewer, and all worked as expected.

🖹 Input 017.drf	12/16/2022 4:05 PM	DRF File	5 KB
all Input 017.exp	12/16/2022 4:05 PM	Exports Library File	8 KB
🗊 Input 017.det	12/16/2022 4:05 PM	Office Data File	24 KB
📑 Input 017.rsk	12/16/2022 4:05 PM	RSK File	24 KB

1) File \rightarrow Save all.

- 2) File -> Save to "test017-1.txt."
- 3) File -> Print to "test017-print.pdf."

Print	×
General	
Select Printer	
Fax Microsoft Print to PDF Microsoft XPS Document Writer	ConeNote (Desktop)
 Status: Ready Location: Comment: 	Print to file Preferences Find Printer
Page Range Image: All C Selection C Current Page Image: Pages: 1 Enter either a single page number or a single page range. For example, 5-12	Number of copies: 1
	Print Cancel

4) File -> Adjust Font. The 1st figure below shows the summary report before the font adjustment; the 2nd figure shows the report after the font adjustment.

	0.007
VIEW - RESRADE	5.KP I
File Edit View	
Eon: MS LineDr	
** RESRAD-BUI Title : Defa Input File :	LD Dose Program Output, Version 4.0.15.0 Beta 12/16/22 16:05:54 Page: 1 ** ult Case for RESRAD-BUILD C:\RESRAD_Family\BUILD\4.0.15.0_beta\UserFiles\Input 017.bld
1	RESRAD-BUILD Table of Contents
	DESTAD_PUTTD Input Deservators 2
	Building Information
	For time = 0.002+00 yr Receptor-Source Dose Summary
	Dose by Nuclide Detail
	Dose by Pathway Detail 11 Dose by Nuclide Detail 12
IN THE RESEADER	
File Edit View	
** RESRAD-BUIL Title : Defau Input File : (<pre>0 Dose Program Output, Version 4.0.15.0 Beta 12/16/22 16:05:54 Page: 1 ** 1t Case for RESRAD-BUILD C:\RESRAD_Family\BUILD\4.0.15.0_beta\UserFiles\Input 017.bld</pre>
-	
=	
-	The second secon
=	
=	
	RESRAD-BUILD Input Parameters
	Source Information
	Temporal Dose Summary
	Source Information 4 Temporal Dose Summary
	Source information 4 Temporal Dose Summary
	Source Information 4 Temporal Dose Summary
	Source Information 4 Temporal Dose Summary
	Source Information 4 Temporal Dose Summary

- 5) File -> Make New "MyFonts.dat." A new "MyFonts.dat" file was generated.
- 6) File -> Exit Viewer. The view window was closed.

7) Edit -> Select All. All texts in the report were selected.

I VIEW - RESRADB.RPT	-	\times
File Edit View		
Eont: MS LineDraw - 7.4 - 🗃 🖹 🖻 Page: 1 - VA		
** RESRAD-BUILD Dose Program Output, Version 4.0.19.0 Beta 12/16/22 16:05:54 Page: 1 ** Title : Default Case for RESRAD-BUILD Input File : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Input 017.bld		^
RESRAD-BUILD Table of Contents		
RESRAD-BUILD Input Parameters		
For time = 0.02+00 yr Receptor-Source Dose Summary		
For time 1.002+00 yr Receptor-Source Dose Summary 10 Dose by Pathway Detail		
Dose by Nuclide Detail 12		

8) Edit -> Copy, and then Paste to Notepad.

*Untitled - Notepad			_		×
File Edit Format View	Help				
** RESRAD-BUILD Do Title : Default C Input File : C:\R	se Program Output, Version 4.0.19.0 Beta 12/16/22 1 ase for RESRAD-BUILD ESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Input 01	.6:05:54 7.bld	Page:	1 **	^
	RESRAD-BUILD Table of Contents				
RES Bui	RAD-BUILD Input Parameters				
Sou Tem For	rce Information				
For	Receptor-Source Dose Summary				
FOL	Receptor-Source Dose Summary				

9) View -> Full Window.

10) View -> Another File.

Jelect RESRAD-BUILD file	to be opened					×
\leftarrow \rightarrow \checkmark \uparrow 📑 \flat Thi	is PC > Local Disk (C:) > RESRAD_Fa	mily > BUILD > 4.0.19.0_beta > U	serFiles 🗸 🗸	ې ا	Search UserFile	25
Organize 🔻 New folde	er					• 🔳 🔞
📑 Email attachmer ^	Name	Date modified	Туре	Size		
📑 Email attachmer	ReleaseTesting	12/16/2022 3:35 PM	File folder			
resrad	ReleaseTesting_cw-0	12/15/2022 12:46 AM	File folder			
📑 Shared with Ever	🗊 Input 017.det	12/16/2022 4:05 PM	Office Data File	24	КВ	
📥 OneDrive - Persor	🖹 Input 017.drf	12/16/2022 4:05 PM	DRF File	5	KB	
💻 This PC						
🗊 3D Objects						
E Desktop						
Documents						
🖶 Downloads-c						
b Music						
Pictures						
Videos						
🟪 Local Disk (C:) 💡						
File na	ame: Input 017.bld			~ In	put (*.RPT; *.OUT;	*.DET; *.PRI $ \smallsetminus $
					Open	Cancel

```
VIEW - C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Input 017.bld
File Edit View
Font: MS LineDraw - 7.4 -
                                            Page: 🚹
                            B
                                       r
                                                     ਤ ¥≾
&INDATA
VERS = '4.0.19.0 Beta'
TITLE = 'Default Case for RESRAD-BUILD',
IntDoseDCF = 'ICRP 72 (Adult)',
ExtDoseDCF = 'ICRP 60',
RiskLib = 'FGR 13 Morbidity',
BaseIntDoseDCF = 'ICRP 72 (Adult)',
BaseExtDoseDCF = 'ICRP 60',
BaseRiskLib = 'FGR 13 Morbidity',
Transformations = 'ICRP38',
CutOffHalflifeD = 30 ,
NUM_SAMPS = 0, NUMVAR = 0, NUM_SENS = 0,
ND = 4, NS = 4, NTIME = 2, NROOM = 3,
TTIME = 365, FTIN = 0.5 ,
DOSE_TIME = 0, 1,
RM = 2, 3,
QINPUT = 60, 60,
LINPUT = 1, 1,
N12 = 0,
N23 = 0,
AREA = 36, 36, 36,
H = 2.5, 2.5, 2.5,
VOLUME = 90, 90, 90,
DKSUS = 0.0000005, 0.0000005, 0.0000005,
DLVL = 1, 2, 3, 1,
TWGHT = 1, 1 , 1 , 1 ,
BRTRATE = 18, 18 , 18 , 18 ,
INGE2 = 0.0001, 0.0001 , 0.0001 , 0.0001 ,
DX(1,1)=1,
DX(1,2)=1,
DX(1,3)=1,
DX(2, 1) = 1
DX(2, 2) = 1,
DX(2, 3) = 1,
DX(3, 1) = 1,
DX(3, 2) = 1,
DX(3,3) = 1,
DX(4, 1) = 1,
DX(4, 2) = 1,
DX(4,3) = 1,
SX(1, 1)=0,
SX(1,2)=0,
SX(1, 3)=0,
SX(2, 1) = 0,
SX(2, 2) = 0,
SX(2, 3) = 0,
SX(3, 1) = 0,
SX(3, 2) = 0,
SX(3,3) = 0,
SX(4, 1) = 0,
SX(4, 2) = 0,
SX(4,3) = 0,
SDIR = 1, 1, 1, 1, 1,
VOLSRCDIR = 1 , 1 , 1 , 1 ,
STYPE = 4, 3, 2, 1,
SAREA = 36, 36, 36, 36,
NNUCS = 1, 1, 1, 1,
RRF = 0.1, 0.1, 0.1, 0.1
AIRFR = 0.1, 0.1, 0.1, 0.1
RMVFR = 0.5, 0.5, 0.5, 0.5,
```

- 11) View -> Page Selection: highlighted the Page dropdown box.
- 12) View -> Text Selection: enabled the selection of text.
- (4) Compared the dose and risk report with the provided verification output files and saved the comparison to "test017-dose-tradition.diff" and "test017-risk-tradition.diff," respectively. No differences were found.
- (5) Compared the intermediate output files and saved the comparison to files with ".dif" file extension. No differences were found.
- (6) Ran file "Input 017-1.bld," compared the dose and risk output files and intermediate files with the provided verification output files and saved the comparison to files with the "-1.dif" extension. No differences were found.

9. TEST CASE 018

Test objectives/descriptions:

This test is to verify the standard graphics module works as expected, including selecting, viewing, printing, and saving graphic results.

Test result (Pass/Fail): Pass

Test details:

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. An input file containing 4 different types of radiation sources each located in different rooms was created to run the code. After calculations were completed, the deterministic graphics viewer was opened to view the dose and risk results in the graphics mode. Different plot types with different combinations of dose/risk attributes were selected to generate graphics without any issue. The generated graphics correctly showed the calculated dose/risk results and could be saved and printed without any issue.

A few graphics generated during the testing are shown below:

 RESRAD-BUILD Output Graphics C:\RESRAD_Family\8ULD\4.0.19.0_beta\UserFiles\Site018_r.ddb

 File
 Plot Style
 Plot Axis Selection Select the primary axis from the drop-down list Risk by Time and Pathway for Nuclide = Nuclide Summed, Source = Sources Summed, Receptor = 1 Select the secondary axis from the drowdown list 1.60E-04 Pathway 1.40E-04 Data Grouping How would you like the data grouped? 1.20E-04 Pick summed or individual. Receptor 1 1.00E-04 External Inhalation Deposition Air Submersio Ingestion Radon 8.00E-05 Source Sources Summed • 6.00E-05 Nuclide Summed 4.00E-05 2.00E-05 0.00E+01 -Time 0 Time 1 Exit Program <-Back Time

RESRAD-BUILD Output Graphics C\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Site018_r.ddb File Plot Style

10. TEST CASE 019

Test objectives/descriptions:

To test the DCF Editor for viewing, creating, editing, copying, renaming, exporting, and importing a dose/risk coefficient library and providing general and context-specific help information.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 019 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure.

(1) DCF Editor version number is 3.3:

🖷 RESRAD DO	CF Editor Version: 3.3	\times
File Help		
	Welcome to the RESRAD Dose Conversion Factor (DCF) Editor	
	Version: 3.3	

(2) The radionuclide transformation library, library option, base inhalation and ingestion dose factors, base external exposure dose factors, base values for slope (risk) factors in the DCF Editor main window match the RESRAD-BUILD code's interface:

- (3) The DCF Editor allowed to view a default library, create a new DCF library, edit an existing DCF library, rename an existing DCF library, and import and export a DCF library.
 - 1) View a default library:

Version: 3.3 Insformation chain database ICRP107 CICRP38	
ansformation chain database Select the components of the library that yo 'ICRP107 © ICRP38	
	u want to view.
rary Options Base inhalation and ingestion dose factors	
View a default library (read only)	_
Base external exposure dose factors	
Create a new DCF library	-
Edit an existing DCF library	
Make a copy of an existing UCF library	
Remarka an anisting DCE library	
brary Name: FGH 12, FGH 11, and FGH 13 Morbidity elected Nuclide: Ac-227	Dose Factors Help
Dose Conversion Factors Slope Factors Radon	Transfer Factors
Dese Conversion Factors Slope Factors Radon Ingestion Dese Conversion Factors Inhabition Dese Conversion Factors	Transfer Factors
Dose Conversion Factors Slope Factors Radon Insettion Dose Conversion Factors Reference (mvem/pC) Or FGR 11, 1 = 0.001 141E-2	Transfer Factors actors (mrem/pC 6.7E+0
Dose Conversion Factors Slope Factors Radon Ingestion Dose Conversion Factors [mem/pCi] [mhalation Dose Conversion I Reference [mem/pCi]	Transfer Factors actors (mrem/pC <u>6.7E+0</u> 1.72E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [meadorence] [mhalation Dose Conversion I <u>Reference</u>] [mhalation Dose Conversion I <u>Reference</u>] © FGR 11, L_1 = 0.001 141E-2 © FGR 11 Class = D © FGR 11 Class = -W main © FGR 11 Class = -W © FGR 11 Class = -Y	Transfer Factors actors (mem/pC 6.7E+0 1.72E+0 1.22E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mean/pCi] [mean/pCi	Transfer Factors actors (mrem/pC 6.7E+0 1.29E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors Inhalation Dose Conversion I <u>Reference</u> © FGR 11. L ₁ = 0.001 InterverypCit 141E.2 Inhalation Dose Conversion I <u>Reference</u> © FGR 11 Class = D © FGR 11 Class = W mmmmm FGR 11. L ₁ = 0.001 141E.2 FGR 11 Class = U	Transfer Factors actors (mrem/pC 6.7€+0 1.725+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mrem/pCi] [mrem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mrem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mrem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mrem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mrem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mrem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mrem/pCi] © FGR 11. [_1 = 0.001 [mrem/pCi] Image: Stope Factors [mrem/pCi] Industrian Factors [mrem/pCi] External Dose Conversion Factors, Volume [mrem/pCi]	Transfer Factors actors (mrem/pC 6.7E+0 1.29E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mem/pCi] [mem/pCi] © FGR 11. [_1 = 0.001 141E.2 Image: Stope Factors [mem/pCi] © FGR 11. [_1 = 0.001 141E.2 External Dose Conversion Factors, Volume [mem/p/l/[pCi/g] External Dose Conversion Factors, Volume [mem/p/l/[pCi/g] O Indem SEB 13 LEXEND 1	Transfer Factors actors (mrem/pC <u>6.7E+0</u> 1.23E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mrem/pCi] [mrem/pCi] [mrem/pCi] © FGR 11. L_1 = 0.001 141E.2 © FGR 11 Class = D FGR 11. L_1 = 0.001 141E.2 © FGR 11 Class = W External Dose Conversion Factors, Volume [mrem/y1/pCi/g] Reference [mrem/y1/pCi/g] © Default FGR 12 4.901E.4	Transfer Factors actors (mrem/pC <u>6.7E+0</u> 1.23E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mrem/pCi] [mrem/pCi] © FGR 11. L_1 = 0.001 141E.2 FGR 11. L_1 = 0.001 141E.2 External Dose Conversion Factors, Volume © FGR 11 Class = W Reference [mrem/p1/(pCi/g)] © Default FGR 12 4.901E.4	Transfer Factors actors (mrem/pC 5.7E+0 1.23E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mrem/pCi] [mrem/pCi] © FGR 11. L_1 = 0.001 141E.2 FGR 11. L_1 = 0.001 141E.2 FGR 11. Class = W © FGR 11. Class = W © FGR 11. Class = V © FGR 11. Class = V © FGR 11. Class = V © Default FGR 12 Adjustment Parameters	Transfer Factors actors (mrem/pC 5.7E+0 1.72E+0
Dose Conversion Factors Stope Factors Radon Ingestion Dose Conversion Factors [mrem/pCi] [mrem/pCi] © FGR 11. L_1 = 0.001 141E.2 External Dose Conversion Factors, Volume © FGR 11 Class = W Reference [mrem/p1/(pCi/g)] © Default FGR 12 4.991E.4	Transfer Factors actors (mrem/pC <u>6.7E=0</u> 1.72E=0 1.23E=0
2) Create a new DCF library:

Welcome to the	e RESRAD Dose Conversion Fact	or (DCF) Editor	
	Version: 3.3		
ransformation chain database			
ibrary Options	Base inhalation and ingestion dos	e factors	
View a default library (read only)	FGR 11	-	
Them a decidar library (read only)	Base external exposure dose facto		
		112	
Create a new DCF library	FGR 12	•	
Create a new DCF library	FGR 12 Base values for slope (risk factors		
Create a new DCF library	FGR 12 FGR 12 FGR 13 Morbidity) 	
 Create a new DCF library Edit an existing DCF library Make a copy of an existing DCF 	FGR 12 FGR 12 FGR 13 Morbidity Type the name of the new DCF lib	(912)	
 Create a new DCF library Edit an existing DCF library Make a copy of an existing DCF library 	FGR 12 FGR 12 FGR 13 Morbidity Type the name of the new DCF lib New Library	rary	
 Create a new DCF library Edit an existing DCF library Make a copy of an existing DCF library Rename an existing DCF library 	FGR 12 FGR 12 FGR 13 Morbidity Type the name of the new DCF lib New Library Library description	rary	

FGR 11 and FGR 12 based dose conversion factors and FGR 13 Morbidity based slope factors

Library Name	: New Library			Dose Factors Help
Selected Nuc	lide: Ac-227		-	
Ac-223 ^ Ac-224 Ac-225	Dose Conversion Factors	Slope Factors	Radon	Transfer Factors
Ac-225 Ac-226		r		
Ac-227	Ingestion Dose Conversion Factor	ls	Innalation Dose Conversion Fact	ors
Ag-102	Reference	(mrem/pCi)	<u>Reference</u>	(mrem/pCi)
Ag-103	⊙ FGR 11, f_1 = 0.001	1.41E-2	FGR 11 Class = D	6.7E+0
Ag-104 Ag-104m				
Ag-105			○ FGR 11 Class = ₩	1.72E+0
Ag-106 Ag-106m			© EGB 11 Class - Y	1.205.0
Ag-108			G Fun Ti Class – T	1.23E+0
Ag-108m Ag-109m	0	^		
Ag-110		~		
Ag-110m Ag-111				
Ag-112	Estand Deve Commission Frankrig	¥-1		
Ag-115	External Dose Conversion Factors	s, volume		
AI-26	Reference	(mrem/yr)/(pCi/g)		
Am-237	O Default FGR 12	4.951E-4		
Am-238 Am-239				^
Am-240	0	^		~
Am-241 Am-242		¥		
Am-242m				
Am-243	Adjustment Parameters			
Am-244m				
Am-245	External Dose Conversion Factors	, Surface	Air Submersion Dose Conversion	Factors
Am-246m	Reference	(mrem/yr)/(pCi/cm^2]	Reference	(mrem/yr)/(pCi/m^3)
Ar-37 Y	Default FGB 12	1.833E-4	Default FGB 12	6 792E-7
(Pask	~	LOGGE Y		0.1322.1
<- Back			0	^
				×
Exit Program				

3) Edit an existing DCF library:

Welcome to th	e RESRAD Dose Conversion Factor (DCF) Edi	tor			
Version: 3.3					
Transformation chain database	Select the library you want to edit.				
© ICRP107 ● ICRP38	New Library	_			
Library Options	Base inhalation and ingestion dose library: FGR 11				
🔿 View a default library (read only)	Base external dose library: FGR 12				
🔿 Create a ne w DCF library	Base risk library: FGR 13 Morbidity				
Edit an existing DCF library	Last modification date: Thursday, December 15, 2022				
C Make a copy of an existing DCF library					
Rename an existing DCF library	Library description				
	Echanged Ac. 227 inhalation tupe				

4) Rename an existing DCF library:

📇 RESRAD DCF Editor Version: 3.3		×
File Help		
Welcome to the	RESRAD Dose Conversion Factor (DCF) Editor	
	Version: 3.3	
Transformation chain database	Select the library you want to rename.	-
C ICRP107 C ICRP38	New Library	_
Library Options	Base inhalation and ingestion dose library: FGR 11	
C View a default library (read only)	Base external dose library: FGR 12	
🔘 Create a ne w DCF library	Base risk library: FGR 13 Morbidity	
C Edit an existing DCF library	Last modification date: Thursday, December 15, 2022	
Make a copy of an existing DCF	Type the new name for the DCF library	
library	New Library - 1	Rename
Rename an existing DCF library	Library description	Library
	Changed Ac-227 inhalation type	
Exit Program	✓	

5) Import and export a DCF library:

Help				
Export	Welcome to th	e BESBAD Dose Co	nversion Factor (DCF) Editor	
Import				
Close		Version:	: 3.3	
Transformation ch C ICRP107	nain database © ICRP38	Base inhalation	and industion does factors	
Library Options —		FGB 11	and ingestion dose ractors	
🔿 View a default	library (read only)			
C Create a new l	DCE library	Base external ex	kposure dose factors	
	DCF IIDrary	Funiz		
Edit an existin		Base values for	slope (risk factors)	
		Fun 13 Morbid		
 Make a copy o library 	or an existing DCF	Type the name of	of the new DCF library	
Bename an or				
e-trenenie an ex		Library descripti	on	
				Create
xit Program				Library
ESRAD DCF Editor \ Help	Version: 3.3 Welcome to the	RESRAD Dose Con	version Factor (DCF) Editor	×
ESRAD DCF Editor \ Help	Version: 3.3 Welcome to the	RESRAD Dose Con Version: 3.	version Factor (DCF) Editor	×
ESRAD DCF Editor \ Help	Version: 3.3 Welcome to the	RESRAD Dose Con Version: 3	version Factor (DCF) Editor 3	×
ESRAD DCF Editor \ Help	Version: 3.3 Welcome to the	RESRAD Dose Con Version: 3. Select the library y	version Factor (DCF) Editor .3 ou want to export.	×
ESRAD DCF Editor V Help	Welcome to the in database • ICRP38	RESRAD Dose Con Version: 3. Select the library y New Library - 1	version Factor (DCF) Editor 3 ou want to export.	× Export
ESRAD DCF Editor V Help	Version: 3.3 Welcome to the in database © ICRP38	RESRAD Dose Con Version: 3. Select the library y New Library - 1 Base inhalation FGR 11	version Factor (DCF) Editor 3 nou want to export. and ingestion dose library:	▼ Export
ESRAD DCF Editor V Help	Version: 3.3 Welcome to the in database © ICRP38 ibrary (read only)	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external do FGR 12	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library:	 Export
ESRAD DCF Editor V Help	Version: 3.3 Welcome to the iin database (ICRP38 ibrary (read only)	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library:	× • Export
ESRAD DCF Editor V Help ransformation cha ∩ ICRP107 brary Options ↓ View a default li Save As ← → ~ ↑ [Version: 3.3 Welcome to the in database (• ICRP38 ibrary (read only) ibrary (read only)	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12	version Factor (DCF) Editor 3 ou want to export. and ingestion dose library: ose library: ~ Č \scarce	Export
ESRAD DCF Editor V Help ransformation cha C ICRP107 brary Options View a default li Save As ← → ~ ↑ [Organize → N	Version: 3.3 Welcome to the in database © ICRP38 ibrary (read only) ibrary (read only) > This PC > Docume New folder	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library:	Export h Documents
ESRAD DCF Editor V Help ransformation cha ↑ ICRP107 ibrary Options ↓ View a default li Save As ← → ~ ↑ [Organize ▼ ↑	Version: 3.3 Welcome to the in database © ICRP38 ibrary (read only) ibrary (read only) > This PC > Docume New folder * Name	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library: V C P Searc Date modified Type	Export h Documents
ESRAD DCF Editor V Help Tansformation cha ⊂ ICRP107 ibrary Options ↓ View a default li Save As ← → ~ ↑ [Organize ▼ ↑ ↑ ■ Pictures ■ Build-Relea	Version: 3.3 Welcome to the in database (* ICRP38 ibrary (read only) ibrary (read only) * This PC > Docume New folder * Name ise-Te Custom O	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library: V C P Searc Date modified Type 7/15/2021 12:47 PM File f	Export
ESRAD DCF Editor V Help Tansformation cha ⊂ ICRP107 brary Options ↓ View a default li Save As ← → ∨ ↑ [Organize ▼ ↑ ↑ ■ Pictures ■ Build-Relea ■ Results Test	Version: 3.3 Welcome to the in database ⓒ ICRP38 ibrary (read only) ibrary (read only)	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library: Date modified 7/15/2021 12:47 PM 12/12/2022 3:32 PM DCF	× Export h Documents EE S folder File
ESRAD DCF Editor V Help tansformation cha C ICRP107 ibrary Options View a default li Save As C rganize N Pictures Build-Relea Results Test Test-Case12	Version: 3.3 Welcome to the in database	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12 ints	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library: Date modified 7/15/2021 12:47 PM 12/12/2022 3:32 PM DCF 12/12/2022 3:34 PM DCF	× ■ Export h Documents EIII ▼ S S S S S S S S S
ESRAD DCF Editor V Help Tansformation cha ○ ICRP107 ibrary Options ○ View a default li Save As ← → ~ ↑ 〔 ○ Organize ← N ■ Pictures ■ Build-Relea ■ Results Test □ Test-Case12 ■ Test-Case27	Version: 3.3 Welcome to the in database (* ICRP38 ibrary (read only) * This PC > Docume New folder * A Name Sec-Te Custom O test5.DCF Test11.DCf	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12 ents	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library: Date modified Type 7/15/2021 12:47 PM File f 12/12/2022 3:32 PM DCF 12/12/2022 3:34 PM DCF	
ESRAD DCF Editor V Help Tansformation cha ⊂ ICRP107 ibrary Options ibrary Options View a default li Save As ← → ~ ↑ [○ Pictures ○ Build-Relea ○ Results Test ○ Test-Case12 ○ Test-case27 ← OneDrive - A	Version: 3.3 Welcome to the in database TCRP38 ibrary (read only) ibrary (read only)	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhalation FGR 11 Base external d FGR 12 ents	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library:	× Export h Documents BEE ▼ S S S S S
ESRAD DCF Editor \ Help Tansformation cha C ICRP107 brary Options View a default li Save As ← → ~ ↑ [Organize ~ ↑ ↑ Pictures Build-Relea Results Test Test-Case12 Test-Case27 • OneDrive - A	Version: 3.3 Welcome to the in database (* ICRP38 ibrary (read only) * This PC > Docume New folder * Name ise-Te Custom O Custom O 1 test5.DCF 7 rgon	RESRAD Dose Con Version: 3 Select the library y New Library - 1 Base inhelation FGR 11 Base external d FGR 12 ents	version Factor (DCF) Editor .3 ou want to export. and ingestion dose library: ose library:	× Export h Documents IIII ▼ S S S S S

 Desktop

 Documents

 File name:

 New Library - 1

 Save as type:

 DCF (*.DCF)

 An

 An

 Save

 Save

 Cancel

(4) General Help worked as described:

Ber Editor Help		
Hide Back Print Options		
Contents Search ?? About the RESRAD DCF Edito ?? Help on Help :@ File Operation	Help on Help	
	Context-sensitive help is available for each selection or input field in the DCF Editor. To search for help on a specific selection or input field, do the followings:	
	Select the "contents" tab to see a list of the help topics, scroll down the list to the topic of interest, and then click the topic. The help contents for the selected topic will be displayed in the box on the right. The help topics are categorized to speed up the search for the interested topic.	
	Select the "search" tab and then type a keyword in the text box. Press the "List Topics" button to start the search and display the search results. The help topics with contents that include the keyword will be listed in the box below. Scroll down the list to the topic of interest, and click the topic. The help contents for the selected topic will be displayed in the box on the right.	
< >		~

(5) Dose factors Help worked properly:

- (6) The Back button worked properly.
- (7) Clicking on F1 caused DCF Editor Help window to pop up:

11. TEST CASE 022-2

Test objectives/descriptions:

To test the options under the View, Modify, Advanced, and Help menus in the menu bar, hotkeys, and the Toolbar icon for launching the DCF Editor.

Test result (Pass/Fail): Pass

Test details:

(1) In the Traditional Appearance, with Ingestion Rate focused, pressed F8 to perform uncertainty analysis, then changed the default maximum value, as shown below:

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\	test-22-2.bld				- 🗆 X
File View Modify Advanced Help					
		7			
Case	Receptor Parameters	Uncertainty Analysis Input Summa	iry	×	^
- Title	Receptor # 🏦 1	Sample specifications	Parameter distributions	Input Rank Correlations	Output Specifications
The Default Case for RESRAD-BUILD	Room 1	Variable Description	n - Statistics o	of Uncertain variable	
- Time Parameters	Time Fraction 1	Treceptor ingestion mate or re-	Receptor	Ingestion Rate of receptor 1	
Exposure Duration (days) 365 Evaluation	Breathing Rate 18 m³/d		Distributio	n LOGUNIFORM	_ Default
Indoor Fraction 0.5	Ingestion Rate 0.0001 m²/h				Minimum .000028
	Location [m] x: 1 y: 1 z: 1				Maximum .00039
Building Parameters					
Number of Rooms 1	Shielding Parameters				
Deposition Velocity 0.00039 m/s Flow	Source 1 / Receptor 1				
Resuspension Rate 0.0000005 17s	Thickness 0 cm				
Radiological Data	Density 2.4 g/cm ³				
Activity: Dose:	Material Concrete		Description of		
p v Ci v m v rem v	View Table Copy Shielding		Next param	arameter 🔺	
				Bemove	
C ICRP 107 © ICRP 38 Transformations	Source Parameters			arameter Help	Restore Default
Internal Dose Library ICRP 72 (Adult)	Source # 1				
External Dose Library ICRP 60 -	Room 1	• Perform uncertainty analys	is O Suppress uncer	rtainty analysis this session	<u>0</u> K
Risk Library FGR 13 Morbidity	Type Volume - TDetails	Incertainty Analysis Input Summar	у		
C:\RESRAD_Family\DCF\3.3	Direction X 💌	Sample specifications	Parameter distributions	Input Rank Correlations	Output Specifications
Cut-off Half-Life: 30 💌 days	Location of Centroid x: 0 y: 0 z: 0	Sampling parameters	Info	ormation about current selecti	ion
Number of parameters selected for Sensitivity Analysis: 0		Random <u>S</u> eed:	1000 Th	nis is the number of sample v	values to be generated for
Number of parameters selected for Sensitivity Analysis. 0		Number of Observations:	10 88	ach input variable. This set o	of inputs will be used to
		Number of <u>R</u> epetitions:	3 pr	obability statistics will be ge	nerated. This has to be
			gr	eater than the number of vari	iables selected for
			un	icentaliny / probabilistic anal	ysis.
			Fo	or example if 500 observation	ns and 10 repetitions are
		- Sampling Techniq	jue ge	enerated for each input varia	ble selected for
		 Latin Hyperce 	ube un	certainty / probabilistic analy	ysis. Each set of 500
		O Monte Carlo	for	r the variable.	share distribution specified
			Ea	ach set of 500 observations \ ESRAD outputs The uncert	will produce a set of 500
			sta	atistics can be computed for	each set of 500 outputs.
			Tr	ne 10 sets of repetitions will b lerance limits on the uncertai	be used to compute the inty / probability statistics
		tirouping of observation	ons	or an or an or an or an or an or an	ing (processing orderorido.
		 Correlated or Unc Random 	cornelated		
	-	Perform uncertainty analysi		ertainty analysis this session	0K
		······································	• O Suppress unce	arounty undryste tille session	<u>ū</u> k

- (2) After calculations were completed, closed the popped-up report viewer. Then performed the following testing on the various options under the View, Modify, Advanced, and Help menus as well as the corresponding icons in the main interface.
 - 1) View
 - 3D Display: From View|3D Display -> Close; from View 3D Display icon -> Close:

- Sensitivity Summary:
 - Menu|Sensitivity Summary toggle on:

- Menu|Sensitivity Summary toggle off the sensitivity summary disappeared at the bottom of the interface window.
- Uncertainty Input: Uncertainty input window appeared.

• Last Report: Last dose report was brought up.

• Last Risk Report: Last risk report was brought up.

III VIEW - RESRADB_R.RPT	
File Edit View	
Eont: MS LineDraw 🗸 7.4 🗸 🗃 🖹 🖹 🖪 🖪 🖿 Page: 🚺 🗸	
** ZZSRAD-BUILD Risk Frogram Output, Version 4.0.15.0 Bet Title : Default Case for RZSRAD-BUILD Input File : C:\RZSRAD_Family\BUILD\4.0.15.0_beta\UserFi	a 12/18/22 21:05:07
RESRAD-BUILD Table of Contents	
RESRAD-BUILD Input Parameters	2
Building Information	3
Source Information	4
For time = 0.002+00 vr	•
Receptor-Source Risk Summary	6
Risk by Pathway Detail	7
Risk by Nuclide Detail	8
For time = 1.002+00 yr	
Receptor-Source Risk Summary	9
Risk by Nuclide Detail	11

• Dose Coefficients and Slope Factors: Report was brought up.

I	VIEW - Dos	and Slope Factors.Rpt					
I	File Edit Vi	w					
1	Eont: Courier	New 🔻 7.4 💌 📇	🗄 🛱 🛅 Page:	∎ - ₹ 🛦			
1	** RESEAD-BI	U.D. Version 4 0 19 0 Beta	12/18/22 21:05:07 **				
1	Title : Def	wilt Case for RESEAD-BUILD					
I	Input File	C:\RESRAD Family\BUILD\4	0.19.0 beta\UserFil	es\test-22-2.bld			
I	input tire	· · · · · · · · · · · · · · · · · · ·					
I		Individual Radionucli	de Dose and Slope Fa	ctors			
I		External Dose Factors fro	om	Slope Factors from			
I		ICRP 60		FGR 13 Morbidity			
1		Internal Dose Factors fr	om				
1		ICRP 72 (Adult)					
1							
1	Isotope	External External Inhala	tion Ingestion	External External Inh	alation Ingestion		
1		Volume Air		Volume Air			
1		(mrem/y) (mrem/y) mrem,	/pCi mrem/pCi	risk/y risk/y	risk risk		
1		/(pCi/g) /(pCi/m ³)		/(pCi/g) /(pCi/m ³)	/pCi /pCi		
I	Co-60	1.54E+01 1.39E-02 1.15	E-04 1.26E-05	1.24E-05 1.12E-08 1	.01E-10 2.23E-11		
1							
I	1. The ext	ernal dose factors for volu	ume sources are used	to compute the direct exte	ernal dose from volu	me sources, from area sources and from deposited radionuclides.	
1	2. The rat	io between the external do:	se factor for volume	sources and the external a	slope factors for ve	olume sources are used to compute the external risk from all sources types and	from deposited material
1	The oth	er dose and slope factors :	are used to compute	the associated progeny into	egrated factors in t	the next table.	
I	3.a. *****	<pre>*** indicates that the spe-</pre>	cified database file	does not contain a value	for this factor. A	value of 0.0 is used to compute the integrated factors.	
I							
1							
1	** RESRAD-BU	ILD Version 4.0.19.0 Beta	12/18/22 21:05:07 **				
I	Vitle : Det	ault Case for RESEAD-BUILD					
I	input File	: C: (RESIGE_FABILY(BOILD)4	.0.19.0_beta(0serF11	es(test=22=2.bld			
I		Deep and Class Paster					
I		External Dose Eactors fr	s including concribu	Slope Factors from	orraes		
1		TCPD 60	011	ECP 13 Morbidity			
1		Internal Dose Factors fr		rok to horbitally			
1		TCPD 72 (Adult)	011				
I		icity (i (Malaic))					
1	Tentone	External Inhala	tion Indestion	External Inh-	alation Indestion		
1	recept	Air		Air			
1		(mren/y) mren	/nCi mram/nCi	risk/w	risk risk		
1		((nCi/ml)	por mean por	/(nCi/m3)	/pCi /pCi		
1	Co=60	1 398-02 1 15	R=04 1 26R=05	1 128-08 1	018-10 2 238-11		
I		2.390 02 2.100		1.110 00 1			
I	1. These d	ose and slope factors are	used to compute the	dose and risk from external	1 exposure from part	collates in air, inhalation of particulates and gases and ingestion.	
I	2. They at	e computed using the data	from the preceding t	able in the expression in	the next section.		
1							

• Last Intermediate Output Files: A window with intermediate files for selection appeared.

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFi	les\test-22-2.bl	d								-
e View Modify Advanced Help										
w Intermediate Output for the Last Run										
		Dose coeff	icients and sk	ope factors Rep	port				CI	ose
Component of Dose and Risk	Co	omponent of D	ose and Risk-	Summed over	Progeny	Compo	nent of Dose a	and Risk - Sur	nmed over Nue	lides
Time averaged Source Concentrations and Time integrated Direct Ingestion	Source	Source 2	Source	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source
Time Averaged Concentrations of Radionuclides on Particulates Suspended in Air and Deposited on Floor	Source	Source 2	Source 3	Source 4	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Time Averaged Concentrations of Tritium in Air	Source 1	Source 2	Source 3	Source 4	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Details of Radon Exposure		Distances ar	nd Densities fo	r External Exp	osure					
Temporal Concentrations of Particulates Suspended in Air and Deposited on Floor	Source	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Temporal Concentrations of Source Moisture in Air	Source	Source 2	Source 3	Source 4	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Matirx to Determine the Coefficients of the Eigen Vectors	Source	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Eigen Vectors to the System of Equations for Particulates	source	source 2	source 3	source	source	source 6	*ource 7	source 8	source 9	source 10
Eigen Values to the System of Equations for Particulates	Source	Source 2	Source 3	Source 4	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Matrix of the Coefficients of the System of Equations for Particulats Matrix of the Coefficients of the System of Equations for Tribited Water Vapor										
Rate of Release of Particulates from Source to Air	Source	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10
Rate of Release of Moisture from Source to Air	Source	Source 2	Source 3	Source	Source 5	Source 6	Source 7	Source 8	Source 9	Source 10

• Last Probabilistic Report: Report from the last analysis appeared.

- × C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\test-22-2.BUO _ File Graphics Results Input Specifications Parameter Statistics Title Default Case for RESRAD-BUILD Sampling parameters Random <u>S</u>eed: 1000 Number of Observations: 10 Number of <u>R</u>epetitions: 3 Sampling Technique Latin Hypercube Grouping of observations Correlated or Uncorrelated
- Uncertainty Graphics: The corresponding window appeared.

• Standard Graphics: The corresponding window appeared.

RESRAD-BUILD	Graphics C:\RESRAD_Fa	mily\BUILD\4.0.19.0_b	beta\UserFiles\test-22-2.	ddb
File				
Welco	me to the RE	SRAD-BUILD) Graphics Wi	zard
This tool RESRAI	will guide you thr D-BUILD calculat	ough the proces ions	s of creating data	plots from
You may pressing F then selec	blot data from the cur Forward or you may c t a plot style. To view	rent RESRAD-BUIL open a previously s v Sensitivity Results	D output by selecting aved RESRAD-BUILI , please select the Lir	the plot style and D graphics file and ne Chart plot style.
Please se click the Fi	lect a Plot Type (dos orward button to beg	se or risk) and a Plo in.	t Style (line, bar or sta	cked) then
Plot Type-	Plot Style			
Dose Dose				
Exit	C Line Chart	○ Bar Chart	 Stacked Chart 	Forward ->

• Any File: A window allowing the selection of any file popped up, then the selected file was opened.

🔲 Untitled -	Notepad				_		×		
File Edit Fo	ormat View Help								
Open									Х
$\leftarrow \rightarrow \lor$	↑ 📑 → This PC → Local D	isk (C:) > RESRAD_Fa	amily > BUILD > 4.0.11	.1_beta	 5 	Search	4.0.11.1_b	eta	
Organize •	 New folder 								0
Ema	il attachmer ^ Name	^	Date modit	ied Type	Size				•
resra	ad 🚺 OA files		11/16/2022	10.52 AM File felder	0.20				
Shar	red with Ever	External Fitted Parame	eters.txt 11/14/2022	8:52 AM Text Docum	ent 256	KB			
🔷 OneD	rive - Persor								
Inis P) Dhianta								
	Jojecis Je iPhone								
Desi	ktop								
🗎 Doc	uments								
🕹 Dow	/nloads-c								
🁌 Mus	ic								
Note: Pictor	ures								
📑 Vide	205								
Loca	al Disk (C:) 🗸								
	File name: Current_E	xternal_Fitted_Paramet	ters.txt		~ T	ext Docum	ents (*.txt))	\sim
				Encoding: Auto-Detect	~	<u>O</u> pen		Cancel	I
							-		.1
							- 18		
Current_E	External_Fitted_Parameters.txt	- Notepad					- 7		×
File Edit F	ormat View Help	·							
Nuclide	Volume_DCF	CF_A	CF_B	CF_KA	CF_KI	3			NE ^
1	mrem.g/pCi/y	0.087	0.912	cm2/g	cm2/g	f -01			
Ac-223 Ac-224	9.041E-01	0.078	0.913	1.679E+00	1.454E-	-01			4
Ac-225	5.286E-02	0.091	0.909	1.730E+00	1.473E-	·01			4
Ac-226 Ac-227	5.791E-01 2.615E-04	0.068	0.932	2.219E+00 5.566E+00	1.341E- 1.661E-	·01 -01			4
Ac-228	5.044E+00	0.119	0.881	1.005E+00	8.052E-	·02			4
Ac-230	3.381E+00	0.108	0.892	1.270E+00	7.299E-	·02			4
Ac-231 Ac-232	1.999E+00 7.285E+00	0.130	0.929	2.081E+00 9.180E-01	1.229E- 6.707E-	-01			4
Ac-233	2.783E+00	0.085	0.915	1.776E+00	9.840E-	-02			4
Ag-100m Ag-101	1.677E+01	0.114	0.886	1.065E+00	8.090E-	·02			4
Ag-101 Ag-102	2.036E+01	0.128	0.872	9.017E-01	7.615E-	·02			4
Ag-102m	1.250E+01	0.144	0.856	7.449E-01	6.522E-	•02			4
Ag-103 Ag-104	4.633E+00 1.580E+01	0.114 0.118	0.886	1.072E+00 9.601E-01	8.823E- 8.109E-	·02 -02			4
Ag-104m	1.065E+01	0.123	0.877	9.661E-01	7.825E-	.02			4
Ag-105 Ag-105m	2.653E+00	0.097	0.903	1.236E+00	9.950E- 1.025E-	·02			4
Ag-105m Ag-106	3.829E+00	0.085	0.915	1.545E+00	9.877E-	.02			4
Ag-106m	1.629E+01	0.117	0.883	9.673E-01	8.210E-	-02			4
Ag-108 Ag-108m	1.179E-01 8.985E+00	0.135	0.865	5.943E+00 1.176E+00	9.824E- 9.309E-	-02			4
Ag-109m	1.018E-02	0.173	0.827	3.924E+00	2.064E-	·01			4
Ag-110 Ag-110m	2.372E-01	0.184	0.816	3.943E+00	9.519E-	·02			4
Ag-110m Ag-111	1.403E-01	0.076	0.924	4.433E+00	0.025E- 1.139E-	·01			4
Ag-111m	1.741E-02	0.106	0.894	2.732E+00	1.108E-	01			4
Ag-112 Ag-112	4.259E+00 4.129E-01	0.113	0.887	1.253E+00	7.621E-	·02 -01			4
Ag-113 Ag-113m	1.128E+00	0.081	0.919	1.661E+00	1.028E-	·01			4
Ag-114	1.743E+00	0.126	0.874	1.737E+00	7.976E	•02			4
Ag-115 Ag-116	2.989E+00	0.111	0.889	1.333E+00	7.417E-	·02			4

• Calculator: A calculator appeared for use.

Standard 5			0
NC 168 Me	M- MS		
%	CE	c	0
Vx	x ²	Ψx	÷
7	8	9	×
4	5	6	-
1	2	3	+
+/_	0		-

- 2) Modify:
 - Source/Receptor Table: The corresponding table appeared.

B Source Receptor 1	Table 💌
Thickness, cm	Source #
Density, g/cm ³	1
Material 🔻	
Receptor #	2.4 Concrete v
	Save and Exit Cancel

• Delete Receptor: A warning message popped up because there was only one receptor.

RESRAD-BUILD	×
Must have at least one receptor	
ОК	

• Add Receptor: Chose this option to add Receptors 2 and 3, then chose Receptor 3 to delete with the "Delete Receptor" option.

Receptor Parameters		Receptor Parameters	
Receptor # Room Time Fraction Breathing Rate Ingestion Rate Location [m]	2 1 1 18m ² /d 0.0001m ² /h x: 1y: 1z: 1	Receptor # Room Time Fraction Breathing Rate Ingestion Rate Location [m]	3 v 1 v 1 1 18 m²/d 0.0001 m²/h x: 1 y: 1
Receptor Parameters Room Time Fraction Breathing Rate Ingestion Rate Location [m]	3		

• Delete Source: A warning message window popped up due to only one source available currently.

• Add Source: Added Sources 2 and 3, as shown in the screenshot, then deleted Source 2. Warning messages regarding the deleted source appeared.

Source # 2 Room 1 v Type Volume v Colume v Direction X v Location of Centroid x: 0 y: 0 z: 0 of Source [m] v 0 z: 0 Source Parameters Source # 3 v Room 1 v Direction X v Source mathematical states of the states of th	Source Parameters		Source Parameters	
Source # 3 Room 1 Type 3 Direction X v 1 Location of Centroid x: 0 v 0 z 0	Source # 2 Room 1 Type Vc Direction X Location of Centrol Source [m]	viume v Jume v pid x: 0 y: 0 z: 0	Source # 3 v Room 1 v Type Volume v Direction X v Location of Centroid x: 0 y: 0 z: 0	
of Source [m]	Source # 3 Room 1/2 Type 3 Direction X Location of Centre of Source [m]	✓ ✓ ✓ Model of the second	ils 	
Source # 2 ResRAD-BUILD ResRAD-BUILD Although the source has been deleted, no changes were made to the uncertainty input nor the sensitivity input. Please do the following in sequence 1. remove and or radiative input file, under a different name if appropriate. 3. (relopen that input file, under a different name if appropriate. 3. (relopen that input file, under a different name if appropriate. 3. (relopen that input file, was deleted.	Source Parameters Source # 2 Room 1 Type Volume Direction X Location of Centroid x of Source [m]	✓ ✓ ✓ © x0 z0	RESRAD-BUILD Although the source has been deleted, no changes were made to the uncertainty input nor the sensitivity input. Please do the following in sequence 1. remove any uncertainty input or sensitivity input that relates to the source that was deleted. 2. save the input file, under a different name if appropriate. 3. (rejopen that input file, 4. remove and or re-enter any uncertainty input or sensitivity input that relate to the sources numbered higher than that of the source that was deleted.	×

• Uncertainty Analysis: The corresponding input window appeared.

Uncertainty Analysis Input Summary			
Sample specifications Parameter	distributions	Input Rank Correlations	Output Specifications
Variable Description Receptor Ingestion Rate of receptor 1	- Statistics o Receptor In Distributio	f Uncertain variable ngestion Rate of receptor 1 n LOGUNIFORM	Default Minimum .000028 Maximum .00039
	Previous pa Next param Pa	eter version to settings to act	VS Restore Default vate windows.
 Perform uncertainty analysis C S 	uppress uncer	tainty analysis this session	<u>0</u> K

• Sensitivity Analysis: put cursor in the breathing rate input field and chose the View/Sensitivity Analysis menu option. Saved the inputs to "test-22-2-2.bld."

Set Sensitivity Analysis Rang	e
Variable Description: Breathing Rate of Rece Variable Name: brtrate(2)	ptor 2
Multiply and Divide the Variable's Deterministic Value by:	Please ensure that these values do not violate the bounds on the variable.
0 <u>1</u> .5 0 <u>2</u> 0 <u>3</u> 0 <u>5</u> 0 0 <u>t</u> her 10	Lower Value: 9 Base Value: 18 Upper Value: 36
<u>o</u> k	Cancel <u>N</u> o Analysis

- 3) Advanced:
 - With Traditional Appearance selected, switching to New Appearance caused the following windows to change:

Traditional Appearance	New Appearance
Iraditional Appearance Evaluation Times OK Times for Calculation (years): Cancel I 10 1000 1000 100000 I 10 Remove Add	Image: New Appearance Evaluation Times UK Times for Calculation (years): Image: C
Time Integration Maximum number of points for: Dose/Risk 257 •	Time Integration Convergence criterion 0.001 Maximum number of points 257 •
Building Parameters Number of Rooms 1 Image: Comparison of the second seco	Building Parameters Number of Rooms 1 Image: Air Flow Deposition Velocity 2 m/s Air Flow Resuspension Rate 4 5 1/s 1/s Radiological Data 6 7 V 1/s 1/s

B. Room Details	Room Air Flows and Particulates Number of Rooms
Building Exchange Rate [1/h] Room 1 Area [m ²] 36 Height [m] 2.5 Exchange Rate 0.8 OK Cancel	Number of Nooms Image: Constraint of the second

• Write Intermediate Output: when this option was toggled on, the intermediate output files were generated after running the code. Toggled this option off. When the inputs were saved to "test-22-2-3.bld," the code was run again; no intermediate output files were generated.

				Off			
Name ~	Date modified	Туре	Size	Name	Date modified	Туре	Size
🔐 bld_g.fil	12/18/2022 10:26 PM	FIL File	1 KB	🖼 bid a fil	12/18/2022 10-28 PM	FIL File	1
🚰 bld_g_r.fil	12/18/2022 10:26 PM	FIL File	1 KB	bid a fil	12/19/2022 10:29 PM	Ell Eile	1
Dose and Risk Components summed ove	12/18/2022 10:26 PM	RPT File	86 KB		12/10/2022 10:20 PM	DATES	
Dose and Risk Components summed ove	12/18/2022 10:26 PM	RPT File	58 KB	EHSVAR.DAT	12/18/2022 10:28 PM	DATFILE	
📑 resbmain.err	12/18/2022 10:26 PM	ERR File	2 KB	MCDAIA. IX1	12/18/2022 10:28 PM	lext Document	1
RESBMAIN.SUM	12/18/2022 10:26 PM	SUM File	2 KB	MESSAGE.FIL	12/18/2022 10:28 PM	FIL File	1
RESRADB.csv	12/18/2022 10:26 PM	CSV File	1 KB	resbmain.err	12/18/2022 10:28 PM	ERR File	2
RESRADB_r.csv	12/18/2022 10:26 PM	CSV File	1 KB	RESBMAIN.SUM	12/18/2022 10:28 PM	SUM File	2
AirRelRate1.out	12/18/2022 10:26 PM	OUT File	1 KB	RESBMC.OUT	12/18/2022 10:28 PM	OUT File	40
AirRelRate2.out	12/18/2022 10:26 PM	OUT File	1 KB	RESBMC RPT	12/18/2022 10:28 PM	RPT File	41
AirRelTimeIntegratedConcSource1.out	12/18/2022 10:26 PM	OUT File	1 KB		12/19/2022 10/29 DM	TOC File	1
AirRelTimeIntegratedConcSource2.out	12/18/2022 10:26 PM	OUT File	1 KB	RESDINCTION	12/10/2022 10:20 PW	IOC FILE	
CoefSysEqn.out	12/18/2022 10:26 PM	OUT File	1 KB	RESKADB.csv	12/18/2022 10:28 PM	CSV File	
DirectTimeIntegratedConcSource1.out	12/18/2022 10:26 PM	OUT File	1 KB	RESRADB_r.csv	12/18/2022 10:28 PM	CSV File	1
DirectTimeIntegratedConcSource2.out	12/18/2022 10:26 PM	OUT File	1 KB	SensBuild.Cdl	12/18/2022 10:28 PM	CDL File	3
Dose and Risk Components.rpt	12/18/2022 10:26 PM	RPT File	58 KB	SensBuild_r.Cdl	12/18/2022 10:28 PM	CDL File	3
EigenValues1.out	12/18/2022 10:26 PM	OUT File	1 KB	UncBuild.Cdl	12/18/2022 10:28 PM	CDL File	18
EigenValues2.out	12/18/2022 10:26 PM	OUT File	1 KB	T UNCOUT.ASC	12/18/2022 10:28 PM	ASC File	9
EigenVectors1.out	12/18/2022 10:26 PM	OUT File	1 KB	BB coeff bd lib	12/18/2022 10-28 PM	Object File Library	1
EigenVectors2.out	12/18/2022 10:26 PM	OUT File	1 KB	Bill Country Bh	12/10/2022 10:20 DM	Object File Library	102
EVCoefMatrix1.out	12/18/2022 10:26 PM	OUT File	1 KB	BBB Contentatio	12/ 10/ 2022 10:20 PIVI	Object File Library	102
EVCoefMatrix2.out	12/18/2022 10:26 PM	OUT File	1 KB	Current_External_Fitted_Parameters.txt	12/18/2022 10:28 PM	lext Document	1/2
External exposure dimensions.out	12/18/2022 10:26 PM	OUT File	2 KB	III DCF Individual.lib	12/18/2022 10:28 PM	Object File Library	1
LHSVAR.DAT	12/18/2022 10:26 PM	DAT File	1 KB	DCF Integrated.lib	12/18/2022 10:28 PM	Object File Library	1
MCDATA.TXT	12/18/2022 10:26 PM	Text Document	1 KB	Dose and Slope Factors.Rpt	12/18/2022 10:28 PM	RPT File	5
MESSAGE.FIL	12/18/2022 10:26 PM	FIL File	1 KB	EXAMPLE1.UN6	12/18/2022 10:28 PM	UN6 File	5
RESBMC.OUT	12/18/2022 10:26 PM	OUT File	40 KB	LHSBIN.DAT	12/18/2022 10:28 PM	DAT File	2
A RESEMC.RPT	12/18/2022 10:26 PM	RP1 File	41 KB	I HSIN DAT	12/18/2022 10:28 PM	DAT File	1
RESEMC.TOC	12/18/2022 10:26 PM	TOC File	1 KB	Dive Area sisted Desperated	12/10/2022 10:20 DM	DATER	
SensBuild.Cdl	12/18/2022 10:26 PM	CDL File	3 KB	Plus Associated Progeny.dat	12/10/2022 10:20 PW	DATFIE	0
Sensbuild_r.Cdl	12/18/2022 10:26 PM	CDL File	3 KB	Principal Progeny.dat	12/18/2022 10:28 PM	DATFile	
Uncourt too	12/18/2022 10:26 PM	CDL File	18 KB	resbmain.bat	12/18/2022 10:28 PM	Windows Batch File	1
ONCOULASC States Bas	12/18/2022 10:26 PM	ASC File	9 KB	RESRADB.RPT	12/18/2022 10:28 PM	RPT File	15
Dose and Slope Factors.kpt	12/18/2022 10:26 PM	KP1 File	5 KB	RESRADB_r.RPT	12/18/2022 10:28 PM	RPT File	15
	12/16/2022 10:26 PM	DATE:	DKB	RNDCFL.DAT	12/18/2022 10:28 PM	DAT File	1
LHSBIN.DAT	12/18/2022 10:26 PM	DATFile	2 KB	📝 dh fil	12/18/2022 9-36 PM	Ell File	1
	12/10/2022 10:20 PM	DDT FUE	10 KB	ne bid idb	12/19/2022 0-26 PM	Microsoft Access	1
PER RESIDENCE IN T	12/10/2022 10:26 PM	Object File Library	15 KB		12/10/2022 9:30 PIVI	DDD 51	226
Bin Count Ib	12/10/2022 10:26 PM	Object File Library	1 KB				

• Use 0 for Missing DC SF: Added U-238 to the radiation source and saved the inputs to "test-22-2-3.bld." Toggled off this option and then ran the code. The following warning message popped up:

RESRAD-BUILD	×
At least one radionuclide with a half life of greater than 10 minutes is missing one or more dose coefficients or slope factors. Do you want to create a library with non-zero values in place of the missing values?	0
Click YES to launch the Dose and Slope Factor Editor where you can create the library.	
Click NO to use 0 in place of the missing values and to PROCEED with the Run.	
Click CANCEL to cancel generation of current library.	
If you wish to, you can set your preference to use 0 in place of the missing values in the Advanced Menu, and avoid this message.	
Yes No Cancel	

Clicking "Yes" opened the DCF Editor:

Walcome to the	PESPAD Dasa Conversion Factor (DCE) Editor	
Welcome to the	e Alcarized Dose conversion r actor (DCr.) Editor	
	Version: 3.3	
Fransformation chain database		
Library Options	Base inhalation and ingestion dose factors	
🗅 View a default library (read only)	FGR 11 🔹	
There a decidant library (read only)	Base external exposure dose factors	
Create a new DCF library	FGR 12	
- L		
L	Base values for slope (risk factors)	
 Edit an existing DCF library 	Base values for slope (risk factors) FGR 13 Morbidity	
 Edit an existing DCF library Make a copy of an existing DCF 	Base values for slope (risk factors) FGR 13 Morbidity Type the name of the new DCF library	
Edit, an existing DCF library Make a copy of an existing DCF library	Base values for slope (risk factors) FGR 13 Motbidity Type the name of the new DCF library	
 Full an existing DDF library Make a copy of an existing DDF library Rename an existing DDF library 	Base values for slope (risk factors) FGR 13 Morbidity Type the name of the new DCF library Library description	

Clicking "No" launched the calculation. Checked the dose/risk coefficient file.

		Run								
					I	Doing	Calcu	lation	s	
		F	² robabi	listic Sa	mple 2	out of	30			
		С	alculat	ion Time	e 5.	Sec	onds		Cancel	
		E	stimate	d time t	o complei	tion 1	minute	s 12 Se	econds	
圆 VIEW - Do	se and Slope F	actors.Rpt								
File Edit	/iew									
Font: Couri	er New 🔻 7	4 👻	ai	Ba 🗂 Pag	ie: 🚺 👻 罺					
** RESRAD-H Title : De Input File	BUILD Versio afault Case a : C:\RESR	on 4.0.19.0 for RESRAD AD_Family\E) Beta 12/18)-BUILD 3UILD\4.0.19	3/22 22:37:46 0.0_beta\UserN	** Files\test-22-2	-3.bld				
	Indi	vidual Radi	ionuclide Do	se and Slope	Factors					
	External	L Dose Fact	tors from		Slope F	actors from				
	FGR 13 Internal FGR 13	2 L Dose Fact L	tors from		FGR 1	3 Morbidity	r			
Isotope	External	External Air	Inhalation	Ingestion	External	External Air	Inhalation	Ingestion		
	(mrem/y)	(mrem/y)	mrem/pCi	mrem/pCi	risk/y	risk/y	risk	risk		
	/(pCi/g)	/(pCi/m ³)			/(pCi/g)	/(pCi/m ³)	/pCi	/pCi		
0-238 Th-234	1.03E-04 2.41E-02	3.98E-07 3.94E-05	1.18E-01 3.50E-05	2.55E-04 1.37E-05	4.99E-11 1.63E-08	1.94E-13 2.60E-11	2.36E-08 3.07E-11	8.66E-11 3.40E-11		
Pa-234m	8.97E-02	8.39E-05		*******	6.87E-08	6.87E-11	*******	*******		
Pa-234	1.16E+01	1.09E-02	8.14E-07	2.16E-06	8.71E-06	8.20E-09	1.46E-12	3.70E-12		
0-234 Th-230	4.02E-04 1.21E-03	8.91E-07 2.03E-06	1.32E-01 3.26E-01	2.83E-04 5.48E-04	2.52E-10 8.19E-10	5.10E-13 1.31E-12	2.78E-08 3.40E-08	9.55E-11 1.19E-10		
Ra-226	3.18E-02	3.68E-05	8.58E-03	1.32E-03	2.29E-08	2.60E-11	2.82E-08	5.14E-10		
Rn-222	2.35E-03	2.23E-06	0.00E+00	0.00E+00	1.74E-09	1.66E-12	0.00E+00	0.00E+00		
Po-218 At-218	5.64E-05 5.85E-03	5.23E-08 1.39E-05	0.00E+00	0.00E+00	4.26E-11 3.57E-09	3.95E-14 8.34E-12	0.00E+00	0.00E+00		
Pb-214	1.34E+00	1.38E-03	7.81E-06	6.25E-07	9.82E-07	1.01E-09	4.00E-11	4.85E-13		
Bi-214	9.81E+00	8.93E-03	6.59E-06	2.83E-07	7.48E-06	6.83E-09	3.10E-11	2.65E-13		
Po-214 71-210	5.14E-04	4.76E-07	0.00E+00	0.00E+00	3.86E-10 0.00E+00	3.59E-13	0.00E+00	0.00E+00		
Pb-210	2.45E-03	6.58E-06	1.36E-02	5.37E-03	1.41E-09	3.76E-12	1.58E-08	1.18E-09		
Bi-210	3.61E-03	3.84E-06	1.96E-04	6.40E-06	2.76E-09	5.28E-12	4.55E-10	1.30E-11		
Po-210 Co-60	5.23E-05 1.62E+01	4.85E-08 1.47E-02	9.40E-03 2.19E-04	1.90E-03 2.69E-05	3.95E-11 1.24E-05	3.66E-14 1.12E-08	1.45E-08 1.01E-10	2.25E-09 2.23E-11		
1. The ex 2. The ra 3. The of 3.a. ****	aternal dose atio between ther dose an ***** indice	e factors f h the exter hd slope fa ates that t	for volume s mal dose fa actors are u the specifie	sources are us actor for volu used to comput ad database fi	sed to compute ime sources and te the associat ile does not co	the direct the extern ed progeny ntain a val	external do hal slope fa integrated lue for this	se from vol ctors for v factors in factor. A	lume sources, from area sources and from deposited volume sources are used to compute the external ris the next table. value of 0.0 is used to compute the integrated fac	radionuclides. % from all sources tors.
** RESRAD-H Title : De Input File	BUILD Versio afault Case a : C:\RESR	on 4.0.19.0 for RESRAD AD_Family\E	0 Beta 12/18 D-BUILD BUILD\4.0.19	3/22 22:37:46 .0_beta\UserH	** Files\test-22-2	-3.bld				
	Dose	and Slope	Factors inc	luding contri	ibution of Asso	ciated Radi	ionuclides			
	External	Dose Fact	tors from		Slope F	actors from	1 ,			
	FGR 11 Internal FGR 11	L Dose Fact L	tors from		FGR 1	3 Morbidity	r			
Isotope		External Air	Inhalation	Ingestion		External Air	Inhalation	Ingestion		
		(mrem/y)	mrem/pCi	mrem/pCi		risk/y	risk	risk		
11.000		/(pCi/m3)	1 108 01	2 (07 01		/(pCi/m3)	/pCi	/pCi		
U-238 U-234		1.60E-04 8.91E-07	1.18E-01 1.32E-01	2.83E-04		5.10E-13	2.36E-08 2.78E-08	9.55E-11		
Th-230		2.03E-06	3.26E-01	5.48E-04		1.31E-12	3.40E-08	1.19E-10		
Ra-226		1.03E-02	8.59E-03	1.32E-03		7.87E-09	2.83E-08	5.15E-10		
Po-210		4.852-08	1.38E-02 9.40E-03	1.90E-03		3.66E-14	1.63E-08 1.45E-08	2.25E-09		
Co-60		1.47E-02	2.19E-04	2.69E-05		1.12E-08	1.01E-10	2.23E-11		

Toggled on this option, saved the inputs to "test-22-2-4.bld," and ran the code. No warning message popped up before the calculation was conducted. Checked the dose/risk coefficient file; 0 was used when DC or SF was missing from the library database.

🔟 VIEW - Do	ose and Slope	Factors.Rpt								-		×
File Edit V	ïew											
Eont: Courie	r New 💌 7	.4 🔻		la 🗀 Pag	ie: 🚺 🔽 🐺							
** RESRAD-B Title : De Input File	UILD Versio fault Case : C:\RESR	on 4.0.19.0 for RESRAD AD_Family\F) Beta 12/18)-BUILD BUILD\4.0.19	/22 22:46:32 .0_beta\User]	** Files\test-22-2	-4.bld						
	India	vidual Radi	onuclide Do	se and Slope	Factors							
	External	l Dose Fact	ors from		Slope F	actors from	1					
	FGR 12 Internal	2 1 Dose Fact	ors from		FGR 1	3 Morbidity	r					
	FGR 1	1	Jord Trom									
Isotope	External	External	Inhalation	Ingestion	External	External	Inhalation	Ingestion				
	(mrem/v)	Alr (mrem/v)	mrem/pCi	mrem/nCi	volume risk/v	Alr risk/v	risk	risk				
	/(pCi/g)	/(pCi/m ³)	mrem/por	mrem, por	/(pCi/g)	/(pCi/m ³)	/pCi	/pCi				
U-238	1.03E-04	3.98E-07	1.18E-01	2.55E-04	4.99E-11	1.94E-13	2.36E-08	8.66E-11				
Th-234	2.41E-02	3.94E-05	3.50E-05	1.37E-05	1.63E-08	2.60E-11	3.07E-11	3.40E-11				
Pa-234m	8.97E-02	8.39E-05	*******	*******	6.87E-08	6.87E-11	*******	*******				
Pa-234	1.165+01	1.09E-02	8.14E-07	2.165-06	8.71E-06 2.52E-10	8.20E-09 5.10E-12	1.46E-12 2.79E-09	3.70E-12 9.55E-11				
Th-230	1.21E-03	2.03E-06	3.26E-01	5.48E-04	8.19E-10	1.31E-12	3.40E-08	1.19E-10				
Ra-226	3.18E-02	3.68E-05	8.58E-03	1.32E-03	2.29E-08	2.60E-11	2.82E-08	5.14E-10				
Rn-222	2.35E-03	2.23E-06	0.00E+00	0.00E+00	1.74E-09	1.66E-12	0.00E+00	0.00E+00				
Po-218	5.64E-05	5.23E-08	0.00E+00	0.00E+00	4.26E-11	3.95E-14	0.00E+00	0.00E+00				
At-218	5.85E-03	1.39E-05	0.00E+00	0.00E+00	3.57E-09	8.34E-12	0.00E+00	0.00E+00				
Pb-214	1.34E+00	1.38E-03	7.81E-06	6.25E-07	9.82E-07	1.01E-09	4.00E-11	4.85E-13				
Po-214	5 14E-04	4 76E-07	0.00E+00	0 00E+00	3.86E-10	3 59E-13	0.00E+00	0 00E+00				
T1-210	*******	*******	0.00E+00	0.00E+00	0.00E+00	*******	0.00E+00	0.00E+00				
Pb-210	2.45E-03	6.58E-06	1.36E-02	5.37E-03	1.41E-09	3.76E-12	1.58E-08	1.18E-09				
Bi-210	3.61E-03	3.84E-06	1.96E-04	6.40E-06	2.76E-09	5.28E-12	4.55E-10	1.30E-11				
Po-210	5.23E-05	4.85E-08	9.40E-03	1.90E-03	3.95E-11	3.66E-14	1.45E-08	2.25E-09				
Co-60	1.62E+01	1.47E-02	2.19E-04	2.69E-05	1.24E-05	1.12E-08	1.01E-10	2.23E-11				
1 The ex	ternal dose	e factors f	for volume a	ources are u	sed to compute	the direct	external do	se from vol	ume sources	from	area so	ILTCE
2. The ra	tio between	n the exten	mal dose fa	ctor for volu	ume sources and	the extern	al slope fa	ctors for v	olume sourc	es are t	used to	o cor
3. The ot	her dose a	nd slope fa	actors are u	sed to comput	te the associate	ed progeny	integrated	factors in	the next ta	ble.		
3.a. ****	**** indica	ates that t	he specifie:	d database f:	ile does not com	ntain a val	ue for this	factor. A	value of 0.	0 is use	ed to o	compi
** RESRAD-B	UILD Versi	on 4.0.19.0) Beta 12/18	/22 22:46:32	**							
Title : De	fault Case	tor RESRAL	D-BUILD			4.514						
input file	. C. (RESR	HD_FAULTY (F	50160(4.0.15	.0_beca\0seri	11es(test-22-2	-4.DIG						
	Dose	and Slope	Factors inc	luding contri	ibution of Asso	ciated Radi	onuclides					
	External ECP 1	l Dose Fact	cors from		Slope F	actors from	1					
	Internal FGR 1	2 1 Dose Fact 1	ors from		FGR 1.	s worbidity	r					
Tashara			T-1-1-1-1-1	T			T-1-1-1-1-1	T				
Isotope		Air	innalation	ingestion		Air	innalation	ingestion				
		(mrem/y)	mrem/pCi	mrem/pCi		risk/y	risk	risk				
		/(pCi/m³)				/(pCi/m³)	/pCi	/pCi				
U-238		1.60E-04	1.18E-01	2.69E-04		1.22E-10	2.36E-08	1.21E-10				
U-234		8.91E-07	1.32E-01	2.83E-04		5.10E-13	2.78E-08	9.55E-11				
Ra-226		2.03E-06 1.03E-02	3.26E-01 8.59E-03	5.48E-04 1.32E-03		1.31E-12 7.87E-09	2.83E-08	5.15E-10				
Pb-210		1.04E-05	1.38E-02	5.38E-03		9.04E-12	1.63E-08	1.19E-09				
Po-210		4.85E-08	9.40E-03	1.90E-03		3.66E-14	1.45E-08	2.25E-09				
Co-60		1.47E-02	2.19E-04	2.69E-05		1.12E-08	1.01E-10	2.23E-11				

• Display Check Sensitivity or Uncertainty Analysis Inputs Warning:

By default, this display warning option was toggled on. Performing the following actions in sequence brought up warning messages.

- i. Deleted a receptor.
- ii. Deleted a source.
- iii. Added a region.
- iv. Switched from the New Appearance to the Traditional Appearance.

RESRAD-BUILD ×	RESRAD-BUILD X
Although the receptor has been deleted, no changes were made to the uncertainty input nor the sensitivity input. Please do the following in sequence 1. remove any uncertainty input or sensitivity input that relates to the receptor that was deleted. 2. save the input file, under a different name if appropriate. 3. (re)open that input file, 4. remove and or re-enter any uncertainty input or sensitivity input that relate to the receptors numbered higher than that of the receptor that was deleted.	Although the source has been deleted, no changes were made to the uncertainty input nor the sensitivity input. Please do the following in sequence 1. remove any uncertainty input or sensitivity input that relates to the source that was deleted. 2. save the input file, under a different name if appropriate. 3. (re)open that input file, 4. remove and or re-enter any uncertainty input or sensitivity input that relate to the source that was deleted.
ОК	ОК
RESRAD-BUILD ×	RESRAD-BUILD X
No changes have been made to the uncertainty input nor the sensitivity input. If any regions were eliminated, please remove any sensitivity inputs or uncertainty inputs that pertain to those regions.	If the number of rooms was reduced, please remove any sensitivity analysis or uncertainty analysis that pertain to the rooms that were eliminated.
ОК	ОК

Added back a receptor, a source, and switched back to the new appearance. Toggled off this display warning option and then performed the following actions again. No warning messages popped up.

- i Deleted a receptor.
- ii Deleted a source.
- iii Added a region.
- iv Switched from the New Appearance to the Traditional Appearance.
- Save Preferences When Exiting Code:

When this option was toggled on, the radionuclide and DCF databases recorded in the configuration file were updated with the current selections when the code was closed. Launched the code again, changed the radionuclide database to ICRP-107, toggled off this option, and then ran and closed the code. Checked the configuration file; the radionuclide database recorded was not updated to ICRP-107 (it was ICRP-38). Launched the code again and found all the database settings were from the previous run before the last one

• Generate Dose, Risk, and Transformation Data:

Changed the cutoff half-life to 1.0E-7 days and selected U-238 and Ag-108m to add to the radiation source. Clicking this option under the "Advanced" menu popped up the window "Transformation, Dose Coefficient and Slope Factors." Selected a parent radionuclide from the 1st list in the window, then all the radionuclides in its decay chain were presented and their sequence in the decay was displayed. Selected a radionuclide from the decay chain (2nd list). Its dose coefficients and risk factors appeared at the bottom of the window:

- 4) Help
 - User's Manual: Upon choosing this option, the User's Manual popped up:

COVER User's Manual for RESRAD-BUILD Code Version 4 Vol. 1 – Methodology and Models Used in RESRAD-BUILD Code

• User's Guide: Upon choosing this option, the User's Guide popped up:

• General Help: Upon clicking this option, the Help window popped up.

• Context Help: Tested two parameters and the context help for each of them appeared upon request:

• About: The About screen appeared when this option was selected.

12. TEST CASE 025

Test objectives/descriptions:

To test the 3D display of the source and receptor locations.

Test result (Pass/Fail): Pass

Test details:

(1) When a new input file was opened and saved to "test025.bld," the opened 3D display reflected the current source and receptor locations"

(2) When the locators for source and receptor were moved to new locations, as shown below, their location coordinates were updated appropriately in the main interface:

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles	\test025.bld	- 0
🖳 🛄 📶 🜌 📰 🔀 DCF ±? ?		
Case	Receptor Parameters	Display
Title Title Default Case for RESRAD-BUILD Time Parameters Exposure Duration (days) 365 Evaluation Indoor Fraction 0.5 Building Parameters	Receptor # 1 - Room 1 - Time Fraction 1 - Breathing Rate 18 m²/d Ingestion Rate (0.0001 m²/h Location [m] x: 11.81 yr. 12.21 zr. 4.78	Move Drigin up 0 meters ight 0 meters
Number of Rooms 1 v Deposition Velocity 0.00039 m/s Resuspension Rate 0.0000005 1/s	Shelding Parameters Source 1 / Receptor 1 Thickness 0 cm Density 2.4 g/cm ⁹ Material Concrete	z y
p v Ci v m v rem v	Vie w Table Copy Shielding	
© ICRP 107 CICRP 38 Transformations	Source Parameters	
Internal Dose Library DOE STD-1196-2011 (Reference External Dose Library DCFPAK3.02 Risk Library DCFPAK3.02 Location of DCF Database Files C:NESTAD_FamilyOCFN3.3 Cut-off Half-Life: 0.0000001 days	Source # 1 Room 1 Type Volume Direction X Location of Centroid x: 5.85 y: 5.94 z: 1.9	Reset Close

(3) When the x, y, and z coordinates for the source and receptor were changed from the interface, the 3D display was updated accordingly.

(4) When 2 sources and 2 receptors were added with the following coordinates, the 3D display updated accordingly.

	Х	у	Z
Source 1	12	10	6
Source 2	6	10	6
Source 3	12	6	6
Receptor 1	0	12	8
Receptor 2	1	12	8
Receptor 3	3	12	8

(5) When the locations of sources and receptors were changed from the 3D display, their coordinates in the interface were correctly updated. When the inputs were saved, the coordinates in the generated input file matched the inputs.

	Х	у	Z
Source 1	12.04	8.77	6
Source 2	1.52	7.77	6
Source 3	8.82	6.52	6
Receptor 1	.49	3.19	8
Receptor 2	5.53	0.86	2.04
Receptor 3	2.89	10.11	8

			_
DX (1	,	1)=0.49,	
DX(1	,	2)=3.19,	
DX(1	,	3)=8,	
DX (2	,	1)=5.53,	
DX (2	,	2)=0.86,	
DX (2	,	3)=2.04,	
DX (3	,	1)=2.89,	
DX (3	,	2)=10.11,	
DX (3	,	3)=8,	
SX(1	,	1)=12.04,	
SX(1	,	2)=8.77,	
SX(1	,	3)=6,	
SX(2	,	1)=1.52,	
SX(2	,	2)=7.77,	
SX(2	,	3)=6,	
SX (3	,	1)=8.82,	
SX (3	,	2)=6.52,	
SX (3	,	3)=6,	

13. TEST CASE 027

13.1 TEST CASE 027-1

Test objectives/descriptions:

To verify that the DCF data stored in the DCF Editor database are the same as in the referenced source document and that the aggregated air submersion, inhalation, and ingestion DCFs, i.e., including short-lived progeny contributions, are calculated correctly and used in dose calculations.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 027-1 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "Test-027-001.bld" associated with the test case was used. The initial principal radionuclides selected for this test were Co-60, Cs-137, Sr-90, U-238, and H-3.

(1) DCF data in "Dose and Slope Factors.RPT" is displayed first followed by DCF data in the "DCF individual.LIB" file in the following screen shots. The DCF values matched:

Dose	and Slope Fac	tors - Noter	oad										-		-
File Edit	t Format \	/iew Help													
** RESRAD	-BUILD Versi	on 4.0.19.0	Beta 12/19	/22 14:13:05	**										
Title :	Default Case	for RESRAE	D-BUILD												
Input Fi	le : C:\User	s\kamboj\De	esktop\Build	-Release-Test	ting\Version19-	testing\Tes	t-case27\te	st-027-1.blo	1						
	Indi	vidual Radi	ionuclide Do	se and Slope	Factors										
	Externa	1 Dose Fact	tors from		Slope F	actors from									
	FGR 1	2			FGR 1	3 Morbidity									
	Interna	1 Dose Fact	tors from												
	FGR 1	1													
Isotope	External	External	Inhalation	Ingestion	External	External	Inhalation	Ingestion							
	Volume	Air			Volume	Air									
	(mrem/y)	(mrem/y)	mrem/pCi	mrem/pCi	risk/y	risk/y	risk	risk							
	/(pCi/g)	/(pCi/m ³)			/(pCi/g)	/(pCi/m ³)	/pCi	/pCi							
U-238	1.03E-04	3.98E-07	1.18E-01	2.55E-04	4.99E-11	1.94E-13	2.36E-08	8.66E-11							
Th-234	2.41E-02	3.94E-05	3.50E-05	1.37E-05	1.63E-08	2.60E-11	3.07E-11	3.40E-11							
Pa-234m	8.97E-02	8.39E-05	*******	*******	6.87E-08	6.87E-11	*******	*******							
Pa-234	1.16E+01	1.09E-02	8.14E-07	2.16E-06	8.71E-06	8.20E-09	1.46E-12	3.70E-12							
U-234	4.02E-04	8.91E-0/	1.32E-01	2.83E-04	2.52E-10	5.10E-13	2./8E-08	9.55E-11							
Ra-226	3 185-02	2.03E-06 3.68E-05	3.26E-01 8 58E-03	1 325-03	2 29E-08	2 60E-11	2 82E-08	5 145-10							
Rn-222	2.35E-03	2.23E-06	0.00E+00	0.00E+00	1.74E-09	1.66E-12	0.00E+00	0.00E+00							
Po-218	5.64E-05	5.23E-08	0.00E+00	0.00E+00	4.26E-11	3.95E-14	0.00E+00	0.00E+00							
At-218	5.85E-03	1.39E-05	0.00E+00	0.00E+00	3.57E-09	8.34E-12	0.00E+00	0.00E+00							
Pb-214	1.34E+00	1.38E-03	7.81E-06	6.25E-07	9.82E-07	1.01E-09	4.00E-11	4.85E-13							
Bi-214	9.81E+00	8.93E-03	6.59E-06	2.83E-07	7.48E-06	6.83E-09	3.10E-11	2.65E-13							
P0-214	5.14E-04	4.76E-07	0.00E+00	0.00E+00	3.86E-10	3.59E-13	0.00E+00	0.00E+00							
11-210 ph 210	2 455 02	C 595 0C	0.00E+00	0.00E+00	0.00E+00	3 765 13	0.00E+00	0.00E+00							
PD-210	2.450-05	3 946-96	1.565-02	6 495-96	2 765-09	5.766-12	4 555-10	1 305-11							
P0-210	5.23E-05	4-85E-08	9.405-03	1.90E-03	3.95E-11	3.66E-14	1.45E-08	2.25E-09							
CS-137	7.51E-04	9.03E-07	3.19E-05	5.00E-05	5.32E-10	1.60E-12	1.12E-10	3.74E-11							
Ba-137m	3.61E+00	3.36E-03	*******	********	2.69E-06	2.52E-09	*******	*******							
Sr-90	7.04E-04	8.79E-07	1.30E-03	1.42E-04	4.82E-10	1.63E-12	4.25E-10	6.88E-11							
Y-90	2.39E-02	2.22E-05	8.44E-06	1.08E-05	1.91E-08	2.29E-11	8.40E-12	2.65E-11							
C0-60	1.62E+01	1.47E-02	2.19E-04	2.69E-05	1.24E-05	1.12E-08	1.01E-10	2.23E-11							
H-3	0.00E+00	3.86E-08	6.40E-08	6.40E-08	0.00E+00	0.00E+00	8.51E-13	1.44E-13							
1. The	external dos	e factors f	for volume s	ources are u	sed to compute	the direct	external do	se from volu	ume sources, from	m area sources	and from depo	sited radionu	clides.		
2. The	ratio betwee	n the exter	rnal dose fa	ctor for volu	ume sources and	the extern	al slope fa	ctors for vo	olume sources ar	e used to compu	te the externa	al risk from a	all sour	ces typ	es
and from	deposited ma	terial.													
3. The	other dose a	nd slope fa	actors are u	ised to comput	te the associat	ed progeny	integrated	factors in t	the next table.						
3.a. **	****** indic	ates that t	the specifie	d database fi	ile does not co	ntain a val	ue for this	factor. A	value of 0.0 is	used to compute	the integrate	ed factors.			
									-						

(2) External DCFs from Table C-8 is displayed first followed by DCFs in Table A-5 of the User's Manual, Volume 1, and the "Dose and Slope Factor.RPT" file in the following screen shots. Values in Table C-8 and Table A-5 matched the values in the "Dose and Slope Factors.RPT" file:

DCF In	dividual - Notepa	ad						
File Edit	Format View	Help						
FGR 11	FGR 12 FGR	13 Morbidity						
FGR 11	FGR 12 FGR	13 Morbidity						
Nuclide	ExtVolDC	ExtImmDC	InhalaDC	IngestDC	ExtVolSF	ExtImmSF	InhalaSF	IngestSF
Units	(mrem/y)	(mrem/y)	mrem	mrem	(1/yr)	(1/yr)	1	1
	/(pCi/g)	/(pCi/m3)	/pCi	/pCi	/(pCi/g)	/(pCi/m3)	/pCi	/pCi
U-238	1.031E-04	3.980E-07	1.180E-01	2.550E-04	4.990E-11	1.938E-13	2.360E-08	8.660E-11
Th-234	2.410E-02	3.945E-05	3.500E-05	1.370E-05	1.630E-08	2.604E-11	3.070E-11	3.400E-11
Pa-234m	8.967E-02	8.391E-05	-2.00E+00	-2.00E+00	6.870E-08	6.866E-11	-2.00E+00	-2.00E+00
Pa-234	1.155E+01	1.090E-02	8.140E-07	2.160E-06	8.710E-06	8.197E-09	1.460E-12	3.700E-12
U-234	4.017E-04	8.905E-07	1.320E-01	2.830E-04	2.520E-10	5.103E-13	2.780E-08	9.550E-11
Th-230	1.209E-03	2.031E-06	3.260E-01	5.480E-04	8.190E-10	1.308E-12	3.400E-08	1.190E-10
Ra-226	3.176E-02	3.676E-05	8.580E-03	1.320E-03	2.290E-08	2.604E-11	2.820E-08	5.140E-10
Rn-222	2.354E-03	2.229E-06	0.000E+00	0.000E+00	1.740E-09	1.658E-12	0.000E+00	0.000E+00
PO-218	5.642E-05	5.228E-08	0.000E+00	0.000E+00	4.260E-11	3.947E-14	0.000E+00	0.000E+00
At-218	5.847E-03	1.389E-05	0.000E+00	0.000E+00	3.570E-09	8.337E-12	0.000E+00	0.000E+00
Pb-214	1.341E+00	1.377E-03	7.810E-06	6.250E-07	9.820E-07	1.006E-09	4.000E-11	4.850E-13
Bi-214	9.808E+00	8.928E-03	6.590E-06	2.830E-07	7.480E-06	6.831E-09	3.100E-11	2.650E-13
Po-214	5.138E-04	4.762E-07	0.000E+00	0.000E+00	3.860E-10	3.585E-13	0.000E+00	0.000E+00
T1-210	-1.00E+00	-1.00E+00	0.000E+00	0.000E+00	0.000E+00	-1.00E+00	0.000E+00	0.000E+00
Pb-210	2.447E-03	6.582E-06	1.360E-02	5.370E-03	1.410E-09	3.760E-12	1.580E-08	1.180E-09
Bi-210	3.606E-03	3.840E-06	1.960E-04	6.400E-06	2.760E-09	5.278E-12	4.550E-10	1.300E-11
Po-210	5.231E-05	4.855E-08	9.400E-03	1.900E-03	3.950E-11	3.655E-14	1.450E-08	2.250E-09
CS-137	7.510E-04	9.033E-07	3.190E-05	5.000E-05	5.320E-10	1.600E-12	1.120E-10	3.740E-11
Ba-137m	3.606E+00	3.361E-03	-2.00E+00	-2.00E+00	2.690E-06	2.522E-09	-2.00E+00	-2.00E+00
Sr-90	7.043E-04	8.788E-07	1.300E-03	1.420E-04	4.820E-10	1.635E-12	4.250E-10	6.880E-11
Y-90	2.391E-02	2.217E-05	8.440E-06	1.080E-05	1.910E-08	2.289E-11	8.400E-12	2.650E-11
CO-60	1.622E+01	1.471E-02	2.190E-04	2.690E-05	1.240E-05	1.124E-08	1.010E-10	2.230E-11
H-3	0.000E+00	3.863E-08	6.400E-08	6.400E-08	0.000E+00	0.000E+00	8.510E-13	1.440E-13

TABLE C-7 Effective Dose Equivalent Coefficients for External Exposure (Infinite) and Air Submersion from FGR 12 for Radionuclides with Half-life of at least 30 Days and Their Associated Progeny

	-01	
Radionuclide	Infinite (mrem/yr per pCi/g)	Air Submersion (mrem/yr per pCi/m3)
U-238	1.03E-04	3.98E-07
Th-234	2.41E-02	3.94E-05
Pa-234m	8.97E-02	8.39E-05
Pa-234	1.16E+01	1.09E-02
U-234	4.02E-04	8.91E-07
Th-230	1.21E-03	2.03E-06
Ra-226	3.18E-02	3.68E-05
Rn-222	2.35E-03	2.23E-06
Po-218	5.64E-05	5.23E-08
At-218	5.85E-03	1.39E-05
Pb-214	1.34E+00	1.38E-03
Bi-214	9.81E+00	8.93E-03
Po-214	5.14E-04	4.76E-07
Tl-210	0.00E+00	0.00E+00
Pb-210	2.45E-03	6.58E-06
Bi-210	3.61E-03	3.84E-06
Po-210	5.23E-05	4.85E-08
Cs-137	7.51E-04	9.03E-07
Ba-137m	3.61E+00	3.36E-03
Sr-90	7.04E-04	8.79E-07
Y-90	2.39E-02	2.22E-05
Co-60	1.62E+01	1.47E-02
H-3	0.00E+00	3.86E-08

TABLE A-4 Default Ingestion, Inhalation, and Air Submersion Dose Coefficients for at least 30 Day Half-life Radionuclides from FGR-11 and FGR-12 in RESRAD-BUILD Code

Radionuclide	Associated Radionuclides	Ingestion (mrem/pCi)	Inhalation (mrem/pCi)	Air Submersion (mrem/yr per pCi/m ³)
U-238+D	Th-234, (Pa-234m 0.998), (Pa-234 0.0033)	2.69E-04	1.18E-01	1.60E-04
U-234	_	2.83E-04	1.32E-01	8.91E-07
Th-230	_	5.48E-04	3.26E-01	2.03E-06
	Rn-222,Po-218, (Pb-214 9.9980E-01), Bi-214, (Po-214 9.9980E-01), (Tl-210 2.0000E-04), (At-			
Ra-226+D	218 2.0000E-04)	1.32E-03	8.59E-03	1.03E-02
Pb-210+D	Bi-210	5.38E-03	1.38E-02	1.04E-05
Po-210	_	1.90E-03	9.40E-03	4.85E-08
Cs-137+D	(Ba-137m 0.946)	5.00E-05	3.19E-05	3.18E-03
Sr-90+D	Y-90	1.53E-04	1.31E-03	2.31E-05
Co-60	_	2.69E-05	2.19E-04	1.47E-02
H-3	—	6.40E-08	6.40E-08	3.86E-08
^a Dose conversion factors progenies.	for entries labeled with "+D" are aggregated dose conv	ersion factors of the princ	ipal radionuclide together with t	he associated decay
^b The associated decay pr	ogenies are listed. If a branching fraction is anything of	her than 1, it is listed along	g with the radionuclide in the bra	acket.
^c Dash indicates there is n	o associated radionuclide.			

RESRAD-BUILD	Version 4.0.19.0	Beta 12/15	/22 14:32:07 **				
itle : Defaul nout File : C	Case for RESRAD	-BUILD sktop\Build	-Release-Testin	g\Version19-testing\Test	-case27\te	st-027-1.bld	
.,							
	Dose and Slope I	Factors inc	luding contribu	tion of Associated Radio	nuclides		
E	ternal Dose Facto	ors from		Slope Factors from			
	FGR 12			FGR 13 Morbidity			
I	ternal Dose Facto	ors from					
	FGR 11						
Isotope	External 1	Inhalation	Ingestion	External I	nhalation	Ingestion	
	Air			Air			
	(mrem/y)	mrem/pCi	mrem/pCi	risk/y	risk	risk	
	/(pCi/m ³)			/(pCi/m ³)	/pCi	/pCi	
U-238	1.60E-04	1.18E-01	2.69E-04	1.22E-10	2.36E-08	1.21E-10	
U-234	8.91E-07	1.32E-01	2.83E-04	5.10E-13	2.78E-08	9.55E-11	
Th-230	2.03E-06	3.26E-01	5.48E-04	1.31E-12	3.40E-08	1.19E-10	
Ra-226	1.03E-02	8.59E-03	1.32E-03	7.87E-09	2.83E-08	5.15E-10	
Pb-210	1.04E-05	1.38E-02	5.38E-03	9.04E-12	1.63E-08	1.19E-09	
Po-210	4.85E-08	9.40E-03	1.90E-03	3.66E-14	1.45E-08	2.25E-09	
CS-137	3.18E-03	3.19E-05	5.00E-05	2.39E-09	1.12E-10	3.74E-11	
Sr-90	2.31E-05	1.31E-03	1.53E-04	2.45E-11	4.33E-10	9.53E-11	
CO-60	1.47E-02	2.19E-04	2.69E-05	1.12E-08	1.01E-10	2.23E-11	
H-3	3.86E-08	6.40E-08	6.40E-08	0.00E+00	8.51E-13	1.44E-13	

13.2 TEST CASE 027-2

Test objectives/descriptions:

To verify the DCF data stored in the DCF Editor database are the same as in the referenced source document and that the aggregated air submersion, inhalation, and ingestion DCFs, i.e., including short-lived progeny contributions, are calculated correctly and used in dose calculations.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 027-2 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "Test-027-002.bld" associated with the test case was used. The initial principal radionuclides selected for this test were Co-58, Pu-239, Ra-226, and Tc-99.

(1) DCF data in "Dose and Slope Factors.RPT" is displayed first followed by DCF data in "DCF individual.LIB" file in the following screen shots. DCF values matched:

Dose a	nd Slope Fac	tors - Notep	ad							-	
File Edit	Format \	/iew Help									
** RESRAD-	BUILD Versi	on 4.0.19.6	Beta 12/15	5/22 15:06:33	**						
Title : De	efault Case	for RESRAE	-BUILD								
Input File	e : C:\User	s\kamboj\De	sktop\Build	l-Release-Tes	ting\test-027-2	.bld					
	Indi	vidual Radi	onuclide Do	ose and Slope	e Factors						
	Externa	1 Dose Fact	ors from		Slope F	actors from					
	Totoppo	60 1 Doco Eact	and from		FGR 1	3 MORDIGITY					
	TCRP	72 (Adult)	015 1100								
	2010	/2 (///////////////////////////////////									
Isotope	External	External	Inhalation	Ingestion	External	External	Inhalation	Ingestion			
	Volume	Air			Volume	Air					
	(mrem/y)	(mrem/y)	mrem/pCi	mrem/pCi	risk/y	risk/y	risk	risk			
	/(pCi/g)	/(pCi/m ³)			/(pCi/g)	/(pCi/m ³)	/pCi	/pCi			
Pu-239	2.63E-04	4.06E-07	4.44E-01	9.25E-04	2.00E-10	2.99E-13	5.51E-08	1.74E-10			
U-235	6.60E-01	7.54E-04	3.14E-02	1.74E-04	5.18E-07	5.94E-10	2.50E-08	9.44E-11			
In-231	3.21E-02	5.352-05	1.22E-06	1.26E-06	2.45E-08	3.92E-11	1.52E-12	3.24E-12			
PG-231	4 495-04	L.03E-04	2 045-01	4.075.02	2.000-10	4 625-10	1 495-97	2.200-10			
Th-227	4.80E-01	5.17E-04	3.70E-02	3.26E-05	3.78E-07	4.09E-10	3.51E-08	6.92E-11			
Ra-226	2.91E-02	3.32E-05	3.51E-02	1.04E-03	2.29E-08	2.60E-11	2.82E-08	5.14E-10			
Fr-223	1.81E-01	2.57E-04	3.29E-06	8.88E-06	1.40E-07	1.83E-10	4.03E-11	1.00E-11			
Ra-223	5.53E-01	6.39E-04	3.22E-02	3.70E-04	4.34E-07	5.02E-10	2.92E-08	3.39E-10			
Rn-222	2.19E-03	2.07E-06	0.00E+00	0.00E+00	1.74E-09	1.66E-12	0.00E+00	0.00E+00			
Rn-219	2.86E-01	2.87E-04	0.00E+00	0.00E+00	2.25E-07	2.29E-10	0.00E+00	0.00E+00			
P0-218	5.33E-05	4.92E-08	0.00E+00	0.00E+00	4.26E-11	3.95E-14	0.00E+00	0.00E+00			
At-218	4.88E-03	1.13E-05	0.00E+00	0.00E+00	3.57E-09	8.34E-12	0.00E+00	0.00E+00			
P0-215	9.46E-04	9.10E-07	0.00E+00	0.00E+00	7.48E-10	7.29E-13	0.00E+00	0.00E+00			
PD-214	1.246+00	1.2/2-03	5.556-05	5.100-07	3.622-07	1.012-09	4.002-11	4.050-13			
Po-214	4 945-94	4 455-07	0.005+00	0.005+00	3 965-10	2 595-12	0 005+00	0 005+00			
Pb-211	2.92E-01	3.02E-04	4.44F-05	6.66E-07	2.295-07	2.21E-10	4.03E-11	5.81E-13			
B1-211	2.37E-01	2.38E-04	0.00E+00	0.00E+00	1.88E-07	1.89E-10	0.00E+00	0.00E+00			
Po-211	4.48E-02	4.16E-05	0.00E+00	0.00E+00	3.58E-08	3.34E-11	0.00E+00	0.00E+00			
T1-210	1.66E+01	*******	0.00E+00	0.00E+00	0.00E+00	*******	0.00E+00	0.00E+00			
Pb-210	1.98E-03	5.23E-06	2.07E-02	2.55E-03	1.41E-09	3.76E-12	1.58E-08	1.18E-09			
Bi-210	5.48E-03	3.01E-05	3.44E-04	4.81E-06	2.76E-09	5.28E-12	4.55E-10	1.30E-11			
P0-210	4.93E-05	4.54E-08	1.59E-02	4.44E-03	3.95E-11	3.66E-14	1.45E-08	2.25E-09			
T1-207	2.30E-02	5.29E-05	0.00E+00	0.00E+00	1.52E-08	1.74E-11	0.00E+00	0.00E+00			
TC-99	1.09E-04	3.35E-06	4.81E-05	2.37E-06	8.14E-11	4.34E-13	3.81E-11	4.00E-12			
C0-58	5.612+00	5.186-03	/.//E-06	2./46-06	4.485-06	4.185-09	7.965-12	4.186-12			
1 The e	vternal dos	e factors f	or volume s	ources are u	used to compute	the direct	external de	se from vol	ume sources from area sources and from denosited radionuclides		
2. The ri	atio betwee	n the exter	nal dose fa	actor for vol	ume sources and	the extern	al slope fa	ctors for v	olume sources are used to compute the external risk from all sources types and from deposited	materi	al.
3. The o	ther dose a	nd slope fa	ctors are u	used to compu	te the associat	ed progeny	integrated	factors in	the next table.		
3.a. ***	***** indic	ates that t	the specifie	d database f	file does not co	ntain a val	ue for this	factor. A	value of 0.0 is used to compute the integrated factors.		

DCF	Individual - Notep	ad						
File Edi	t Format View	Help						
LCRP 72 (Adult) ICRP 60	0 FGR 13	Morbidity					
ICRP 72 (Adult) ICRP 6	0 FGR 13	Morbidity					
Nuclide	ExtVolDC	ExtImmDC	InhalaDC	IngestDC	ExtVolSF	ExtImmSF	InhalaSF	IngestSF
Units	(mrem/y)	(mrem/y)	mrem	mrem	(1/yr)	(1/yr)	1	1
	/(pCi/g)	/(pCi/m3)	/pCi	/pCi	/(pCi/g)	/(pCi/m3)	/pCi	/pCi
Pu-239	2.635E-04	4.063E-07	4.440E-01	9.250E-04	2.000E-10	2.989E-13	5.510E-08	1.740E-10
U-235	6.597E-01	7.543E-04	3.145E-02	1.739E-04	5.180E-07	5.943E-10	2.500E-08	9.440E-11
Th-231	3.214E-02	5.348E-05	1.221E-06	1.258E-06	2.450E-08	3.923E-11	1.520E-12	3.240E-12
Pa-231	1.762E-01	1.833E-04	5.180E-01	2.627E-03	1.390E-07	1.448E-10	7.620E-08	2.260E-10
Ac-227	4.485E-04	5.978E-07	2.035E+00	4.070E-03	3.480E-10	4.624E-13	1.490E-07	2.450E-10
Th-227	4.803E-01	5.173E-04	3.700E-02	3.256E-05	3.780E-07	4.087E-10	3.510E-08	6.920E-11
Ra-226	2.915E-02	3.316E-05	3.515E-02	1.036E-03	2.290E-08	2.604E-11	2.820E-08	5.140E-10
Fr-223	1.813E-01	2.569E-04	3.293E-06	8.880E-06	1.400E-07	1.833E-10	4.030E-11	1.000E-11
Ra-223	5.532E-01	6.387E-04	3.219E-02	3.700E-04	4.340E-07	5.021E-10	2.920E-08	3.390E-10
Rn-222	2.186E-03	2.067E-06	0.000E+00	0.000E+00	1.740E-09	1.658E-12	0.000E+00	0.000E+00
Rn-219	2.859E-01	2.872E-04	0.000E+00	0.000E+00	2.250E-07	2.289E-10	0.000E+00	0.000E+00
Po-218	5.326E-05	4.916E-08	0.000E+00	0.000E+00	4.260E-11	3.947E-14	0.000E+00	0.000E+00
At-218	4.878E-03	1.134E-05	0.000E+00	0.000E+00	3.570E-09	8.337E-12	0.000E+00	0.000E+00
Po-215	9.456E-04	9.096E-07	0.000E+00	0.000E+00	7.480E-10	7.286E-13	0.000E+00	0.000E+00
Pb-214	1.243E+00	1.273E-03	5.550E-05	5.180E-07	9.820E-07	1.006E-09	4.000E-11	4.850E-13
Bi-214	9.325E+00	8.465E-03	5.180E-05	4.070E-07	7.480E-06	6.831E-09	3.100E-11	2.650E-13
Po-214	4.840E-04	4.449E-07	0.000E+00	0.000E+00	3.860E-10	3.585E-13	0.000E+00	0.000E+00
Pb-211	2.915E-01	3.024E-04	4.440E-05	6.660E-07	2.290E-07	2.207E-10	4.030E-11	5.810E-13
Bi-211	2.373E-01	2.382E-04	0.000E+00	0.000E+00	1.880E-07	1.892E-10	0.000E+00	0.000E+00
Po-211	4.485E-02	4.157E-05	0.000E+00	0.000E+00	3.580E-08	3.339E-11	0.000E+00	0.000E+00
T1-210	1.661E+01	-1.00E+00	0.000E+00	0.000E+00	0.000E+00	-1.00E+00	0.000E+00	0.000E+00
Pb-210	1.981E-03	5.231E-06	2.072E-02	2.553E-03	1.410E-09	3.760E-12	1.580E-08	1.180E-09
Bi-210	5.476E-03	3.012E-05	3.441E-04	4.810E-06	2.760E-09	5.278E-12	4.550E-10	1.300E-11
Po-210	4.934E-05	4.542E-08	1.591E-02	4.440E-03	3.950E-11	3.655E-14	1.450E-08	2.250E-09
T1-207	2.299E-02	5.289E-05	0.000E+00	0.000E+00	1.520E-08	1.740E-11	0.000E+00	0.000E+00
Tc-99	1.086E-04	3.351E-06	4.810E-05	2.368E-06	8.140E-11	4.344E-13	3.810E-11	4.000E-12
Co-58	5.606E+00	5.184E-03	7.770E-06	2.738E-06	4.480E-06	4.180E-09	7.960E-12	4.180E-12

(2) External DCFs from Table C-8 is displayed first followed by DCFs in Table A-5 of the User's Manual, Volume 1 and the "Dose and Slope Factor.RPT" file in the following screen shots. The values in Table C-8 and Table A-5 matched the values in the "Dose and Slope Factors.RPT" file.

Radionuclide ^a	Associated Progeny Radionuclides ^b	Ingestion (mrem/pCi)	Inhalation (mrem/pCi)	Air Submersion (mrem/yr per pCi/m3)
Pu-239	_	9.25E-04	4.44E-01	4.06E-07
U-235+D	Th-231	1.75E-04	3.14E-02	8.08E-04
Pa-231	—	2.63E-03	5.18E-01	1.83E-04
Ac-227+D	(Th-227 9.8620E- 01), Ra-223, Rn-219, Po-215, Pb-211, Bi- 211, (T1-207 9.9720E-01), (Po- 211 2.8000E-03), (Fr-223 1.3800E-02)	4.47E-03	2.10E+00	2.03E-03
Ra-226+D	Rn-222,Po-218, (Pb-214 9.9980E- 01), Bi-214, (Po- 214 9.9980E-01), (Tl-210 2.0000E-04), (At- 218 2.0000E-04)	1.04E-03	3.53E-02	9.77E-03
Pb-210+D	Bi-210	2.56E-03	2.11E-02	3.53E-05
Po-210	—	4.44E-03	1.59E-02	4.54E-08
Tc-99	—	2.37E-06	4.81E-05	3.35E-06
Co-58	-	2.74E-06	7.77E-06	5.18E-03

 TABLE A-5 Default Ingestion, Inhalation, and Air Submersion Dose Coefficients for at least 30

 Day Half-life Radionuclides from ICRP-72 and FGR-13 in RESRAD-BUILD Code

^a Dose conversion factors for entries labeled with "+D" are aggregated dose conversion factors of the principal radionuclide together with the associated decay progenies.

b The associated decay progenies are listed. If a branching fraction is anything other than 1, it is listed along with the radionuclide in the bracket.

^c Dash indicates there is no associated radionuclide.

Radionuclide	Infinite (mrem/yr per pCi/g)	Air Submersion (mrem/yr per pCi/m ³)
Pu-239	2.64E-04	4.06E-07
U-235	6.60E-01	7.54E-04
Th-231	3.21E-02	5.35E-05
Pa-231	1.76E-01	1.83E-04
Ac-227	4.49E-04	5.98E-07
Th-227	4.80E-01	5.17E-04
Ra-226	2.92E-02	3.32E-05
Fr-223	1.81E-01	2.57E-04
Ra-223	5.53E-01	6.39E-04
Rn-222	2.19E-03	2.07E-06
Rn-219	2.86E-01	2.87E-04
Po-218	5.33E-05	4.92E-08
At-218	4.88E-03	1.13E-05
Po-215	9.46E-04	9.10E-07
Pb-214	1.24E+00	1.27E-03
Bi-214	9.33E+00	8.47E-03
Po-214	4.84E-04	4.45E-07
Pb-211	2.92E-01	3.02E-04
Bi-211	2.37E-01	2.38E-04
Po-211	4.49E-02	4.16E-05
T1-210	1.66E+01	0.00E+00
Pb-210	1.98E-03	5.23E-06
Bi-210	5.48E-03	3.01E-05
Po-210	4.93E-05	4.54E-08
T1-207	2.30E-02	5.29E-05
Tc-99	1.09E-04	3.35E-06
Co-58	5.61E+00	5.18E-03

TABLE C-8 Effective Dose Coefficients for External Exposure (Infinite and Air Submersion) from FGR 13 for 30 Day Cutoff Half-life Principal Radionuclides and Associated Radionuclides

jose and stope ractors - Notepad										
File Edit Format View Help										
* RESRO-BUILD Version 4.0.19.0 Beta 12/15/22 15:10:13 **										
Title : Detault Case for RESKAD-Build Palaace Testing\tes	+ 027 2 bld									
Tubar File . C. (oseis (kambo) (besktop (build-kelease-resting (tes	0-02/-2.010									
Dose and Slope Factors including contribution	of Associated Radionuclides	5								
External Dose Factors from	Slope Factors from									
ICRP 60	FGR 13 Morbidity									
Internal Dose Factors from										
ICRP 72 (Adult)										
Tectore External Inhalation Indection	External Inhalation	on Indestion								
Air	Air	on ingestion								
(mrem/y) mrem/pCi mrem/pCi	risk/y risk	risk								
/(pCi/m ³)	/(pCi/m ³) /pCi	/pCi								
Pu-239 4.06E-07 4.44E-01 9.25E-04	2.99E-13 5.51E-08	08 1.74E-10								
U-235 8.08E-04 3.14E-02 1.75E-04	6.33E-10 2.50E-08	08 9.76E-11								
Pa-231 1.83E-04 5.18E-01 2.63E-03	1.45E-10 7.62E-08	08 2.26E-10								
Ac-227 2.03E-03 2.10E+00 4.47E-03	1.57E-09 2.13E-07	07 6.53E-10								
Ra-226 9.77E-03 3.53E-02 1.04E-03	7.87E-09 2.83E-08	08 5.15E-10								
Pb-210 3.53E-05 2.11E-02 2.56E-03	9.04E-12 1.63E-08	08 1.19E-09								
Po-210 4.54E-08 1.59E-02 4.44E-03	3.66E-14 1.45E-08	08 2.25E-09								
TC-99 3.35E-06 4.81E-05 2.37E-06	4.34E-13 3.81E-11	11 4.005-12								
CO-58 5.18E-03 7.77E-06 2.74E-06	4.18E-09 7.96E-12	12 4.185-12								
1. There does and close Sactore are used to compute the does and mick from external exposure from marticulater in air inhalation of marticulater and marer and investion										
2. They are computed using the data from the preceding table	in the expression in the nex	ext section.								
21 mey are compared asing the data from the preceding table	in the capitositon in the nex									

13.3 TEST CASE 027-3

Test objectives/descriptions:

To verify the DCF data stored in the DCF Editor database are the same as in the referenced source document and that the aggregated air submersion, inhalation, and ingestion DCFs, i.e., including short-lived progeny contributions, are calculated correctly and used in dose calculations.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 027-3 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "Test-027-003.bld" associated with the test case was used. The initial principal radionuclides selected for this test were Am-241, C-14, Cf-252, and Th-232.

(1) DCF data in "Dose and Slope Factors.RPT" is displayed first followed by DCF data in the "DCF individual.LIB" file in the following screen shots. DCF values matched:

Dose a	ind Slope Fac	ctors - Notep	ad							-	
File Edit	Format \	View Help									
RESRAD-	BUILD Versi	on 4.0.19.0	Beta 12/19	5/22 15:25:23							
itle : D	efault Case	for RESRAD	BUILD								
input Fil	e : C:\User	s\kamboj\De	sktop\Build	d-Release-Testi	ing\Test-case2	7\test-027	-3.bld				
	1000				Providence -						
	Indi	vidual Radi	onuclide Do	ose and Slope R	actors						
	Externa	Dose Fact	OFS FFOR		STOPE P	actors fro	i di tu				
	Toterna	1 Doce Fact	one from		DUFFA	K3.02 PI010	IUILY				
	DCEPA	K3.92 (Adul	t)								
Isotope	External	External	Inhalation	Ingestion	External	External	Inhalation	Ingestion			
	Volume	Air			Volume	Air					
	(mrem/y)	(mrem/y)	mrem/pCi	mrem/pCi	risk/y	risk/y	risk	risk			
	/(pCi/g)	/(pCi/m ³)			/(pCi/g)	/(pCi/m3)	/pCi	/pCi			
f-252	2.84E+00	2.60E-03	1.368-01	3.35E-04	2.28E-06	2.09E-09	4.44E-08	1.82E-10			
m-248	8.16E+00	7.48E-03	1.34E+00	2.87E-03	6.54E-06	6.03E-09	1.44E-07	5.96E-10			
u-244	1.23E-01	1.13E-04	4.13E-01	8.81E-04	9.86E-08	9.10E-11	5.22E-08	1.88E-10			
m-241	3.72E-02	7.85E-05	3.57E-01	7.55E-04	2.77E-08	5.80E-11	3.77E-08	1.34E-10			
-248	1.49E-02	2.42E-05	2.07E-06	4.03E-06	1.16E-08	1.65E-11	3.09E-12	1.01E-11			
p-240m	1.83E+00	1.74E-03		0 000 00	1.462-06	1.3/E-89					
p-240	5.852+00	5.52E-03	2./02-0/	2.682-07	4.6/2-06	4.42E-09	1./0E-13	2.72E-13			
0 227	6 715 02	1.005.04	1 045 01	3.296-04	F 175 00	2.526-15	3.335-00	2.205 11			
226	1 765 04	4 415 07	2 215-02	1 725-04	1.245.10	2 065 12	2.675.00	0.255-11			
a.222	1.025+00	1.095.03	1.535.05	3.575-06	8.035.07	9.535.10	1.536-11	8.955-12			
-233	9.195-84	1.24E-86	3.555-02	1.895-84	7.11E-10	9.38E-13	2.835-08	9.695-11			
h-232	4.78E-84	9-22E-07	4.07F-01	8.55E-04	3,58E-10	6.81E-13	4.33E-88	1,33E-10			
h-229	2.88E-01	3.88E-04	8.83E-01	1.85E-03	2.24E-07	3.00E-10	1.75E-07	2,90E-10			
a-228	6.57E-05	3.37E-07	5.94E-02	2.58E-03	3.43E-11	2.15E-13	4.37E-08	1,42E-09			
c-228	5.04E+00	4.68E-03	5.42E-05	1.40E-06	4.04E-06	3.76E-09	4.92E-11	2.73E-12			
h-228	7.25E-03	9.63E-06	1.47E-01	2.66E-04	5.64E-09	7.45E-12	1.32E-07	1.48E-10			
a-225	8.91E-03	2.88E-05	2.87E-02	3.69E-04	6.11E-09	1.85E-11	2.62E-08	1.54E-10			
c-225	5.29E-02	6.61E-05	3.14E-02	1.43E-04	4.12E-08	5.15E-11	2.86E-08	2.72E-10			
a-224	4.95E-02	5.27E-05	1.24E-02	2.39E-04	3.91E-08	4.17E-11	1.13E-08	2.38E-10			
r-221	1.33E-01	1.46E-04	*******	*******	1.05E-07	1.15E-10	*******	*******			
tn-220	3.47E-03	3.28E-06	*******	*******	2.77E-09	2.63E-12		*******			
t-217	1.19E-03	1.24E-06	********	*******	9.36E-10	9.76E-13	********	*******			
0-216	8.87E-05	8.17E-08			7.10E-11	6.59E-14					
1-213	6.87E-01	6.942-04	1.18E-04	7.33E-07	5.43E-07	5.32E-10	7.40E-11	7.18E-13			
0-213	2.1/E-04	2.002-07	7 035 04	0.005.05	1./3E-10	1.61E-13	C 405 10	2 525 44			
5 212	6.312-01	7.13E-04	1.035-04	2.222-05	4.900-07	5.5/E-10	0.400-10	3.5/2-11			
0-212	0.202-01	0.042-04	1.250-04	3.002-07	9.005+00	4.010-10	0.450-11	1.010-12			
1-209	1 295+01	1 195-02	*******	*******	1 035-05	9 585-09		*******			
h-209	7.535.94	1.17E-05	2.265-07	2.10F-07	5.37E-10	1.70E-12	2.88E-13	3.49F-13			
1-288	2.17E+01	1.965-82			1.755-85	1.59E-08					
-14	1.118-05	3.04E-07	2.128-05	2.15E-06	7.86E-12	4.29E-14	1.69E-11	2.00E-12			
10000											
I. The e	xternal dos	e factors f	or volume	sources are use	d to compute	the direct	external do	se from volu	me sources, from area sources and from deposited radionuclides.		
. The r	atio betwee	n the exter	nal dose fa	actor for volum	ne sources and	the extern	nal slope fa	ctors for vo	lume sources are used to compute the external risk from all sources types and from deposited	i mater	i
The o	ther dose a	ind slope fa	ictors are u	used to compute	the associat	ed progeny	integrated	factors in t	he next table.		
	same indic	ates that t	he coerifie	d database fil	le does not co	ntain a va	lue for this	factor, A v	alue of 0.0 is used to compute the integrated factors.		

(iii) (iii)	OCF In	dividual - Noter	bad						
File	Edit	Format View	v Help						
DCFPA	K3.02	(Adult) D	CFPAK3.02	DCFPAK3.02 Morb	idity				
DCFPA	K3.02	(Adult) D	CFPAK3.02	DCFPAK3.02 Morb	idity				
Nucli	de	ExtVolDC	ExtImmDC	InhalaDC	IngestDC	ExtVolSF	ExtImmSF	InhalaSF	IngestSF
Uni	ts	(mrem/y)	(mrem/y)	mrem	mrem	(1/yr)	(1/yr)	1	1
		/(pCi/g)	/(pCi/m3)	/pCi	/pCi	/(pCi/g)	/(pCi/m3)	/pCi	/pCi
Cf-25	2	2.839E+00	2.604E-03	1.360E-01	3.349E-04	2.277E-06	2.090E-09	4.440E-08	1.824E-10
Cm-24	8	8.163E+00	7.485E-03	1.339E+00	2.868E-03	6.538E-06	6.025E-09	1.439E-07	5.956E-10
Pu-24	4	1.231E-01	1.133E-04	4.132E-01	8.806E-04	9.865E-08	9.096E-11	5.216E-08	1.879E-10
Am-24	1	3.717E-02	7.846E-05	3.566E-01	7.548E-04	2.767E-08	5.803E-11	3.774E-08	1.336E-10
U-240		1.494E-02	2.417E-05	2.067E-06	4.033E-06	1.155E-08	1.646E-11	3.089E-12	1.014E-11
Np-24	Øm	1.834E+00	1.740E-03	-2.00E+00	-2.00E+00	1.459E-06	1.366E-09	-2.00E+00	-2.00E+00
Np-24	0	5.847E+00	5.523E-03	2.702E-07	2.683E-07	4.670E-06	4.425E-09	1.698E-13	2.723E-13
Pu-24	0	1.130E-04	3.842E-07	4.410E-01	9.287E-04	7.122E-11	2.522E-13	5.549E-08	1.743E-10
Np-23	7	6.706E-02	1.004E-04	1.839E-01	3.959E-04	5.172E-08	7.671E-11	2.867E-08	8.287E-11
U-236		1.758E-04	4.414E-07	3.211E-02	1.724E-04	1.238E-10	3.059E-13	2.568E-08	8.990E-11
Pa-23	3	1.018E+00	1.082E-03	1.532E-05	3.574E-06	8.032E-07	8.535E-10	1.528E-11	8.953E-12
U-233		9.191E-04	1.238E-06	3.549E-02	1.894E-04	7.110E-10	9.376E-13	2.830E-08	9.693E-11
Th-23	2	4.782E-04	9.224E-07	4.070E-01	8.547E-04	3.584E-10	6.807E-13	4.329E-08	1.332E-10
Th-22	9	2.877E-01	3.877E-04	8.831E-01	1.846E-03	2.242E-07	3.001E-10	1.746E-07	2.904E-10
Ra-22	8	6.575E-05	3.374E-07	5.938E-02	2.575E-03	3.432E-11	2.148E-13	4.366E-08	1.424E-09
AC-22	8	5.044E+00	4.682E-03	5.416E-05	1.399E-06	4.040E-06	3.760E-09	4.920E-11	2.734E-12
Th-22	8	7.248E-03	9.633E-06	1.468E-01	2.664E-04	5.639E-09	7.449E-12	1.324E-07	1.480E-10
Ra-22	5	8.910E-03	2.884E-05	2.869E-02	3.685E-04	6.106E-09	1.845E-11	2.616E-08	1.535E-10
AC-22	5	5.286E-02	6.609E-05	3.137E-02	1.428E-04	4.121E-08	5.149E-11	2.856E-08	2.716E-10
Ra-22	4	4.950E-02	5.266E-05	1.242E-02	2.390E-04	3.911E-08	4.168E-11	1.132E-08	2.383E-10
Fr-22	1	1.332E-01	1.460E-04	-2.00E+00	-2.00E+00	1.048E-07	1.152E-10	-2.00E+00	-2.00E+00
Rn-22	0	3.474E-03	3.281E-06	-2.00E+00	-2.00E+00	2.767E-09	2.627E-12	-2.00E+00	-2.00E+00
At-21	7	1.186E-03	1.238E-06	-2.00E+00	-2.00E+00	9.363E-10	9.761E-13	-2.00E+00	-2.00E+00
P0-21	6	8.873E-05	8.173E-08	-2.00E+00	-2.00E+00	7.098E-11	6.585E-14	-2.00E+00	-2.00E+00
Bi-21	3	6.874E-01	6.936E-04	1.183E-04	7.326E-07	5.429E-07	5.324E-10	7.399E-11	7.177E-13
P0-21	3	2.167E-04	1.997E-07	-2.00E+00	-2.00E+00	1.728E-10	1.611E-13	-2.00E+00	-2.00E+00
Pb-21	2	6.314E-01	7.134E-04	7.033E-04	2.220E-05	4.962E-07	5.570E-10	6.400E-10	3.566E-11
Bi-21	2	6.258E-01	6.037E-04	1.229E-04	9.657E-07	4.962E-07	4.612E-10	8.435E-11	1.010E-12
P0-21	2	0.000E+00	0.000E+00	-2.00E+00	-2.00E+00	0.000E+00	0.000E+00	-2.00E+00	-2.00E+00
T1-20	9	1.287E+01	1.191E-02	-2.00E+00	-2.00E+00	1.032E-05	9.575E-09	-2.00E+00	-2.00E+00
Pb-20	9	7.528E-04	1.168E-05	2.255E-07	2.098E-07	5.371E-10	1.705E-12	2.079E-13	3.485E-13
T1-20	8	2.167E+01	1.962E-02	-2.00E+00	-2.00E+00	1.751E-05	1.588E-08	-2.00E+00	-2.00E+00
C-14		1.106E-05	3.036E-07	2.120E-05	2.150E-06	7.857E-12	4.285E-14	1.694E-11	1.998E-12

(2) External DCFs from Table C-8 is displayed first followed by DCFs in Table A-5 of the User's Manual, Volume 1 and the "Dose and Slope Factor.RPT" file in the following screen shots. Values in Table C-8 and Table A-5 match values in the "Dose and Slope Factors.RPT" file:

Associated Rad	lionuclides	-
Radionuclide	Infinite (mrem/yr per pCi/g)	Air Submersion (mrem/yr per pCi/m3)
Cf-252	2.84E+00	2.60E-03
Cm-248	8.16E+00	7.49E-03
Pu-244	1.23E-01	1.13E-04
Am-241	3.72E-02	7.85E-05
U-240	1.49E-02	2.42E-05
Np-240m	1.83E+00	1.74E-03
Pu-240	1.13E-04	3.84E-07
Np-237	6.71E-02	1.00E-04
U-236	1.76E-04	4.41E-07
Pa-233	1.02E+00	1.08E-03
U-233	9.19E-04	1.24E-06
Th-232	4.78E-04	9.22E-07
Th-229	2.88E-01	3.88E-04
Ra-228	6.58E-05	3.37E-07
Ac-228	5.04E+00	4.68E-03
Th-228	7.25E-03	9.63E-06
Ra-225	8.91E-03	2.88E-05
Ac-225	5.29E-02	6.61E-05
Ra-224	4.95E-02	5.27E-05
Fr-221	1.33E-01	1.46E-04
Rn-220	3.47E-03	3.28E-06
At-217	1.19E-03	1.24E-06
Po-216	8.87E-05	8.17E-08
Bi-213	6.87E-01	6.94E-04
Po-213	2.17E-04	2.00E-07
Pb-212	6.31E-01	7.13E-04
Bi-212	6.26E-01	6.04E-04
Po-212	0.00E+00	0.00E+00
T1-209	1.29E+01	1.19E-02
РЬ-209	7.53E-04	1.17E-05
T1-208	2.17E+01	1.96E-02
C-14	1.11E-05	3.04E-07

Principal Radionuclide ^a	Associated Decay Chain ^b	Ingestion (mrem/pCi)	Inhalation (mrem/pCi)	Air Submersion (mrem/yr per pCi/m3)
Cf-252 -	_			
1 1		3.35E-04	1.36E-01	2.60E-03
Cm-248 -	_	2.87E-03	1.34E+00	7.48E-03
Pu-244+D ()	U-240, Np-240m, (Np-240 1.1000E- 03)	8.85E-04	4.13E-01	1.88E-03
Am-241 -	_	7.55E-04	3.57E-01	7.85E-05
Pu-240 -	—	9.29E-04	4.41E-01	3.84E-07
Np-237+D P	Pa-233	3.99E-04	1.84E-01	1.18E-03
U-236 –	-	1.72E-04	3.21E-02	4.41E-07
U-233 -	—	1.89E-04	3.55E-02	1.24E-06
Th-232 -	—	8.55E-04	4.07E-01	9.22E-07
Th-229+D 2 2 2	Ra-225, Ac-225, Fr-221, At-217, Bi- 213, (Po-213 9.7910E-01), Pb- 209, (Tl-209 2.0900E-02)	2.36E-03	9.43E-01	1.58E-03
Ra-228+D A	Ac-228	2.58E-03	5.94E-02	4.68E-03
Th-228+D E	Ra-224, Rn-220, Po-216, Pb-212, Bi-212, (Po-212 6.4060E-01), (T1- 208 3.5940E-01)	5.29E-04	1.60E-01	8.43E-03
C-14 -		2.15E-06	2.12E-05	3.04E-07

^a Dose conversion factors for entries labeled with "+D" are aggregated dose conversion factors of the principal radionuclide together with the associated decay progenies. b The associated decay progenies are listed. If a branching fraction is anything other than 1, it is listed along with the radionuclide in the bracket.

° Dash indicates there is no associated radionuclide.

Dose and	d Slope Factors - Note	pad					
File Edit	Format View Help						
SS PECRAD PI	TLD Version 4 8 19	0 Reta 12/10	/22 15+20+44 **				
Title : Def	ault Case for RESRA	D-BUILD	0/22 15.25.44				
Input File	: C:\Users\kamboj\D	esktop\Build	d-Release-Testin	g\Test-case27\test-027	-3.bld		
	Dose and Slope	Factors ind	luding contribu	tion of Associated Rad	ionuclides		
	External Dose Fac	tors from	-	Slope Factors fro	m		
	DCFPAK3.02			DCFPAK3.02 Morb	idity		
	Internal Dose Fac	tors from					
	DCFPAK3.02 (Adu	lt)					
Isotope	External	Inhalation	Ingestion	External	Inhalation	Ingestion	
	Air		100000000000000000000000000000000000000	Air		100	
	(mrem/y)	mrem/pC1	mrem/pC1	risk/y	risk	risk	
	/(pC1/m*)			/(pC1/m*)	/pC1	/pC1	
C+-252	2.60E-03	1.36E-01	3.35E-04	2.09E-09	4.44E-08	1.82E-10	
Cm-248	7.48E-03	1.34E+00	2.8/E-03	6.03E-09	1.44E-0/	5.96E-18	
Pu-244	1.88E-03	4.13E-01	8.85E-04	1.48E-09	5.22E-08	1.98E-10	
Am-241	7.85E-05	3.57E-01	7.55E-04	5.80E-11	3.77E-08	1.34E-10	
Pu-240	3.84E-07	4.41E-01	9.29E-04	2.52E-13	5.55E-08	1.74E-10	
Np-237	1.18E-03	1.84E-01	3.99E-04	9.30E-10	2.87E-08	9.18E-11	
U-236	4.41E-07	3.21E-02	1.72E-04	3.06E-13	2.57E-08	8.99E-11	
U-233	1.24E-06	3.55E-02	1.89E-04	9.38E-13	2.83E-08	9.69E-11	
Th-232	9.22E-07	4.07E-01	8.55E-04	6.81E-13	4.33E-08	1.33E-10	
Th-229	1.58E-03	9.43E-01	2.36E-03	1.22E-09	2.29E-07	7.17E-10	
Ra-228	4.68E-03	5.94E-02	2.58E-03	3.76E-09	4.37E-08	1.43E-09	
Th-228	8.43E-03	1.60E-01	5.29E-04	6.78E-09	1.44E-07	4.23E-10	
C-14	3.04E-07	2.12E-05	2.15E-06	4.29E-14	1.69E-11	2.00E-12	
1. These d	lose and slope facto	rs are used	to compute the	dose and risk from ext	ernal exposu	re from part	iculates in air, inhalation of particulates and gases and ingestion.
2. They ar	e computed using th	e data from	the preceding t	able in the expression	in the next	section.	
Test objectives/descriptions:

This test verified that the slope factor values stored in the DCF Editor database are the same as those in the source document and that when a base slope factor library is selected in the interface, the default slope factor values are used in dose/risk calculations.

Test result (Pass/Fail): Pass

Test details:

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases.

Four RESRAD-BUILD runs were conducted with an input file that had a source containing Ac-225 and Am-246 as the initial radionuclides (30 radionuclides, if including progenies); the slope factor libraries, FGR13 morbidity, FGR13 mortality, DCFPAK 3.02 morbidity, and DCFPAK3.02 mortality, were sequentially selected for use in the runs. The slope factors of individual radionuclides listed in the "dose and slope factors.rpt" output file were compared and agreed with the values stored in the DCF Editor database as well as with those listed in the source document.

The attachment file, "Attachment for test report for Case 028.xlsx" contains the details of the comparison.

15.1 TEST CASE 030-1

Test objectives/descriptions:

This test verifies that the adjustment factors used with the external dose conversion factors for sources of finite thickness and lateral extent are the same as in the reference. The initial primary radionuclide selected for this test was Co-60.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 030-1 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure. The input file "Test-030-001.bld" associated with this test case was used.

(1) The fitted parameter data in DCF Editor is displayed first followed by data in the "coeff_bd.Lib" file in the following screen shots. The fitted parameters matched:

External Ground DCF Adjustment Fa	ctors From Infinite Thickne	ess and Infinite La	ateral Extent	
Nuclide Co-60				
External DCF 1.622E+1	(mrem/yr)/(pCi/g)	Sou	Jrce <mark>FGR 1</mark>	2 Volume
Depth and Cover Fitted Parameters		- Area and Shape	e Fitted Parameter	\$
CF_A 0.076		Npt	2	
CF_B 0.924	n^2/a	EPT(1)	1.25286	MeV
CF_KB 0.078 cr	n^2/g	EPT(2)	0.0985272	MeV
		EPT(3)	0	MeV
		EPT(4)	0	MeV
		FPT(1)	1.9989	
		FPT(2)	1.68329E-03	
		FPT(3)	0	
		FPT(4)	0	
<-Back				

Coeff_	bd - Notepad													
File Edit	Format View	Help												
Nuclide	Volume_DCF mrem.g/pCi/y	CF_A	CF_B	CF_KA cm2/g	CF_KB cm2/g	NPT	EPT(1) (MeV)	EPT(2) (MeV)	EPT(3) (MeV)	EPT(4) (MeV)	FPT(1)	FPT(2)	FPT(3)	FPT(4)
Co-60	1.622E+01	0.076	0.924	1.280E+00	7.800E-02	2	1.25286E+00	9.85272E-02	0.00000E+00	0.00000E+00	1.99890E+00	1.68329E-03	0.00000E+00	0.0000E+00

(2) The fitted parameter data in Table C-1 of the User's Manual, Vol. 1 is displayed first followed by data in Table C-4 in the following screen shots. The values in Table C-1 and Table C-4 matched the data in the "coeff_bd" file:

15.2 TEST CASE 030-2

Test objectives/descriptions:

This test verifies that the adjustment factors used with the external dose conversion factors for sources of finite thickness and lateral extent are the same as in the reference. The initial primary radionuclide selected for this test was Cs-137.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 030-2 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure.

(1) The fitted parameter data in the DCF Editor is displayed first followed by data in the "coeff_bd.Lib" file in the following screen shots. The fitted parameters matched:

D	External Ground DCF	Adjustment Facto	ors From Infi	nite Thicknes	s and Infinite La	teral Exte	ent	
	Nuclide	Ba-137m						
	External DCF	3.383E+0	(mrem/y	r)/(pCi/g)	Sou	irce	ICRP 60 V	olume
	Depth and Cover Fit	tted Parameters —		[Area and Shape	Fitted Par	rameters —	
	CF_A 0.9	916			Npt	2		
	CF_B 0.0)84	2/a		EPT(1)	0.66164	15 M	eV
	CF_KB 1.3	338 cm ²	2/g		EPT(2)	0.03291	194 M	eV
					EPT(3)	0	м	eV
					EPT(4)	0	м	eV
					FPT(1)	0.8977	59	
					FPT(2)	0.07494	121	
					FPT(3)	0		
					FPT(4)	0		
	<-Back							

Coeff	f_bd - Notepad													
File Edi	t Format View	Help												
Nuclide	Volume_DCF	CF_A	CF_B	CF_KA	CF_KB	NPT	EPT(1)	EPT(2)	EPT(3)	EPT(4)	FPT(1)	FPT(2)	FPT(3)	FPT(4)
Cs-137	8.372E-04	0.700	0.300	1.625E-01	1.356E+01	2	4.24638E-01	1.73435E-01	0.00000E+00	0.00000E+00	4.02000E-04	2.86600E-03	0.00000E+00	0.00000E+00
8a-137m	3.383E+00	0.916	0.084	9.375E-02	1.338E+00	2	6.61645E-01	3.29194E-02	0.00000E+00	0.00000E+00	8.97759E-01	7.49421E-02	0.0000E+00	0.00000E+00

(2) The fitted parameter data in Table C-2 of the User's Manual, Vol. 1 is displayed first followed by data in Table C-4 in the following screen shots. The values in Table C-2 and Table C-4 matched the data in the "coeff_bd file."

TABLE C-2 Fitt Day Cutoff Hal Progeny Deter	ed Paramet f-life Radior mined with	ers A, B, KA, nuclides and the Dose Co	and KB for Their Assoc efficients fr	at least 30 Siated Som FGR-13							
Radionuclide	Fitted Para	meters									
			KA	KB							
	А	В	(cm2/g)	(cm2/g)							
Ba-137m	Ba-137m 0.916 0.084 0.09375 1.338										
Cs-137	0.7	0.3	0.1625	13.56							

TABLE C-4	TABLE C-4 Collapsed Photon Energies (EPT) (MeV) and Yield Fractions (FPT) for ICRP-38										
Radionuclides	Radionuclides with Half-life of at least 30 Days and Their Associated Progeny										
Nuclide	EPT(1)	EPT(2)	EPT(3)	EPT(4)	FPT(1)	FPT(2)	FPT(3)	FPT(4)			
	(MeV)	(MeV)	(MeV)	(MeV)							
Ba-137m	Ba-137m 6.62E-01 3.29E-02 0.00E+00 0.00E+00 8.98E-01 7.49E-02 0.00E+00 0.00E+00										
Cs-137	Cs-137 4.25E-01 1.73E-01 0.00E+00 0.00E+00 4.02E-04 2.87E-03 0.00E+00 0.00E+00										

15.3 TEST CASE 030-3

Test objectives/descriptions:

This test verifies that the adjustment factors used with the external dose conversion factors for sources of finite thickness and lateral extent are the same as in the reference. The initial primary radionuclide selected for this test was Ac-227.

Test result (Pass/Fail): Pass

Test details:

Results are given only for procedure steps with an expected action. Refer to Test Case 030-3 in RESBLD-TEST-001, RESRAD-BUILD Test Cases, Rev. 2 for details on the test procedure.

(1) The fitted parameter data in the DCF Editor is displayed first followed by data in the "coeff_bd.Lib" file in the following screen shots. The fitted parameters matched:

D	External Ground DCF	F Adjustment Fa	actors From Infi	nite Thicknes	s and Infini	te Lateral	Extent		
	Nuclide	Ac-227							
	External DCF	2.615E-4	(mrem/y	r)/(pCi/g)	\$	Source	DCFPA	K3.02 Volume	
	Depth and Cover I	Fitted Parameters	\$		-Area and S	hape Fitted	Parameters		1
	CF_A	1.652E-1			Np	4			
	CF_KA	5.566E+0 C	m^2/g		EP	r(1) <mark>0.00</mark>	0081674;	MeV	
	CF_KB	1.661E-1 C	 m^2/g		EP	r(2) <mark>0.00</mark>	0479126	MeV	
	L				EP	r(3) <mark>0.01</mark>	10337	MeV	
					EP	r(4) <mark>0.11</mark>	3597	MeV	
					FP	(1) <mark>4.26</mark>	368		
					FP	(2) <mark>0.00</mark>	0594693		
					FP	(3) <mark>0.05</mark>	79514		
					FP	(4) <mark>0.00</mark>	0569599		
	<-Back								-

S. External Ground DCF Adjust	stment Factors From Infinite Th	ickness and Infinite Lateral E	extent
Nuclide Ra	-223		
External DCF 5.	791E-1 (mrem/yr)/(p(Ci/g) Source	DCFPAK3.02 Volume
Depth and Cover Fitted P	Parameters	Area and Shape Fitted	Parameters
CF_A 9.2028	-2	Npt <mark>4</mark>	
CF_B 9.08E-	1 .0 cm^2/a	EPT(1) 0.00	0050085! MeV
CF_KB 1.313E	-1 cm^2/g	EPT(2) 0.00	0409658 MeV
		EPT(3) 0.01	11254 MeV
		EPT(4) 0.15	4109 MeV
		FPT(1) 14.74	437
		FPT(2) 0.00	162088
		FPT(3) 0.30	<mark>4475</mark>
		FPT(4) 0.88	9869
<-Back			

External Ground DCF Adjustment Fact	tors From Infinite Thicknes	s and Infinite Lateral Extent
Nuclide Rn-219		
External DCF 2.97E-1	(mrem/yr)/(pCi/g)	Source DCFPAK3.02 Volume
Depth and Cover Fitted Parameters-		Area and Shape Fitted Parameters
CF_A 7.665E-2		Npt <mark>4</mark>
CF_B 9.233E-1	240	EPT(1) 0.000038418; MeV
CF_KB 1.13E-1 cm ²	2/g	EPT(2) 0.000370693 MeV
		EPT(3) 0.0112906 MeV
		EPT[4] 0.297523 MeV
		FPT(1) 0.377981
		FPT(2) 0.000035215;
		FPT(3) 0.0123255
		0.136423
<-Back		

D,	External Ground D	CF Adjustmen	t Factors From Infi	inite Thickne	ss and Infinit	e Lateral E	xtent		
	Nuclide	Bi-215							
	External DC	F 1.369E	+0 (mrem/y	/r)/(pCi/g)	5	ource	DCFPA	K3.02 Volume	
	Depth and Cove	er Fitted Parame	ters	1	Area and SI	ape Fitted	Parameters		
	CF_A	9.007E-2			Npt	4			
	CE KA	9.099E-1	om^2/a		EPT	(1) <mark>0.00</mark>	038411	MeV	
	CF_KB	9.7525-2	cm^2/a		EPT	(2) <mark>0.00</mark>	0370059	MeV	
		J.1 J2L-2			EPT	(3) <mark>0.01</mark> 1	1156	MeV	
					EPI	(4) <mark>0.36</mark> 3	3044	MeV	
					FPT	(1) <mark>2.66</mark>	363		
					FPT	(2) <mark>0.00</mark>	0244997		
					FPT	(3) <mark>0.08</mark>	53646		
					FPT	(4) <mark>0.71</mark> 4	154		
	<-Back								

S External Ground DCF	Adjustment Facto	rs From Infinite	Thickness and I	nfinite Latera	al Extent		
Nuclide	РЬ-211						
External DCF	3.68E-1	(mrem/yr)/(p	pCi/g)	Sourc	e <mark>DCFPA</mark>	K3.02 Volume	
Depth and Cover Fi	itted Parameters —		Area	and Shape Fitt	ed Parameters		
CF_A 8. CF_8 9. CF_K8 2. CF_K8 3.	.767E-2 .123E-1 .929E+0 cm^3 .402E-2 cm^3	2/g 2/g		Npt 4 EPT(1) 0.1 EPT(2) 0.1 EPT(3) 0.1 EPT(4) 0.2 FPT(4) 0.3 FPT(2) 0.1 FPT(2) 0.1 FPT(3) 0.1 FPT(4) 0.2	000032479 00035745 0538336 588405 219915 000018986 0168569 11415	MeV MeV MeV MeV	
<-Back							

External Ground DCF Adjus	stment Factors From Infinite T	nickness and Infinite La	teral Extent	
Nuclide Bi-	211			
External DCF 2.4	41E-1 (mrem/yr)/(p	Ci/g) Sou	ICE DCFPA	K3.02 Volume
Depth and Cover Fitted P	arameters	- Area and Shape	Fitted Parameters	
CF_A 8.3298	-2	Npt	4	
CF_B 9.167E	-1	EPT(1)	0 000020737	MeV
CF_KA 1.377E	+0 cm^2/g	EPT(2)	0.000327233	MeV
CF_KB 1.098E	-1 cm 2/g	EPT(3)	0.0101938	MeV
		EPT(4)	0.304685	MeV
		FPT(1)	0.417394	
		FPT(2)	0.000031110:	
		FPT(3)	0.0114543	
		FPT(4)	0.154724	
<-Back				

coeff	bd - Notepad													
_														
File Edit	Format View	Help												
Nuclide	Volume DCF	CF A	CF B	CF KA	CF KB	NPT	EPT(1)	EPT(2)	EPT(3)	EPT(4)	FPT(1)	FPT(2)	FPT(3)	FPT(4)
	mrem.g/pCi/y	-	_	cm2/g	cm2/g		(MeV)	(MeV)	(MeV)	(MeV)				
Ac-227	2.615E-04	0.165	0.835	5.566E+00	1.661E-01	4	8.16747E-05	4.79126E-04	1.10337E-02	1.13597E-01	4.26368E+00	5.94693E-04	5.79514E-02	5.69599E-04
Th-227	5.641E-01	0.076	0.924	1.612E+00	1.246E-01	4	7.12273E-05	4.32862E-04	1.26229E-02	1.93285E-01	1.76258E+01	2.06361E-03	6.42411E-01	6.33157E-01
Fr-223	1.758E-01	0.138	0.862	2.897E+00	1.331E-01	4	7.12668E-05	2.90027E-03	4.34523E-02	3.28082E-01	9.44766E+00	4.92177E-02	8.27575E-01	7.20088E-02
Ra-223	5.791E-01	0.092	0.908	1.486E+00	1.313E-01	4	5.00855E-05	4.09658E-04	1.11254E-02	1.54109E-01	1.47437E+01	1.62088E-03	3.04475E-01	8.89869E-01
At-219	0.000E+00	0.000	1.000	0.000E+00	0.000E+00	0	0.0000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0.0000E+00	0.0000E+00	0.00000E+00	0.00000E+00
Rn-219	2.970E-01	0.077	0.923	1.458E+00	1.130E-01	4	3.84183E-05	3.70693E-04	1.12906E-02	2.97523E-01	3.77981E-01	3.52152E-05	1.23255E-02	1.96429E-01
Bi-215	1.369E+00	0.090	0.910	1.917E+00	9.752E-02	4	3.84110E-05	3.70059E-04	1.11156E-02	3.63044E-01	2.66863E+00	2.44997E-04	8.53646E-02	7.14540E-01
Po-215	9.452E-04	0.086	0.914	1.312E+00	1.029E-01	4	2.66249E-05	3.41560E-04	1.06149E-02	4.29415E-01	1.98490E-04	1.61133E-08	5.85196E-06	4.10646E-04
Pb-211	3.680E-01	0.088	0.912	2.929E+00	9.402E-02	4	3.24791E-05	3.57450E-04	5.38336E-02	5.88405E-01	2.19915E-01	1.89860E-05	1.68569E-02	1.14160E-01
Bi-211	2.410E-01	0.083	0.917	1.377E+00	1.098E-01	4	2.07377E-05	3.27233E-04	1.01938E-02	3.04685E-01	4.17394E-01	3.11103E-05	1.14543E-02	1.54724E-01
Po-211	4.707E-02	0.113	0.887	1.009E+00	8.510E-02	4	2.66218E-05	3.41240E-04	5.54483E-02	7.34948E-01	3.31301E-03	2.66635E-07	2.99662E-04	1.10962E-02
T1-207	2.391E-02	0.262	0.738	1.017E+01	9.644E-02	4	2.66205E-05	3.41109E-04	1.04894E-02	5.85692E-01	8.60654E-04	6.90200E-08	2.49882E-05	1.13496E-02

(2) The fitted parameter data in Table C-3 of the User's Manual, Vol. 1 is displayed first followed by data in Table C-5 in the following screen shots. The values in Table C-3 and Table C-5 matched the data in the "coeff_bd file":

-

TABLE C-3 Fitted Parameters A, B, K_A , and K_B for at least 30 Day Cutoff Half-life Radionuclides and Their Associated Progeny Determined with the Dose Coefficients from DCFPAK3.02												
Padiomalida		Fitted P	'arameters"									
Radionuciide	А	В	K4 (cm ² /g)	$K_{s} (\text{cm}^{2}/\text{g})$								
Ac-227	1.65E-01	8.35E-01	5.57E+00	1.66E-01								
Th-227	0.076	0.924	1.612	0.1246								
Fr-223	0.138	0.862	2.897	0.1331								
Ra-223	0.092	0.908	1.486	0.1313								
At-219	0	1	0	0								
Rn-219	0.077	0.923	1.458	0.113								
Bi-215	0.09	0.91	1.917	0.09752								
Po-215	0.086	0.914	1.312	0.1029								
Pb-211	0.088	0.912	2.929	0.09402								
Bi-211	0.083	0.917	1.377	0.1098								
Po-211	0.113	0.887	1.009	0.0851								
TI-207	0.262	0.738	10.17	0.09644								

TABLE C-5 C Life of at least	TABLE C-5 Collapsed Photon Energies (EPT) (MeV) and Yield Fractions (FPT) for ICRP-107 Radionuclides with Half- Life of at least 30 Days and Their Associated Progeny												
Nuclide	EPT(1)	EPT(2)	EPT(3)	EPT(4)	FPT(1)	FPT(2)	FPT(3)	FPT(4)					
	(MeV)	(MeV)	(MeV)	(MeV)									
Ac-227	8.17E-05	4.79E-04	1.10E-02	1.14E-01	4.26E+00	5.95E-04	5.80E-02	5.70E-04					
Th-227	7.12E-05	4.33E-04	1.26E-02	1.93E-01	1.76E+01	2.06E-03	6.42E-01	6.33E-01					
Fr-223	7.13E-05	2.90E-03	4.35E-02	3.28E-01	9.45E+00	4.92E-02	8.28E-01	7.20E-02					
Ra-223	5.01E-05	4.10E-04	1.11E-02	1.54E-01	1.47E+01	1.62E-03	3.04E-01	8.90E-01					
At-219	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Rn-219	3.84E-05	3.71E-04	1.13E-02	2.98E-01	3.78E-01	3.52E-05	1.23E-02	1.96E-01					
Bi-215	3.84E-05	3.70E-04	1.11E-02	3.63E-01	2.67E+00	2.45E-04	8.54E-02	7.15E-01					
Po-215	2.66E-05	3.42E-04	1.06E-02	4.29E-01	1.98E-04	1.61E-08	5.85E-06	4.11E-04					
Pb-211	3.25E-05	3.57E-04	5.38E-02	5.88E-01	2.20E-01	1.90E-05	1.69E-02	1.14E-01					
Bi-211	2.07E-05	3.27E-04	1.02E-02	3.05E-01	4.17E-01	3.11E-05	1.15E-02	1.55E-01					
Po-211	2.66E-05	3.41E-04	5.54E-02	7.35E-01	3.31E-03	2.67E-07	3.00E-04	1.11E-02					
T1-207	2.66E-05	3.41E-04	1.05E-02	5.86E-01	8.61E-04	6.90E-08	2.50E-05	1.13E-02					

Test objectives/descriptions:

This test verified the code's capability of estimating instantaneous external dose at t=0 when this feature is made available and is selected to launch calculations with the IND template input files as well as with the modified input files. The IND template input files were also examined to ensure the inputs were properly set, including 96 IND nuclides in area sources reflecting the exposure scenarios considered in the RESRAD-IND code.

Test result (Pass/Fail): Pass

Test details:

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. The template files, "street.tem" and "monument.tem," were chosen for this test. "Street.tem" was modified by deleting all radionuclides in the source except for Cs-134, Cs-137, and Co-60, and the exposure duration was changed to create input files "street-*.tem," where * denotes the exposure duration in day. "Monument.tem" was modified by deleting Sources 2, 3, 4, and 5 and all radionuclides in the remaining Source 1, except for Cf-252 and Cm-244, and the exposure duration was changed to create input files "monument-*.tem," where * denotes the exposure duration in day.

When "street-*.tem" and "monument-*.tem" were run with the "INitial external Dose rates" menu option, input files "street-*.iie" and "monument-*.iie" were created. Detailed comparisons of results of "street-*.tem" vs. "street-*.iie" and "monument-*.tem" vs. "monument-*.iie" are documented in the attachment file, "Attachment for test report for Case 034.xlsx."

(1) The "INitial external Dose rates" option was available after the file "ind96dcf.key" was copied and placed in the folder where the code was installed.

~	3D display Sensitivity Summary Uncertainty Input		Receptor Parameters		
ſ	Last Report Last Risk Report Dose Coefficients and Slope Factors Last Intermediate Output Files Last Probabilistic Report	tion s	Receptor # Room Time Fraction Breathing Rate Ingestion Rate	1 1 1 18 0.0001	▼ ▼ m²/d m²/h
	Uncertainty Graphics Standard Graphics		Location [m]	x: 0 y: 0	z: 0.5
	Any File		Shielding Parameters		
6 - C	Calculator	~	Source 1 / Receptor	r1	

- (2) The template input file "Street.tem" had the proper settings for the calculation of dose/risk at time 0 for an area source.
- (3) The results show that the normalized annual dose based on the results of the "street-*.iie" input files stay constant with varied exposure duration.

Results obtai	Results obtained with the IND feature using DCFPCK 3.02 DCFs (input file has .iie extention)													
Total dose incurred during the exposure duration														
	Input Duration (d)													
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365					
Co-60	1.92E-04	9.61E-05	3.84E-05	1.92E-05	9.61E-06	1.92E-06	5.26E-07	1.92E-07	1.92E-08					
Cs-134	1.26E-04	6.32E-05	2.53E-05	1.26E-05	6.32E-06	1.26E-06	3.46E-07	1.26E-07	1.26E-08					
Cs-137	2.63E-07	1.32E-07	5.27E-08	2.63E-08	1.32E-08	2.63E-09	7.22E-10	2.63E-10	2.63E-11					

Normalized	total dose f	or a durati	on of 365 c									
	Input Duration (d)											
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365			
Co-60	1.92E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04			
Cs-134	1.26E-04	1.26E-04	1.27E-04	1.26E-04	1.26E-04	1.26E-04	1.26E-04	1.26E-04	1.26E-04			
Cs-137	2.63E-07	2.64E-07	2.64E-07	2.63E-07	2.64E-07	2.63E-07	2.64E-07	2.63E-07	2.63E-07			

(4) The results also show that the normalized annual dose based on results of the "street-*.tem" input files display the trend of getting closer to the normalized annual dose based on results of the "street-*.iie" input files as the exposure duration becomes shorter.

Results from	Results from regular calculations using DCFPAK 3.02 DCFs (input file has .tem extention)												
Total dose incurred over the exposure duration													
	Input Duration (d)												
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365				
Co-60	1.36E-04	8.15E-05	3.60E-05	1.86E-05	9.46E-06	1.92E-06	5.26E-07	1.92E-07	1.92E-08				
Cs-134	8.21E-05	5.11E-05	2.33E-05	1.21E-05	6.19E-06	1.26E-06	3.46E-07	1.26E-07	1.26E-08				
Cs-137	1.96E-07	1.15E-07	4.99E-08	2.57E-08	1.30E-08	2.63E-09	7.21E-10	2.63E-10	2.63E-11				

Normalized	total dose	for a durati	on of 365 c									
	Input Duration (d)											
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365			
Co-60	1.36E-04	1.63E-04	1.80E-04	1.86E-04	1.89E-04	1.92E-04	1.92E-04	1.92E-04	1.92E-04			
Cs-134	8.21E-05	1.02E-04	1.17E-04	1.21E-04	1.24E-04	1.26E-04	1.26E-04	1.26E-04	1.26E-04			
Cs-137	1.96E-07	2.30E-07	2.50E-07	2.57E-07	2.60E-07	2.63E-07	2.63E-07	2.63E-07	2.63E-07			

(5) The template input file "monument.tem" had the proper settings for the calculation of dose/risk at time 0 from five area sources.

(6) The results show that the normalized annual dose based on the result of the "monument-*.iie" input files stay constant with varied exposure duration.

Results obtai	tesults obtained with the IND feature using DCFPCK 3.02 DCFs (input file has .iie extention)													
Total dose incurred during the exposure duration														
	Input Duration (d)													
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365					
Cf-252	2.57E-05	1.28E-05	5.13E-06	2.57E-06	1.28E-06	2.57E-07	7.03E-08	2.57E-08	2.57E-09					
Cm-244	6.74E-08	3.37E-08	1.35E-08	6.74E-09	3.37E-09	6.74E-10	1.85E-10	6.74E-11	6.74E-12					

Normalized	total dose f	for a durati	on of 365 d										
	Input Duration (d)												
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365				
Cf-252	2.57E-05	2.56E-05	2.57E-05	2.57E-05	2.56E-05	2.57E-05	2.57E-05	2.57E-05	2.57E-05				
Cm-244	6.74E-08	6.74E-08	6.75E-08	6.74E-08	6.74E-08	6.74E-08	6.75E-08	6.74E-08	6.74E-08				

(7) The results also show that the normalized annual dose based on the results of the "monument-*.tem" input files display the trend of getting closer to the normalized annual dose based on results of the "monument-*.iie" input files as the exposure duration becomes shorter.

Results from	Results from regular calculations using DCFPAK 3.02 DCFs (input file has .tem extention)													
Total dose in	Total dose incurred over the exposure duration													
				Inp	ut Duration	ı (d)								
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365					
Cf-252	1.72E-05	1.06E-05	4.75E-06	2.47E-06	1.26E-06	2.56E-07	7.02E-08	2.57E-08	2.57E-09					
Cm-244	4.97E-08	2.92E-08	1.28E-08	6.56E-09	3.32E-09	6.72E-10	1.84E-10	6.74E-11	6.74E-12					

Normalized	total dose f	for a durati	on of 365 d										
	Input Duration (d)												
Nuclide	365	182.5	73	36.5	18.25	3.65	1	0.365	0.0365				
Cf-252	1.72E-05	2.12E-05	2.38E-05	2.47E-05	2.52E-05	2.56E-05	2.56E-05	2.57E-05	2.57E-05				
Cm-244	4.97E-08	5.84E-08	6.40E-08	6.56E-08	6.64E-08	6.72E-08	6.72E-08	6.74E-08	6.74E-08				

Test objectives/descriptions:

This test verified that Version 4.0 can read the input files created by Version 3.5, convert them into the format of Version 4.0, and perform dose/risk calculations.

Test result (Pass/Fail): Pass

Test details:

The test was conducted following the instructions provided in RESBLD-Test-001, Rev. 2, RESRAD-BUILD Test Cases. It involves retrieving two input files generated with the previously released Version 3.5, checking input parameter values, saving the input file, and launching calculations.

The two input files associated with this test case, which were created with Version 3.5, "Test 36-1.BLD" and "Test 36-2.BLD," were successfully retrieved. The input information was preserved, the files were saved with the format of the current version, and calculations were completed without any issue.

(1) Retrieval of "Test 36-1.BLD:"

The Traditional Appearance option and the Write Intermediate Output option were selected. All the input information was preserved:

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\Test 36-1.bld			
Case	Receptor Parameters		
Title Title Default Case for RESRAD-BUILD	Receptor # 1 Room 1		
Time Parameters Exposure Duration (days) 30 Indoor Fraction 0.5 Evaluation Times	Time Fraction 1 Breathing Rate 18 m²/d Ingestion Rate 0.0001 m²/h Location [m] x, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		
Building Parameters			
Number of Rooms 3 Image: Constraint of Constraints Air Flow Deposition Velocity 0.01 m/s Air Flow Resuspension Rate 0.0000005 1/s Flow Radiological Data Activity: Dose: Dose:	Shielding Parameters Source 1 / Receptor 1 Thickness 0 cm Density 2.4 g/cm ³ Material Concrete		
p V Ci V m V rem V	View Table Copy Shielding		
C ICRP 107 C ICRP 38 Transformations Internal Dose Library ICRP 72 (Age 1) External Dose Library ICRP 60 Risk Library FGR 13 Morbidity Location of DCF Database Files C:\RESRAD_Family\DCF\3.3 Cut-off Half-Life: 30 days	Source Parameters Source # 1 Room 1 Type Volume Direction X Location of Centroid x:0 9:0 2:0		

The new parameter, direction from interior to eroding surface, was set to "-X" for Source 1, a volume source:

🚯 Layer Region Parameters		
Regions ——	-	
Contaminated	1 ⊙	
Thickness [cm]	15	
Density [g/cm³]	2.4	
Erosion [cm/d]	2.40E-08	
Direction from interior to eroding surface -X -		
OK	Cancel	

The inputs were saved to a new file, "Test 36-1-new.BLD." Calculations were completed without any issue.

(2) Retrieval of "Test 36-2.BLD":

The Traditional Appearance option and the Write Intermediate Output option were selected.

All the input information was preserved:

RESRAD-BUILD : C:\RESRAD_Family\BUILD\4.0.19.0_beta\UserFiles\1 File View Modify Advanced Help	Test 36-2.bld
Case	Receptor Parameters
Title Title Default Case for RESRAD-BUILD	Receptor # 1 -
Time Parameters Exposue Duration (days) 30 Indoor Fraction 0.5 Evaluation Times	Ime Fraction 1 Breathing Rate 18 m³/d Ingestion Rate 0.0001 m²/h
Building Parameters	Location [m] x: 1 y: 1 z: 1
Number of Rooms 2	Shielding Parameters Source 1 / Receptor 1 Thickness 2 cm Density 2.4 g/cm ² Material Concrete
Activity: Dose: ▼Bq ▼ m ▼ Sv ▼	View Table Copy Shielding
C ICRP 107 © ICRP 38 Transformations	Source Parameters
Internal Dose Library FGR 11 External Dose Library FGR 12 Risk Library FGR 13 Morbidity Location of DCF Database Files C:\RESRAD_Family\DCF\3.3 Cut-off Half-Life: 30 days	Source # 1 Room 1 Type Volume Direction X Location of Centroid x: 5 y: 5 z: 0
Number of parameters selected for Sensitivity Analysis: 4 rmvf	i(2) */ 2 _ ftin */ 2 _ rmvfr(2) */ 2 _ ftin */ 2

The new parameter, direction from interior to eroding surface, was set to "-X" for Source 1, a volume source:

🚯 Layer Region Parameters 🛛 💽		
Regions —	-	
Contaminated	1 ⊙	
Thickness [cm]	15	
Density [g/cm³]	2.4	
Erosion [cm/d]	2.40E-08	
Direction from interior to eroding surface -X -		
ОК	Cancel	

The inputs were saved to a new file, "Test 36-2-new.BLD." Calculations were completed without any issue.

Environmental Science Division

Argonne National Laboratory 9700 South Cass Avenue Lemont, IL 60439-4832

www.anl.gov

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.